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In this paper a stepwise compaction process of a ring semi-stiff polymer chain placed in a 3d conical
nano-cavity and being under the action of the increasing external field is studied. Compaction from a circle-
like shape to several toroidal-like loops for a three-dimensional system was observed. The thermodynamic
stability of these toroidal-like structures was investigated by observing a hysteresis of the compaction-
extension curves. This study extends our previous work [1] with investigation of the effect of the cone
opening angle variation on the distinct shape transitions.
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1. Introduction

It is well known, that confinement can crucially influence the conformational prop-
erties of macromolecules [2–4]. The accessible space could be reduced by a spherical
cavity [5], a cylindrical pore [6], or a rectangular or circular slit [7]. In all cases, the con-
finement strongly affects the conformation of the molecule. An important example is the
compaction of DNA which has been studied using various methods. It is accomplished for
instance by adding of spermin+4, spermidin+3 or other highly charged counterions [8, 9].
Microchannels were also used to observe the conformational changes of a single DNA
molecule. It has further been found that adding a “crowding agent” also induces com-
paction for a semi-stiff molecule like DNA [10]. An exhaustive review of the equilibrium
behavior of isolated macromolecules confined in cavities of various geometries can be
found in [11] and an overview of their dynamical properties is presented in [12]. New
types of nanostructures are constantly being obtained synthetically and are also found in
biological systems. Specific examples include carbon nano-cones as well as conical cores
in some viruses, e.g. the HIV-1 virus encapsulating its RNA content in a conical con-
finement [13, 14]. Well defined synthetic carbon nano-cones can also be produced during
pyrolysis of hydrocarbons [15]. Such conical structures can be used to investigate the role
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of non-uniform confinement on the stability of e.g. toroidal structures formed by semi-stiff
ring polymers, such as DNA.

In this work we investigate how the shape of such a nano-cone will affect the
structure of a ring polymer during non-uniform confinement by introducing an external
field in the direction toward the tip of the cone. By varying strength of the external
field, acting on the polymer, the volume effectively accessible by the polymer will change.
It is possible thus to imitate different cone heights in a single computer simulation.
Studying stability of several structuresformed during confinement, can provide us better
understanding of the structure of RNA(DNA) confined in differently shaped viral capsids,
or the properties of synthetic and biopolymers in artificially fabricated confinements.

Simulations are performed in the canonical ensemble within conventional Metropolis
Monte Carlo(MC) [17]. Our interest is in the conformational properties of a semi-stiff
chain, and we show that for the special kind of confinement used here, the external field
is able to induce several shape transitions of the semi-stiff polymer in three-dimensions.
It should also be mentioned that in the case of the two-dimensional slit, the similar
looping with the thermodynamically stable conformations were observed in the computer
experiment [1].

The possibility for a semi-stiff circular polymer to have stable looped conformations
are shown also analytically using simplifying assumptions. Further, we investigate the
relative stability of the polymer at different degrees of compaction as a function of the ex-
ternal field strength. To reveal the role of the shape of the confinement we run simulations
for constant external field strength but varying the cone opening angle.

In section 2 we describe the model, in section 3 we introduce the computational
methods, and in section 4 the results are presented. The conclusions are made in section 5.

2. Model

The ring polymer consists of N beads connected by N bonds, where the bond
length was allowed to fluctuate. We thus include the following interactions in our model:
1) bond stretching, 2) bending rigidity (characterized by the angle between consecutive
bonds), 3) repulsion from the wall, confining the polymer, 4) an external potential acting
on the center of mass of the polymer, and 5) Lennard-Jones (LJ) interactions between the
nonbonded beads. The direction of the external field was chosen to decrease the potential
energy of the chain when moving towardsthe towards the cone tip.

So the Hamiltonian of the system is presented as:

H = Estretcℎ + Ebend + Eexc + Eext + ELJ , (1)

where Estretcℎ is the energy due to bond length fluctuation, Ebend is the bending energy,
Eexc is the wall repulsion, Eext is the external field contribution, and ELJ is the Lennard-
Jones potential included in the three-dimensional case.

Specifically for a chain with N beads, Estretcℎ was calculated using a FENE-type
[16] (finitely extensible non-linear elastic) potential:

Estretcℎ(b) =

⎡
⎣ −°

∑N
i=1 ln

[
1−

(
bi−b0
Δbmax

)2
]

, ∣bi − b0∣ ⩽ Δbmax

∞ , ∣bi − b0∣ > Δbmax,
(2)

where ° is the stretching constant, Δbmax is the maximal bond length fluctuation, bi = ∣bi∣,
and where b0 = ∣b0∣ is the equilibrium bond length. Within the equilibrium length region
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the FENE behaves similar to the harmonic potential, but unlike the latter it does not allow
infinite bond extension. The bending energy is given by

Ebend(µ) = ·

N∑
i=1

(1− cos µi), (3)

where µi = b̂i,bi+1 is the angle between successive bond vectors bi and bi+1 (or between
bond vectors bN and b1 for i = N), and · characterizes the bending stiffness. The
confining walls were considered to be hard walls, characterized by:

Eexc =

[
0, all beads are inside the cone
∞, any of N beads is outside the cone, (4)

The interaction with an external force field is given by

Eext(x) = ¾z, (5)

where z is the distance between the center of mass of the polymer and the cone tip, in
which z = 0, see Fig. 1(a), ¾ is the constant which detemines the force of the external
filed. To take into account for the excluded volume interactions, and in order to intro-
duce attraction between the chain monomers-beads to stabilize the ring polymer during
compaction we also include a LJ potential:

ELJ =
N∑

i=1,j<i

u(rij) = 4²
N∑

i=1,j<i

[
(a/rij)

12 − (a/rij)
6
]
, (6)

where rij is the distance between bead centers, ² is the depth of the potential minimum,
and a is the bead diameter. We found, that neglecting the attractive part in the case of
three dimensions, could make structures forming toroidal loops unstable.

To simplify notation, we use dimensionless units throughout. The energy is mea-
sured in the units of ² : H = ²H∗. Distances are given in units of b0: b∗ = b/b0. The bead
size is set to be equal to a = 0.1b0, and the maximal bond fluctuation is Δbmax = 0.5b0.
The units of the reciprocal dimensionless temperature ¯∗ is obtained from the relation:
H¯ = H∗¯∗, where ¯ = 1/kBT and ¯∗ = 1/T ∗.

The values of the bending constant, ·, the stretching constant °, and the magnitude
of the external field ¾ are chosen to maintain the property of a (semi)stiff chain, but still
flexible enough to show shape transitions. The persistence length, lp, was equal to 10b0.
For a chain with N = 20, this means that the contour length is approximately 2lp. The
relation between the bending force constant and the persistence length is given in the
Appendix.

3. Method

The Metropolis Monte Carlo method (MC) in the canonical ensemble [17] was used
to investigate the equilibrium properties of the system. One MC step corresponding to a
single bead displacement or a flip of a segment of the chain (crankshaft move), is presented
in Fig. 1(b).

The chain length of N = 20 was chosen to investigate shape transitions. The
frequency of the crankshaft moves to the single bead displacements were in this case
from 1:10 up to 1:1. Our observation has shown that proposed frequency ratio is enough
for chain to relax after a large conformational change corresponding to a segment flip. The
flip segment length was uniformly chosen in the interval [1 : 15].
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Fig. 1. (a) A sketch of the system used in the simulations. The position of
the center of mass of the polymer is denoted by “cm”, and “z” is the distance
between the level of the “cm” and the tip of the cone, O, and ' is the cone
opening angle. (b) Illustration of the possible moves. The trial configuration
for a single bead displacement and for a segment flip (crankshaft move) are
shown as dashed curves

The transition probability to accept a trial move is the conventional Metropolis
criterion [17]:

acc[o → n] = min[1, e−¯ΔH ], (7)

where ΔH = H(n)−H(o) and n and o denote the new and the old configurations respec-
tively.

4. Results

4.1. External field dependence

In order to understand a possibility for a semi-stiff ring polymer to form stable
looped structures in the nonuniform confinement, it is feasible to consider a simplification
of the proposed model, and evaluate phantom semi-stiff ring polymer. That is we drop the
Lennard-Jones contribution (6) and therefore allowing the monomers to intersect, while
preserving the confining walls interactions (4). All the angles between the monomers µ
and all the bond lengths b for all monomers are considered equal, bond length fluctuations
are not considered. Under these restrictions the possible conformations are circular, made
of integer number of loops.

The Hamiltonian (1) then is reduced to:

H = Estretcℎ + Ebend + Eexc + Eext, (8)

It is possible to rewrite the Hamiltonian contributions as functions of z with pa-
rameter ¸, where z is the distance between the level of the top of the cone and the level of
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Fig. 2. Analytical curves according to (9): full chain energy H as a function
of the distance between the center of mass of the chain and of the cone’s
tip z for different external fields amplitudes ¾. Curves for different ¾ are
marked with different line types: ¾ = 10 – solid, ¾ = 20 – dashed, and
¾ = 30 – dot-dashed. Different symbols denote energy curves for different
number of loops: ¸ = 1 – filled squares, ¸ = 2 – open circles, ¸ = 3 – filled
circles. Other parameters are: tan('/2) = 1, ° = 2, · = 5, Δbmax = 0.5,
N = 20

center of mass (Fig. 1) of the one, two and three loops formed by the ring polymer, and ¸
is the number of loops:

H(z;¸) = −N° ln

[
1− 1

Δb2max

(
2 sin

¸¼

N
tan('/2)z − 1

)2
]
+ 2·N sin2 ¸¼

N
+ ¾z. (9)

The curves of the (9) for ¸ = 1, 2, 3 in Fig. 2 show, how the external field,
given by (5) can induce energetically stable loops with the increase of the field ampli-
tude ¾ = 10, 20, 30.
For each line type there are three energy wells, marked with different point types, with
the minima positions revealing the distances between the cone’s top and the mass center
position for ¸ = 1, 2, 3 looped structures. One can see, for example, that for ¾ = 10, the
energy minimum for ¸ = 2 (open circles) is lower than for ¸ = 1 (filled squares). But at
the same time, the energy minimum for ¸ = 3 (filled circles) is higher than for ¸ = 2
(open circles), showing that the three looped structure is less energetically favourable
than the two looped one. Situation though changes with the external field strengthens,
and for ¾ = 30 the three looped structure has a lower energy than the two looped one,
providing for the looped structure to be thermodynamically stable.

The repulsive part of the LJ interactions provides excluded volume interactions,
while the attractive part will add a stabilizing contribution to any compact configuration.
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In Fig. 3, we first show the screenshots of the semi-stiff ring polymer in three dimensions
at different stages of compaction.

Fig. 3. Examples of different stages of compaction: from 1 to 3 loops. The
view is from the top and the tip of the cone is at the center, while the lines
originating from the tip are the generatrixes of the cone. The system shown
is N = 20, ' = ¼/2, ¯ = 2.0, and ° = 2.0, and · = 5.0.

To demonstrate the stability of the ring polymer with 2 or 3 loops, we show in
Fig. 4 the radius of gyration Rg as a function of the external field strength ¾ during the
compaction process (1 → 2 → 3) loops and the expansion process (3 → 2 → 1). In Fig. 4,
one can clearly observe a hysteresis in the radius of gyration with respect to the external
field strength. It is possible to interpret the hysteresis curves as follows: a stronger
external field is needed to produce compaction, than to expand a ring polymer with the
same amount of loops.

In Fig. 4 we also show Rg(¾) for different temperatures. One can see that the lower
is the temperature, the broader is the hysteresis loop. The temperature doesn’t play any
significant role in the region of the same amount of loops, but does effect on the value of
the “threshould” ¾, making the hysteresis loop broader.

The graphs can be split into three regions ¾ ∈ (0 : 10), ¾ ∈ (20 : 40), and ¾ > 40.
These regions represent one, two and three loops correspondingly. Within each of the
regions the curves show how the radius of gyration changes when the external field
strength varies for the molecule forming one, two, and three loops respectively.
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Fig. 4. Hysteresis observed during the compaction-expansion process of a
semi-stiff ring polymer. The radius of gyration Rg dependence on the mag-
nitude of the external field ¾ is shown for the system N = 20 for different
inversed temperatures, ¯ = 2.0, 3.0, 3.5 with solid, dashed and dot-dashed
curves. The compaction is marked with squares, and the expansion with
diamonds. The rest of the parameters are ' = ¼/2, ° = 2.0, and · = 5.0.
Some error bars are also shown.

One can consider an average “slope” of the curves for compaction to notice that the
slope is decreasing, showing that with an increasing number of loops it becomes gradually
harder to induce further compaction. The error bars are shown to demonstrate, that during
the compaction of a certain structure, the fluctuations in size are small, while in the
transition region the fluctuations are large, revealing the cooperativity of the transitions.

A simple analysis can also be done to show (in addition to the screenshots in Fig. 3)
that the radius of gyration of these loops converges to the values, Rg = {3.0, 1.5, 1.0}
(Fig. 4) that fits very nicely, up to a scaling factor, the Rg curve for the ideal line of contour
length L sequentially packed into 1, 2 and 3 loops: Rg(k) = L

2¼k
→ Rg = {3.0, 1.5, 1.0},

where i is the number of loops.

4.2. Opening angle dependence

As it was mentioned in [1], the orientation of the loops to the cone’s axis depends
on the value of the opening angle of the cone. Curves for the simplified model (8), similar
to shown in Fig. 2 can be plotted for constant amplitude of the external field, ¾, while
varying the cone opening angle '. Number of energetically favourable loops formed by the
phantom ring polymer appears to be dependent on the cone’s opening angle, ', as shown
on Fig. 5, where the energy curves for H(z;¸) from (9) are plotted for the external field
strength of ¾ = 30, enough to introduce compaction up to 3 loops for N = 20 chain, for
the three different cone’s opening angles: ' = 120∘, ' = 90∘, and ' = 60∘. As one can see
too “broad” cones are not very suitable for loop formation.

In order to investigate the change of the orientation of the loops depending on the
opening angle we conducted MC-simulations with the full Hamiltonian (1) and observed
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Fig. 5. Analytical curves according to (9): full chain energy H as a function
of the distance between the centre of mass of the chain and the cone’s
tip z for different opening angles '. Curves for different ¾ are marked with
different line types: ' = 120 – solid, ' = 90 – dashed, and ' = 60 –
dot-dashed. Different symbols denote energy curves for different number of
loops: ¸ = 1 – filled squares, ¸ = 2 – open circles, ¸ = 3 – filled circles.
Other parameters are: ¾ = 30, ° = 2, · = 5, Δbmax = 0.5, N = 20.

the behaviour of a normalized to unity length vector n calculated as follows:

n =

〈
N−1∑
i=1

(ri − rcm)× (ri+1 − rcm)

〉
, (10)

where rj – radius-vector of the bead j, rcm – is the position of the center of mass of the
chain, “×” – denotes the cross-product, and the canonical ensemble averaging ⟨⋅ ⋅ ⋅ ⟩ being
applied. The z-component of n is directed along the cone’s axis. So if the z-component
is greater than the other two, located in the plane perpendicular to the cone’s axis, then
one can conclude that the loops orientation is like shown on the Fig. 3. If all of the
components are close to zero due to averaging out, then the loops are oriented as in the
two-dimensional case. Figure 6 shows the components length of the n, depending on the
opening angle value. It is possible to observe that in the case of strong compacting field,
the orientation of the loops of the chain is perpendicular to the cone’s axis up to ' ≈ 90∗.
After that, however, the orientation changes, that is demonstrated by the graph of the z-
component of n. In the opening angle interval ' ∈ (60∘ : 90∘), the number of loops remains
constant (i.e. 3), that corresponds to Rg ≈ 1 in the reduces units, while the orientation of
the loops changes, Fig. 6.

Another conclusion from Fig. 6 can be made: not only the orientation of the loops,
but also the number of them is dependent on the opening angle. For the “too broad”
cones no compaction is possible, since there are effectively no wall left to squeeze the ring
polymer.
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Fig. 6. Components x, y, and z of the unit vector n, (10), as a function of
the opening angle, '. Radius of gyration, Rg as a function of the '. The
system’s parameters are: N = 20, ° = 2.0, · = 5.0, ¾ = 50, and ¯ = 3.0.

The snapshots capturing the orientation change for 3-looped structure, and an ex-
ample of the irregular structure for the very narrow cone are shown on the Fig. 7.

Fig. 7. Printscreens for the cone opening angle ' ≈ 30∘, ' ≈ 60∘, and
' ≈ 90∘ from the left to the right correspondingly. For the most narrow
cone, there are no loops formed, but some irregular structure instead. The
orientation of the loops changes with the grows of '. The rest parameters
as for the system in the Fig. 6

5. Conclusions

In the present communication, we continued studies of work [1] to investigate
discrete shape transitions of a semi-stiff ring polymer confined in a conical trap. The
proposed model of a ring polymer including chain stiffness undergoes a set of a distinct
shape transitions, starting from a single loop up to several ones. The crucial role of the
studied compaction is due to the a conical geometry and a direction of the external field
acting on the center of mass of the chain. Such kind of shape transitions is not a specific
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feature of the dimensionality of the system, as long as the same behaviour can be observed
in the two-dimensional slit and in a three-dimensional conical pore.

The two ways of inducing a compaction was considered in the present work: 1) the
external field ¾ change with fixed cone’s opening angle ', 2) and the cone’s opening angle
change while keeping the external field constant, but sufficient to induce compaction.

From the first hand, a theoretical possibility to form the energetically stable struc-
tures was concluded, based on the investigation of the Hamiltonian of the system looped
into one, two, and three loops correspondingly.

Both of the considered ways to induce compaction lead to the looping of the semi-
stiff ring polymer. The formed configurations while varying the external field strength are
shown to be locally thermodynamically stable.

We investigate further the phenomenon observed earlier in [1], namely, the orien-
tation of the loops with the opening angle change. It was shown that the orientation of
the loops is changing with the value of the opening angle of the cone. The vector normal
to the loop(s), n, as stated in (10) was used to describe the orientation of the loops.

Four regimes were detected: 1) a stick-like, then no loops can be formed in the
case of too narrow cone, ' ≈ 30∘ 2) a narrow cone regime, with the vector n oriented
perpendicular the cone’s axis ' ≈ 40∘ ÷ 60∘, 3) a broad cone regime, with the vector n
collinear to the cone’s axis, ' ≈ 60∘ ÷ 160∘, and 4) too broad cone, when no looping is
possible at all due to the effective absence of the confining walls, ' > 160∘.

Acknowledgement

The authors thank John Grime for his visualisation tool, jgrime@uchicago.edu.

Appendix: persistence length derivation

The persistence length can be evaluated by first calculating the average bending
angle using [18]:

⟨cos µ⟩ =
∫
cos µe® cos µ∣∣J ∣∣dµ∫
e® cos µ∣∣J ∣∣dµ , (11)

where ⟨⋅ ⋅ ⋅ ⟩ is the canonical ensemble averaging, µ is the bond angle, and ® = ·¯ is the
bending stiffness constant · in kBT units, and ∣∣J ∣∣ – is the determinant of the Jacobian
matrix: ∣∣J ∣∣ = r2 sin µ for the three-dimensions.

The persistence length in terms of b0 can then be evaluated using [19]:

lp =
1− ⟨cos µ⟩N
1− ⟨cos µ⟩ . (12)
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