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The problem of particle storage in nanolayered structures will be considered. Local perturbations of nanolayers can

lead to the appearanceof eigenvalues of the corresponding one-particle Hamiltonian. To study particle storage it

is necessary to deal with the multi-particle problem. This problem faces essential computational difficulties due to

the great increase of the spatial dimension. Using a composite of natural physical models, analytical methods and

computational approaches allows one to simplify the problem and to obtain useful results for application. Particu-

larly, the Hartree method and Finite Elements Method (FEM) are used. The discrete spectrum of the Hamiltonian

for two interacting particles is considered. Two different types of perturbation are considered: deformation of the

layer boundary and a small window in a wall between two layers. The relation between the system parameters

(interaction intensity - waveguide deformation) ensuring the existence of a non-empty discrete spectrum is studied.

A comparison of particle storage efficiencies is made for these two cases.
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1. Introduction

It is known that curved quantum layers can store particles. From a mathematical point of
view, it is related with the existence of eigenvalues for the corresponding Hamiltonian. Increased
curvature leads to larger eigenvalues figures. This question is important in various physical
problems. For example, to do two-qubit operation in a quantum computer based on coupled
quantum waveguides (see, e.g., [1], [2]), it is necessary to store two electrons in some bounded
domain during the operation time. Another interesting application is related to the storage of
hydrogen (or protons) in nanolayered structures. Storing hydrogen in this manner can give a
safe and effective fuel container for a hydrogen engine. One can note that layers with curved
boundaries are more effective for particle storage because increasing the curvature (or boundary
perturbation amplitude) leads to an increase of the discrete spectrum cardinality. Hence, the
amount of hydrogen stored in the layered structure will be greater. Note that the Hamiltonian for
the corresponding plane layered structure has an empty discrete spectrum.

To solve the problem it is necessary to consider the multi-body system, which is the
main source of difficulty. Many-particle problems appear in various situations. These problems
have been studied by using a variety of different methods (see, e.g., [3], [4]). For the quantum
waveguide multi-body problem, the majority of results concerns the use of one-dimensional
wires. Many of these methods for dealing with this particular problem have been reported
previously [5]. Interesting approaches are also based on scattering theory [6], operator extensions
theory [7] and reducing the problem to a 2D diffraction [8].

In the discrete spectrum problem for curved or deformed 2D (3D) quantum waveguides,
rigorous mathematical results are only available for the one-particle Hamiltonian (if we deal with
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non-interacting particles or interaction is taken into account as some mean field only, then we
really deal with a one-particle problem). As for the many-particle problem for quantum waveg-
uides, only approximated results have been obtained [9], [10], [11], [12]. For example, Exner
estimates the number of neutral fermions which can be stored near the distortion of the layer
as the dimension of the discrete spectrum subspace [10]. For charged (repulsing) particles, only
rough variational estimation for the maximum number of stored particles can be obtained (the
analogous rough variational results for attracting particles have been described [12]). Namely,
consider 2D layer Σ – strip in R

2 of width 2a. Let Γ be the axis of Σ. The strip is determined
by the semi-width a and the curvature s → γ(s), defined on Γ. Here s is the curve length.
Assume that the following regularity conditions take place: a) Σ is non self-intersecting curve,
b) a‖γ‖∞ < 1, c) γ has bounded support and γ ∈ C2, γ, γ′ are bounded.

Let us first choose a system of units for which � = 2m = c = 1, c is the speed of
light, m is the particle mass. Using natural waveguide coordinates (s, u) in Σ, one reduces the
one-particle Hamiltonian to the following operator:

H = −∂s(1 + uγ)−2∂s − ∂u
2 + V (s, u)

in L2(R× (−a, a)) with the potential

V (s, u) = − γ(s)2

4(1 + uγ(s))2
+

uγ′′(s)
2(1 + uγ(s))3

− 5uγ′′(s)2

4(1 + uγ(s))4
.

The operator is defined and essentially self-adjoint on D(H) = {f : f ∈ C∞, f(s,±a) =
0, Hf ∈ L2}. By means of the modes expansion, one reduces the problem to a one-dimensional
case [13–15], for which we use the Birman-Shwinger estimations. The potential V is majorized
by:

W =
γ(s)2

4δ2−
+
a|γ′′(s)|
2δ3−

+
5a2γ′′(s)2

4δ4−
, δ± = 1± a‖γ‖∞.

Let us introduce Wj, j = 2, 3, . . .

Wj(s) =

{
0,

(
π
2a

)2
(j2 − 1) > ‖W‖∞,

W (s),
(

π
2a

)2
(j2 − 1) � ‖W‖∞.

Then the numberN of neutral fermions, with spins S, which can be bounded near the perturbation
of the layer is estimated [10] as:

N � (2S + 1)

⎛
⎜⎝1 + δ2+

∫
R2

W (s) |s− t|W (t)dsdt∫
R

W (s)ds
+

∞∑
j=2

δ2+

∫
R

W (s)ds

⎞
⎟⎠ .

Here we assume the Dirichlet condition. The Neumann and Robin conditions are analogous.
As for the semi-transparent surface, it is possible to consider it as δ−potential supported by
curve [16], [17], [18].

In the case of charged particles (electrons, protons) it is necessary to consider their
interaction. The simplest approximation was discussed previously [10], and some variational
estimations were obtained. The discrete spectrum of a N-particle Hamiltonian can be empty. A
sufficient condition for this is as follows:

Tβ(N) +
e2N(N − 1)

2β
√
7

� ‖W‖∞N +
( π
2a

)2

N +
e2

18β
√
2
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for some β � max {2b, 596e−2}, where 2b is the diameter of the support of function γ, e is the
particle charge,

Tβ(N) =

⎧⎪⎨
⎪⎩

2
n∑

m=1

λm, N = 2n,

2
n∑

m=1

λm + λm, N = 2n+ 1,

λm are ordered eigenvalues of the Dirichlet Laplacian for the domain
[−3

2
βδ+,

3
2
βδ+

]× [−a, a] .
The computational problem for an N−particle state is rather difficult due to the essential

increasing of the space dimension (N times). To simplify the problem, it is possible to use
natural physical models and some preliminary analytical considerations. Particularly, the Hartree
method permits the reduction of the problem to a sequence of one-particle problems. By using
analytically obtained asymptotics, one can choose an initial approximation more effectively. Such
a combination of analytical and computational methods seems to be the most promising approach
to this problem.

2. One-particle problem for waveguide with deformed boundary

Variational estimates for the eigenvalues of the problem were obtained [19]. The domain
is determined as follows:

Ω = {(x, y) ∈ R2 : 0 < y < a(1 + λf(x))}, suppf = [−b, b], f ∈ C∞
0 (R).

The trial function is sought in the form

ψ =

{
(1 + ληf(x))χ1(y), |x| � b,
e−h|x∓b|χ1(y), |x| > b.

Let

z =
π2

a2
‖f‖2
‖f ′‖2 ,

The parameter η is chosen by the condition

η2 − 2ηz + 3z +K2 < 0, K =

√√√√ ∞∑
n=2

(
2n

n2 − 1

)
=

√
π2

3
+

1

4
,

which can be valid if z2 − 3z−K2 > 0, particularly, one can take η = z, that corresponds to the
parabola minimum.

χn =

√
2

a
sin

πny

a
.

h =
1

2
λ2d1‖f‖2, d1 = π2

a2z
(z2 − 3z −K2).

The eigenvalue distance from the bottom of the continuous spectrum is estimated as follows;

−λ4d02‖f‖4 +O(λ5) � E − π2

a2
� −1

4
λ4d1

2‖f‖4 +O(λ5),

d0 =

(
4πb

a2

)2

− 3
π2

a2
.

The eigenvalue problem is solved numerically by the Finite Elements Method (FEM).
Namely, we consider the minimization problem for the functional (in natural system of units)

a(ψ, φ) =

∫
Ω

(
�
2

2m
(
∂ψ

∂x

∂φ

∂x
+
∂ψ

∂y

∂φ

∂y
) + Eψφ

)
dΩ (1)
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in the waveguide domain of length 2k, width 2a with sine-like deformation of height d and width

2b, b � k: f(x) = d sin
(

(x−b)π
2b

)
, |x| � b. In real physical systems the thickness (width L)

of the layer is about the de Broglie wavelength (few nanometers for the electron) The Dirichlet
condition are valid at the waveguide boundaries, while Neumann conditions are assumed at the
waveguide ends (“formal” boundaries). One can use “non-reflecting” conditions at the ends,
but this type of this condition doesn’t influence the results. The reason is very simple — the
corresponding eigenfunction decays exponentially outside of the perturbation region. To find
the numerical solution, we used FreeFem++ with the library ARPACK to search for the matrix
eigenvalues. Domain was Ω is divided into triangular subdomains with determined quadratic
functions (see Fig. 1). The dependence of the eigenvalue (energy level) on the height of the
deformation is shown on Fig. 2. Note that the eigenvalue is less than the threshold, i.e. the
bottom of the continuous spectrum, E/E0 = π2. Our results are in good correlation with Exner’s
estimations.

Fig. 1. Triangulation of the domain

Fig. 2. Dependence of the eigenvalue (energy level) E/E0 on the height d/L of
the deformation (in dimensionless form); L = 2a, E0 =

�
2

2mL2 , b = 0.4L
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3. Two-particle problem for waveguide with deformed boundary

Consider two interacting particles in 2D waveguide with a perturbed boundary, i.e. we
deal with the two-particle Schrödinger equation

− �
2

2m
Δψ(r1, r2) + U(r1, r2)ψ(r1, r2) = Eψ(r1, r2).

The one-particle Hamiltonian for aquantum waveguide exhibits bound states if it is bent, pro-
truded or allowing a leak to another duct [19], [20], [21], and the discrete spectrum depends
substantially on the shape of the channel. The same is true for non-interacting particles. The
most interesting question is whether the discrete spectrum’s non-emptiness is preserved if we
switch on the interaction between particles. A search was begun for system parameters that
ensured this. Working with the Hartree approximation, the wavefunction is sought in the form

ψ(r1, r2) = ψ1(r1)ψ2(r2), (2)

where ψ1 and ψ2 are one-particle functions and r1 and r2 are coordinate vectors of the corre-
sponding particles. Using conventional methods, one obtains the following system for ψ1 and
ψ2:

{ − �2

2m
Δψ1(r1) + U1(r1)ψ1(r1) = E1ψ1(r1),

− �
2

2m
Δψ2(r2) + U2(r2)ψ2(r2) = E2ψ2(r2),

(3)

where

Un(rn) =

∫
Ω

|ψ3−n(r3−n)|2 u(r1, r2)dr3−n, (4)

u(r1, r2) is the interaction potential, e.g., for Coulomb repulsion it has the form u(r1, r2) =
e2

|r1−r2| . The simplest type of interaction is a δ−potential (see, e.g., [22], [23], [24]). For this
case, Un(rn) takes the form:

Un(rn) =

∫
Ω

|ψ3−n(r3−n)|2 U0δ(r1, r2)dr3−n = U0 |ψ3−n(rn)|2 ,
where U0 describes the intensity of the interaction. As a result, we get the following system:

{ − �2

2m
Δψ1(r1) + U0 |ψ2(r1)|2 ψ1(r1) = E1ψ1(r1),

− �
2

2m
Δψ2(r2) + U0 |ψ1(r2)|2 ψ2(r2) = E2ψ2(r2).

(5)

To find eigenvalues of the two-particle Hamiltonian, FEM is used. For this purpose, the
problem needs reformulation in order to study the variational problem. At this stage, the system
of differential equations (5) is replaced by integral relations:∫

Ω

(
�
2

2m
∇ψ1 · ∇φ1 + U0 |ψ2|2 ψ1φ1

)
dr1 − E1

∫
Ω
ψ1φ1dr1 = 0,∫

Ω

(
�
2

2m
∇ψ2 · ∇φ2 + U0 |ψ1|2 ψ2φ2

)
dr2 − E2

∫
Ω
ψ2φ2dr2 = 0.

(6)

The algorithm for the solution begins by taking as the first approximation the following
functions ψ1 = ψ2 = 0leading naturally, to a one-particle problem. Once the one-particle problem
is solved, that solution (approximation for the one-particle eigenfunction) is inserted into (5) (or
(4) in the general case), then, problem (6) is solved with the obtained potential. The solution is
inserted into (5), and the procedure is repeated. Due to spatial symmetry, the values of E1 and
E2 should coincide, so, the algorithm is made up to the instant when coincidence with the chosen
accuracy appears. Bound states corresponds to values less than the lower bound of the continuous
spectrum (π2). For fixed geometry, the convergence deteriorates when the interaction intensity U0

increases. Values of U0 are found which guarantee the existence of the bound state. Increasing
U0 leads to the destruction of the two-particles eigenstate. Conversely, increasing the boundary
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deformation d leads to an increase of the “eigenvalue-threshold” distance (the only reason for
the eigenvalue’s existence is this deformation, as plane waveguides have no eigenvalues). It is
interesting to find the correlation between the intensity and deformation, for which there exists a
two-particle bound state. This corresponds to the domain on the parameter plane. The boundary
of this domain (in dimensionless form) is found (see Fig. 3). The domain in question is below
the curve on the Figure. One can use this curve to predict the possibility of particle storage, and
consequently, to create systems with the proper parameters (proper deformation should correlates
with the intensity of the particle’s interaction).

Fig. 3. Domain on the dimensionless parameters plane (d/L, U0/E0) correspond-
ing to the existence of eigenvalues of the two-particle Hamiltonian (below the
curve); 2a = L, E0 =

�
2

2mL2 , b = 0.4L; the domain is below the curve

4. Layers coupled through window

Local perturbation of the layered structure boundary isn’t a unique one that leads to the
appearance of bound states below the continuous spectrum. Consider two nanolayers coupled
through a narrow slot. It can be considered as a two-dimensional system, i.e. two strips coupled
through window. The Dirichlet Laplacian for such system is known to have an eigenvalue
below the threshold. The eigenvalue tends to the lower bound of the continuous spectrum
when the window width tends to zero. Let d and a be the widths of the strip and the window,
correspondingly. Exner and Vugalter [25] obtained an estimation of the eigenvalue distance from
the threshold for a small window. The asymptotics (in the width of coupling window) of the
eigenvalue were obtained by matching the asymptotic expansions for solutions to the boundary
value problem [26], [27]:

λa =
π2

d2
−
(
π3

2d3

)2

a4 + o(a4). (7)
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Fig. 4. Triangulation of coupled layers
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Fig. 5. Comparison of eigenvalue asymptotics (“approx”) (7) and exact eigenvalue
(“fem”) for small coupling window

These results concern the one-particle Hamiltonian. As for the corresponding two-particle
problem, there are no results. In the present paper, as a first step, we consider the one-particle
problem for the system of arbitrary window size. Computations are made by FEM. Triangulation
is made as shown on Fig. 4 One can see (Fig. 5) that for a small window, the results are in good
correlation with the asymptotics. The main subject of this section is the two-particle problem
for this system. We consider the delta-interaction between the particles. Delta-repulsion leads to
the destruction of the one-particle bound state. We found the domain on the parameter’s plane
(“interaction intensity - window width”), which corresponds to the existence of the two-particle
bound state. The results are shown on Fig.6. It is interesting to compare these results with the
analogous one obtained for the deformed boundary layer. One can see that two layers with a
coupling window is essentially more effective for the storage of two particles than the nanolayer
with a deformed boundary (the destroying electrostatic repulsion intensity is many times greater).
The result becomes clear if we look through the distributions of electron density (Fig. 7).
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Fig. 6. Domain on the dimensionless parameters plane (d/L, logU0/E0) corre-
sponding to the existence of eigenvalues of the two-particle Hamiltonian (below
the curve)

Fig. 7. electron density distribution of two-particle state for layers coupled
through window
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