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1. Introduction

Quantum cryptography is a method of secure communications based on using single-
photons in the process of secret key generation [1]. Therefore, information security is granted
on a physical level by the fundamentals of quantum physics. The principal advantage of this
technology is its ability to allow legitimate users (Alice and Bob) to always detect eavesdrop-
ping in the secure channel based on the increase in error level during transmission. In practice,
quantum key distribution security is limited by the amount of losses in communication channel
and the quantum bit error rate (QBER). It is known that the eavesdropper (Eve) can conceal
their activity under errors which inevitably appear during the key distribution process [2]. The
QBER value is dependent upon both the optical scheme and device parameters. In particular,
detector characteristics make the largest contribution, especially at shorter distances (<50 km).
In these studies, two detector types: an avalanche photodiode (APD) and a superconducting
single-photon detector (SSPD) were analyzed. APD-detectors are used in most quantum cryp-
tography experiments [2]. Their main drawback is a high rate of dark counts, resulting in high
QBER. Superconducting detectors [3] have high count rates and fewer dark counts, however,
they are more operationally complex, requiring the use of liquid helium to maintain cryogenic
temperatures (2–4 K).

Today many types of QKD systems are known [2]. Merolla et al. [4] suggested a
method of quantum key distribution using sidebands modulation of light (SQKD). Among its
advantages are simplicity of optical phase introduction, matching and maintenance, high bitrate
and low error rate, achieved by unidirectionality and frequency separation of quantum and
classical signals, as well as in principal, the possibility of implementing wavelength division
multiplexing.

In this paper the informational characteristics of an SQKD system with APD and SSPD
detectors (raw key generation rate and QBER) were investigated. We also performed theoretical
analysis of the system’s ability to resist Intercept-resend attacks [2], the efficiency of which was
defined by its QBER value.
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2. Experimental Setup

Figure 1 shows a schematic diagram of an SQKD system. The laser emitted monochro-
matic radiation. The spectrum of signal in frequency scale include only one component. In a
sender block phase modulator PMA performed sinusoidal modulation on a high frequency from
radio range. If the index of modulation is low enough, in addition to the central frequency,
two sidebands will appear in the spectrum at PMA output (Fig. 1b). The spectral shift of the
sidebands from the central frequency was equal to the modulation frequency. Optical phase shift
of sidebands was determined by the phase of the modulating wave. The index of modulation
can be chosen low enough so that the radiation on the sidebands can be regarded as a single
stream of photons.

FIG. 1. Principal scheme of a sidebands-based quantum key distribution sys-
tem (a). L — light source. PMA, PMB — phase modulators, FM — Faradey
mirror, SF — spectral filter, D — detector, SPD — single photon detector. At the
bottom — spectra of optical signals after modulation at the Alice block and Bob’s
block with relative phase shift 2π (c) and π (d)

The modulated optical signal, which consisted of central and side frequencies with a
given relative phase was transmitted over the communication line to Bob’s device, which contain
ed similar modulators PMB1 and PMB2. Two modulators were necessary to compensate for
polarization distortion in the optical system. At the receiving unit a phase shift was added
without reference to the sender. The second modulation resulted in sideband amplitude changes
depending on the relative phase shift of Alice and Bob. After passing through modulators the
light was reflected off the Faraday mirror and passed to the spectral filter. This filter separated
quantum and classical signal components, which were detected by a single photon counter
SPD and detector D respectively. The SQKD system also included an optical subsystem of
synchronization between the sender and the receiver (not shown on the figure).

3. Operational Parameters of the System with Different Detector Types

One of the main parameters of a quantum key distribution system is the ultimate raw
key generation rate Fraw, which was, in our case, limited by the maximum detector count rate
on the receiver side and is defined as:

Fraw =
1

2
fbit µ aloss η,

where 1/2 refers to probability of coincidence between Alice and Bob modulator phase shifts in
the B92 protocol [1]; fbit is the phase change frequency (i.e. the frequency of signals sent by
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the transmitter); µ — mean number of photons per pulse (µ ∼ 0.2), η — quantum efficiency of
a single photon detector. Coefficient aloss represents the probability of a photon to achieve the
detector and is defined through the value of total optical losses in the channel α:

aloss = 10−α/10.

For the investigated SQKD system, the total losses were defined as the sum of losses in
optical fiber and other optical elements. The latter included losses on a multiplexer (1.2 dB),
circulator (2.21 dB), Bob modulators (10 dB after two passes) and a Faraday mirror (0.6 dB),
totalling 14.01 dB. The attenuation rate in single mode fiber (SMF-28) was assumed to be
0.2 dB/km.

Modeling was conducted for the following detector parameters: fbit = 100 MHz, η = 10%
(APD, IdQuantique [5]); fbit = 100 MHz, η = 25% (APD, IdQuantique [5]); fbit = 500 MHz,
η = 16% (SSPD, Scontel [3]). Fig. 2 illustrates calculated values of raw key generation rate
depending on fiber optics line length for the SSQKD system with APD and SSPD detectors.

FIG. 2. Raw key generation rate in the SSQKD system with APD (a) and
SSPD (b) detectors

Quantum bit error rate (QBER) is another important parameter of any QKD system. It
is defined as:

QBER =
Ferr

Fraw + Ferr
,

where Ferr is the frequency of error bits that appear in the process of key distribution. This
quantity consisted of two components: optical error frequency Fopt and detector dark count rate
Fdark. For an SSPD detector, the Fdark value may be as low as 10 Hz [6], and for an APD —
1 kHz for η = 10% and 5 kHz for η = 25% [5]. Optical error frequency Fopt is defined as:

Fopt = Fraw · perr,
where perr is the optical error probability, that in the current setup, includes Fabry–Perot based
filter noise (1.85·10−4), probability of error induced by Rayleigh reflection, back reflection,
circulator directivity (1.63·10−3), and noise from multiplexer cross-coupling (1.93·10−3). Multi-
plexer errors decay in optical fiber. Computational results are given on Fig. 3.

One may notice that QBER suffers a slight decay in a system with an SSPD detector
for communication line length 10–40 km. This is due to errors introduced by optical elements
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FIG. 3. QBER values in SQKD system with an APD (a) and SSPD (b) detectors

of Alice (they are represented by multiplexer errors in our model). This noise component is
quickly attenuated over longer distances.

In order to estimate the efficiencies of different detectors, we introduced a parameter
DEff, defining it as:

DEff =
QBERAPD / QBERSSPD

Fraw APD / Fraw SSPD
.

The curves for APD’s with different quantum efficiencies are shown on Fig. 4. It can
be seen that for optical channel length between 20 to 100 km, SSPD detectors demonstrated
the most considerable advantage. In particular, at 60 km the signal-to-noise ratio of an SSPD is
more than three orders of magnitude higher than for the studied APDs.

FIG. 4. Relative efficiency of SQKD systems with APD and SSPD detectors
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TABLE 1. Probability analysis of Intercept-Resend strategy. Probabilities calcu-
lated for two symmetric cases are marked with an asterisk. Cases not shown are
parenthesized

Phase used by Alice 0 π 0 π

Phase used by Eve 0 π π 0
Probability of photon

detection for Eve
µ/4 µ/4 0 0

Phase detected by Eve 0 π — —
Phase used by Eve
for transmission

0 π 0 (π) 0 (π)

Probability of this event µ/4 µ/4 1/4− µ/8* 1/4− µ/8*
Phase used by Bob

for detection
0 π 0 π 0 π 0 π

Probability of photon
detection for Bob

µ2/8 0 0 µ2/8 µ/8− µ2/16* 0 µ/8− µ2/16* 0

4. “Intercept-resend” Attack Resistance

Intercept-resend eavesdropping strategy, e.g. when Eve imitates Bob’s and Alice’s be-
havior [1] is based upon the principal ability of an intruder to conceal their activity under optical
errors, numerically estimated by the QBER value. Implementing this strategy, Eve connects to
the quantum channel and measures the results of interference between prepared photons and
Alice’s pulses. If Eve receives a detector count, she sends a photon with the same phase value
as the one used for measurement. Otherwise, if she doesn’t receive a count, she sends a pulse
with a random phase. Table 1 shows the probability analysis of this strategy. We assume that
Eve possesses a detector with η = 100%, no dark counts and a light source equal to Alice with
µ ∼ 0.2.

An important advantage of this strategy is the fact that Bob’s total detection probability
(µ/2 for B92 protocol) doesn’t change. According to the table, the probability of a disagreement
between Alice’s and Bob’s raw key bits is close to 50% for low µ. It is certain that such a
high error rate is unsatisfactory, but Eve still possesses another opportunity. She may sacrifice
information about the key, and therefore, linearly reduce the error rate. In order to do this,
Eve can perform measurements with a certain rate. Thus, if we assume that random noise
fluctuations are 50% of total noise rate, then Eve may stay undetected, adding an amount of
errors bounded above by one-half of the QBER value:(

µ

4
− µ2

8

)/µ
2
= QBER · n,

where n represents the frequency of eavesdropping measurements. The number of bits received
by Eve in this case may be estimated as:

NEve =
Fraw · t
n

·
(
µ

4
+
µ2

8

)/µ
2
,

where t is transmission time. Table 2 shows calculated values for the investigated setup for
40 km fiber distance and t = 10 s.

Therefore, at the fiber length of 40 km, Eve is able to perform imperceptible eavesdrop-
ping for one of 4600 pulses in an SSPD based system, one of 13 pulses in an APD system with
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TABLE 2. “Intercept-Resend” strategy efficiency for systems with different de-
tector types

Detector type Fraw, kbit/s QBER n NEve, bits Key fraction, %
SSPD 50.6 3.9·10−4 4615.4 60.5 0.01

APD, η=10 % 6.3 0.24 7.5 4620 7
APD, η=25 % 15.8 0.14 12.8 6788.6 4

η = 10 % and one of 7 in an APD system with η = 25 %. In ten seconds she will receive 61
(0,01%), 6789 (4%) and 4620 (7%) secret key bits respectively. It may be seen that for efficient
detectors QBER grows more slowly than the detection rate, which makes these devices more
suitable for QKD, especially at medium distances, which agrees with data from Fig. 4.

5. Conclusion

Thereby, the results of numerical simulations demonstrated the significantly higher effi-
ciency of superconducting detectors relative to APDs for quantum cryptography systems. The
values used in the calculations were based on data from the available specifications of commer-
cial single-photon detectors. Both high detection rates and low dark counts of SSPD detectors
make them more efficient for quantum cryptography application. The signal-to-noise ratio of
an SSPD was found to be more than three orders of magnitude higher than that of the APD for
setups with optical fiber several tens of kilometers long. Low dark count values in supercon-
ducting devices allowed increasing cryptographic security several times for lines of the same
length and additionally facilitated the detection of Intercept-resend attacks. The use of APD
made necessary the performance of reconciliation and privacy amplification procedures, [2] even
for short optical communication line lengths. The data clearly demonstrated that APD’s with
higher quantum efficiencies (25% instead of 10%) provided higher security rates. Avalanche
photodiodes can be used effectively in one-way cryptographic schemes (in particular, QKD
using single-photon interference in sidebands of phase-modulated light for short communication
channels (up to 30 km).
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