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The propagation of ultra-short optical pulses in a thin film created by graphene grown on a boron nitride
base will be considered, taking into account the environment’s dispersion characteristics, electron conduction
in such a system described by the framework of an effective long-wave Hamiltonian for low-temperature
media. The electromagnetic field is taken as classical Maxwell’s. We reveal the dependence of the electric
field on the maximum amplitude of ultra-short optical pulses, as well as on empirical dispersion constants.
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1. Introduction

Recently, laminated structures based on graphene have attracted the interest of
many researchers. Graphene, which grown on the boron nitride base is one of these
structures.

Both boron nitride and graphene have hexagonal crystal lattices, that allows the
construction of hybrid materials on their basis. This structure is interesting because
a boron nitride is an insulator, and graphene is a conductor. It is possible to obtain
substances with different band gaps by combining them together in the various ways.
Many other authors are interested in both the theoretical and experimental investigations
of these structures. [2–11].

The dynamics of ultra-short optical pulses propagating in a double-layer graphene-
boron nitride structure were investigated in the hopes that dispersion qualities in non-
magnetic environments would be revealed.

2. Principal equations

We considered a graphene layer on a boron nitride base. The Hamiltonian we chose
in a long-wave approximation, in basis φg1, φg2, φnb1, φnb2, where the wave functions are
conformed to an electron, localized on one graphene sub-lattice, on another graphene sub-
lattice, on one boron nitride sub-lattice and on another boron nitride sub-lattice accordingly,
depicted in matrix view as:

H (k) =

⎛
⎜⎜⎝

0 k∗ 0 t
k 0 0 0
0 0 Δ f ∗

t 0 f −Δ

⎞
⎟⎟⎠ (1)
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Here, t — is an electron jumping integral between graphene and boron nitride
layers; Δ — is a forbidden zone quantity for boron nitride; k = vfg(kx + iky), vfg — is the
Fermi velocity for graphene; kx, ky — are the electron pulse components; f=vfnb(kx + iky );
vfnb − vfg — are the Fermi velocity for the boron nitride.

The Hamiltonian (1) we can rewrite, using a block matrix structure [13]:

H (k) =

⎛
⎜⎜⎝

0 k∗ 0 t
k 0 0 0
0 0 Δ f ∗

t 0 f −Δ

⎞
⎟⎟⎠ ≡

(
H11 H12

H21 H22

)
.

For cases when the forbidden zone quantity in the boron nitride is large as compared
to the electron’s energy, the long-wave approximation can be considered, allowing one to
write the effective Hamiltonian by analogy with bigraphene [13]:

Heff ≡ H11 −H12H
−1
22 H21 = −1

t

(
Δ −1

t
f ∗k∗

−1
t
fk − 1

t2
|k|2 Δ

)
. (2)

The operated approximation practically is a supplementary limitation on the ultimate
electrons pulse, which we can consider within the bounds of a long-wave approximation and
match to originally usable a long-wave approximation for electronic graphene sub-system.
The Hamiltonian (2) can be easily diagonalized. It gives us the electron spectrum:

ε (kx, ky) =
1

2

⎛
⎝Δ

(
1− v2fg

(
k2
x + k2

y

))
+

√
Δ2

(
1− v2fg

(
k2
x + k2

y

))2
+

4v2fgv
2
fnb

t2
(
k2
x + k2

y

)2⎞⎠ ,

(3)
where vfg, vfnb — are the Fermi velocities of electrons in graphene and boron nitride,
respectively.

According to quantum mechanics laws, in the presence of an external electric field
E, which directed along the x axis, the gauge can be chosen for the field in the following
form: �E = −∂ �A/c∂t, where c is the speed of light in a vacuum, we need to change the
momentum to a generalized momentum p → p− eA/c, where e is the electron charge. In
this case, the effective Hamiltonian (2) can be written as follows:

H =
∑
pσ

ε
(
p− e

c
A(t)

)
a+pσapσ,

where a+pσ, apσ- are the creation and annihilation operators of the electron with quasimo-
mentum p and spin σ.

We can write the Maxwell equations without accounting for material dispersion as
follows [8]:

∂2E
∂x2

− 1

c2
∂2E
∂t2

+
4π

c

∂j
∂t

= 0. (4)

Here, we neglect the laser-beam diffraction in the directions perpendicular to the
beam-propagation axes.

Here, �E is an electric field of the light wave, t is a time, C is the speed of light in
a vacuum.

We modified equation (4) to describe pulse propagation with wide spectrum in a
linear medium. The linear refraction index dependence for an isotropic environment n on
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light frequency ω in the environment’s transparency range can be accurately described by
the expression [9]

n2(ω) = N2
0 + 2cN0aω

2 + 2cN0a1ω
4 + ...− 2cN0bω

−2 − 2cN0b1ω
−4, (5)

where N0, a, a1, ..., b, b1... — are empirical constants of environment dispersion. The
dispersion relation (5) gives birth to the wave equation:

∂2E
∂x2

− N2
0

c2
∂2E
∂t2

= −2N0

c
a
∂4E
∂t4

+
2N0

c
a1

∂6E
∂t6

− ...+
2N0

c
bE− 2N0

c
b1

t∫
−∞

dt′
t′∫

−∞

Edt′′ + .. (6)

Equation (5) describes the pulse propagation along the x axis in a forward and a reverse
direction.

When comparing equations (4) and (6), taking into account the gauge described
above, and limiting oneself by the fourth derivative, one can say that the equation (6);
takes the following form:

∂2A

∂x2
+

2N0

c
a
∂4A

∂t4
− 2N0

c
bA+

4π

c
j − N2

0

c2
∂2A

∂t2
= 0. (7)

Vector potential A has the following form: A = (0, 0, A(x, t)).
Written in the standard expression for the current density:

j0 = e
∑
ps

vs

(
p− e

c
A(t)

) 〈
a+psaps

〉
, (8)

where vs(p) = ∂εs(p)
∂p

, and the brackets denote averaging with a non-equilibrium density
matrix ρ(t): 〈B〉 = Sp(B(0)ρ(t)).

Further, we considered the low-temperature case, where only a small area of the
pulse space near the Fermi level gives a nonzero contribution to the sum (or integral)
of (8).

According to this, we can rewrite the standard expression for the current density
as follows:

j = e

Δ∫
−Δ

Δ∫
−Δ

dpxdpyvy

(
p− e

c
A(x, t)

)
. (9)

The range of pulses integration in (9) can be defined from a view of the equality for the

particle:
Δ∫

−Δ

Δ∫
−Δ

dpxdpy =
Δ∫

−Δ

Δ∫
−Δ

dpxdpy

〈
a+px,pyapx,py

〉
.

3. Numerical simulation results

We solve Eq. (7) numerically using a direct finite-difference cross-like scheme [15].
Stride by time and coordinate are determine by standard conditions of stability, even so,
strides of finite-difference scheme are halved serially, until the solution didn’t change in
8th sign.

The initial condition is chosen in a view of an ultra-short optical pulse, which was
composed of one field oscillation that, accordingly, can be given with using of vector
potential A:

A(x, t) = Q exp(−(x− vt)2/γ)
γ = (1− v2)1/2

, (10)
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where Q — is the amplitude, and v —is the initial ultra-short optical pulse velocity on the
sample input.

This initial condition corresponds to the fact, that we deal with the ultra-short
optical pulse which is composed of one electric field oscillation.

Fig. 1. Dependence of the electric-field on time. On the X-axis is time (unit
is 1·10−16s), on the Y-axis is electric-field (unit is 108 V/m). a=0.01, b=0.01:
a=0.1, b=0.3; a=0.1, b=0.5

Values of energy characteristics are shown in Δ units. The evolution of the propa-
gating electric field in the sample is presented in Fig. 1.

Such behavior of the optical pulse follows from the dispersion effects, which can be
obtained from the linearized equation (7). These effects lead to pulse spreading. It should
also be noted that nonlinearity results in pulse shrinking. The impact of these two effects
leads to both the origin pulse shape deformation and its propagation in an invariable form.

The most sharply nonlinear influence is tied with the pulse form’s dependence on
the initial amplitude, that is presented in Fig. 2.

Especially sharp effects are related with the nonlinear influence on the pulse front,
leading to pulse widening. This can be explained by the lack of balance between the
dispersion and the nonlinearity in our system Fig. 3.

Also notice that the ultra-short optical pulse evolution depend upon, in general, the
pulse velocity on the sample input, as shown in Fig. 4.

4. Conclusion

It follows from the obtained results that stable ultra-short optical pulses can undergo
propagation in graphene, grown on a hexagonal boron nitride base.

If the initial pulse amplitude increases, then a wave front becomes wider, and
also originates a second pulse with smaller intensity. This effect can be useful for the
development of hybrid devices based on the light interaction effect with graphene electrons.
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Fig. 2. Dependence of the pulse form on time for different cases of pulse
amplitude value: On the X-axis is time (unit is 1 · 10−16s). On the Y-axis is
electric-field (unit is 107 V/m). a) Q=2; b) Q=4; c) Q=6

Fig. 3. Dependence of the pulse form on time for different cases of pulse
amplitude value: On the X-axis is time (unit is 1 · 10−16s) while the Y-axis
is electric-field (unit is 107 V/m). a) Q=2; b) Q=4; c) Q=6
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Fig. 4. Dependence of the electric-field on time. On the X-axis is time (unit
is 1 · 10−16s), on the Y-axis is electric-field (unit is 108 V/m). For curve
(b) traveled by pulse distance is half as much again as for (a), for curve
(c) — twice as much again as for curve (a): a=0.1, b=0.4
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