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This paper discusses adaptive noise cancellation in magnetocardiographic systems within unshielded environment

using two algorithms, namely, the Least-Mean-Squared (LMS) algorithm and the Genetic Algorithm (GA). Simu-

lation results show that the GA algorithm outperforms the LMS algorithm in extracting a weak heart signal from

a much-stronger magnetic noise, with a signal-to-noise ratio (SNR) of -35.8 dB. The GA algorithm displays an

improvement in SNR of 37.4 dB and completely suppresses the noise sources at 60Hz and at low frequencies;

while the LMS algorithm exhibits an improvement in SNR of 33 dB and noisier spectrum at low frequencies. The

GA algorithm is shown to be able to recover a heart signal with the QRS and T features being easily extracted.

On the other hand, the LMS algorithm can also recover the input signal, however, with a lower SNR improvement

and noisy QRS complex and T wave.
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1. Introduction

The human heart is made of conductive tissues that produce both an electric and a
magnetic field, depending on cardiac activity. Measuring the electric and/or magnetic fields
enables various heart parameters as well as diseases to be diagnosed, such as heart beat rate and
arrhythmia. Electrocardiography (ECG) enables the detection of heart-generated electric fields
through electrodes placed on the surface of the human body. However, magnetocardiography
(MCG) has been shown to be more accurate than electrocardiography for the (i) diagnosis of
atrial and ventricular hypertrophy, (ii) non-invasive location of the heart’s conduction pathways,
(iii) the identification of spatial current dispersion patterns, and (iv) the detection of circular
vortex currents which give no ECG signal [1]. Cardiac magnetic fields surround the human
body and are typically very low in magnitude (about 100 pT for adults [2] and between 5 to
10 pT for a fetus [3]), necessitating the use of a high-sensitivity magnetometer to measure them.
Furthermore, the environmental electromagnetic noise is typically much higher (in the order
of 1 nT) than the heart-generated magnetic field, resulting in an extremely low signal-to-noise
ratio, if patients are examined outside a magnetic shielded room.

Magnetic noise suppression in magnetically unshielded environments has been demon-
strated. For example, the performance of a multichannel system based on SQUID magnetometry
in an unshielded environment has been shown to be comparable with magnetic field measure-
ments performed inside a shielded room [4]. This demonstration, in conjunction with recent
advances in adaptive signal processing, has triggered the use of adaptive magnetic noise suppres-
sion techniques for magnetically-unshielded magnetocardiography. The most common algorithm
used for adaptive noise cancellation is the Least-Mean-Squared (LMS) algorithm that has been
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very effective in removing low noise levels, especially in Electrocardiography [5, 6]. However,
the LMS algorithm has limitations, namely, (i) it requires the calculation of the punctual deriv-
ative of the squared error; (ii) it suffers high convergence time, especially if the noise power to
be removed is much higher than the signal power; and (iii) it is susceptible to the risk of falling
into local minima. Recently heuristic algorithms, such as genetic algorithms, are finding large
application in adaptive noise cancellation applications. With respect to the LMS algorithm, the
GA provides additional benefits, including (i) ability to perform parallel search for population
points rather than for a single point, thus avoiding the fall into local minima; (ii) no prior
information on the gradient of the signal is needed; (iii) the use of probabilistic rules instead of
deterministic ones, thus ensuring the convergence to an optimum solution.

In this paper, we adopt the concept of adaptive noise cancellation shown in Fig. 1, and
use two potential adaptive signal processing algorithms, namely the Least-Mean-Squared (LMS)
algorithm and the Genetic Algorithm (GA), and compare their capabilities in minimizing the
mean-squared of the error signal e(k) and improving the SNR performance.

FIG. 1. Typical block diagram of an adaptive noise canceller

2. Adaptive Noise Canceller

Adaptive noise suppression techniques are typically based on adaptive filtering. To
suppress the noise, a reference input signal is required, which is typically derived from one
or more magnetic sensors placed at positions where the noise level is higher than the signal
amplitude. Fig. 1 shows a block diagram of an adaptive noise canceller. The primary input to
the canceller, denoted d(k), is the sum of the signal of interest s(k) and the noise n(k), which
is typically uncorrelated with s(k). The reference input signal of the system, x(k) = n1(k), is a
noise signal that is correlated in some unknown way with n(k), but uncorrelated with the signal
of interest s(k). As shown in Fig. 1, n1(k) is adaptively filtered to produce a replica of the
noise n(k) that can be subtracted from the primary input to eventually produce an output signal
e(k) equals to s(k).

The objective of the noise canceller is to minimize the mean-squared error between the
primary input signal, d(k), and the output of the filter, y(k).

Referring to Fig. 1, the output signal is given by [7]:

e(k) = d(k)− y(k) = s(k) + n(k)− y(k). (1)

Therefore, the mean-squared of e(k) is given by:

E
{
e2(k)

}
= E

{
s2(k)

}
+ E

{
(n(k)− y(k))2

}
+ 2E {s(k) (n(k)− y(k))} . (2)
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FIG. 2. Genetic Algorithm (GA) flowchart

Since s(k) is uncorrelated with n(k) and y(k), the last term in (2) is zero, yielding:

E
{
e2 (k)

}
= E

{
s2 (k)

}
+ E

{
(n (k)− y (k))2

}
. (3)

It is noticed from (3) that the mean-squared error is minimum when n(k) = y(k), and
hence, when the output signal e(k) is equal to the desired signal s(k).

The LMS algorithm aims to minimize the mean-squared error by calculating the gradient
of the squared-error with respect to the coefficients of the filter. Assuming that the adaptive
filter is a FIR filter of order M , the updating procedure is applied on coefficients bi according
the following rule [8]:

b
(k+1)
i = b

(k)
i + 2µe(k)x(k − i), (4)

where i = 0, 1, . . . ,M − 1, k is the iteration index and µ is the step size that indicates the
adaption rate of the algorithm and is usually included in the range (0, 1].

Genetic Algorithms (GA) are part of the Evolutionary Algorithms, which are stochastic,
population-based techniques inspired by the natural evolution process [9]. Using GA, the optimal
solution is found through the minimization of a defined function, called the fitness function.
For the problem of magnetic noise cancellation, the objective of the optimization process is to
minimize the MSE, defined in (5):

E
{
e2(k)

}
=

L∑
k=1

e2(k)

L
. (5)

Figure 2 shows a typical flowchart of the Genetic Algorithm. The initialization process
produces a random initial population. For each individual belonging to the population, the
fitness function is evaluated to find the fitness value of that individual. If the value of the fitness
function for the best point in the current population is less or equal to a pre-defined threshold
value, it is therefore considered as the optimum value and the iteration will be terminated. A
few predefined end conditions are evaluated to avoid an infinite loop in case the optimum value
cannot be found. If none of the predefined end conditions is verified, the algorithm proceeds
with the reproduction, i.e., the creation of new generation. The individuals that have best fitness
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FIG. 3. a) Measured heart signal showing the typical P wave, QRS complex
and T wave, which correspond to atrial depolarization, ventricular depolarization
and ventricular repolarization, respectively; b) Input signal of the noise canceller
obtained by adding the heart signal to the environmental magnetic noise measured
inside the laboratory

values are chosen as parents to produce children either by mutation (making random changes to
a single parent) or crossover (combining the vector entries of pair of parents).

Each individual can be seen as an array of chromosomes. As for natural evolution,
during the reproduction the chromosomes of parents are mixed together to form the children,
according to the following rule [10]:

C = αP1 + (1− α)P2, (6)

where C is a child, P1,2 are the two parents and α is a randomly generated number in the range
(0, 1).

The current population is then replaced with the new generation and the iteration con-
tinues.
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FIG. 4. a) Spectrum of the heart signal; b) Spectrum of the input signal of the
noise canceller, exhibiting a strong peak at 50 Hz and weaker peaks at 60 Hz,
100 Hz and 150 Hz

3. Simulations Results and Discussion

A measured cardiac signal taken from the MIT-BIH Arrhythmia Database (220.dat
file) [11, 12] is used to verify the ability of both LMS and GA algorithms to extract heart
signals from noisy measured cardiac signals. This signal was captured by electrodes placed on
the surface of a patient chest. The magnetic field and the electric field generated by human
heart have similar waveforms [13]; therefore, it is accurate to assume that the measured MCG
signal has similar shape as the measured ECG signal but with amplitude of 100 pT, which
corresponds to the typical amplitude of a heart-generated magnetic signal.

Figure 3(a) shows the heart signal with the typical cardiac features, namely, P wave,
QRS complex and T wave, which correspond to atrial depolarization, ventricular depolarization
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FIG. 5. a) Heart signal recovered by LMS algorithm, calculated SNR improve-
ment factor was 33 dB; b) Heart signal recovered by GA algorithm, calculated
SNR improvement factor was 37.4 dB

and ventricular repolarization, respectively. The environmental magnetic noise was measured in
our laboratory. The measured environmental noise was due to two main sources, namely, the dc
magnetic field of the earth and the magnetic noise caused by alternating signals generated by
surrounding equipment in the laboratory. It is also noted that the magnetic noise is more than
10 times higher than the heart signal shown in Fig. 3(a). The signal-to-noise ratio (SNR) was
-35.8 dB, calculated by integrating the measured signal and noise powers over several signal
periods. The environmental magnetic noise was added to the heart signal to produce the input
signal of the noise canceller. This signal is shown in Fig. 3(b). The environmental magnetic
noise was also linearly filtered to produce a correlated noise which was used as the reference
signal input to the noise canceller, as illustrated in Fig. 1.
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FIG. 6. a) Spectrum of the heart signal recovered by the LMS algorithm; b) Spec-
trum of the heart signal recovered by the GA algorithm

Figure 4(a) shows the cardiac spectrum that is mainly spread over low frequencies,
while Fig. 4(b) shows the spectrum of the input signal of the noise canceller. It is noticed that
the heart spectrum was completely encircled by the noise; particularly strong noise peaks were
exhibited at dc and 50 Hz whereas the other dominant peaks at the 60 Hz, 100 Hz and 150 Hz
had lower levels.

The LMS algorithm produced a SNR improvement of around 33 dB while for the GA
algorithm the improvement in SNR was 37.4 dB. Fig. 5(a) and (b) show the heart magnetic
signal recovered using the LMS and GA algorithms, respectively. It is obvious that for both
recovered signals the QRS and T features are noticeable, whereas the heart magnetic signal
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recovered by the LMS algorithm is noisier, making the QRS complex and the T wave hardly
detectable.

Figure 6(a) and (b) show the spectra of the heart magnetic signals recovered by the LMS
and GA algorithms, respectively. As seen from the results, the Genetic Algorithm outperforms
the LMS algorithm at low frequencies, strongly reducing the noise. It is also important to notice
that both algorithms are unable to completely cancel the noise at high frequencies; however,
this is not crucial as most of the signal information lies in the low-frequencies range.

4. Conclusion

The use of LMS and GA algorithms has been investigated for adaptive noise suppression
and the recovering of heart signals in magnetically-unshielded environment. Measured heart
signals and magnetic noise have been used to compare the performances of both LMS and GA
algorithms in terms of SNR improvement and heart peaks reconstruction. Simulation results
have shown that the GA algorithm attains better SNR improvement than the LMS algorithm.
A measured heart signal has been recovered by the GA algorithm with a SNR improvement of
37.4 dB and the QRS complex and T wave have successfully been detected. The LMS algorithm
has also recovered the input signal, however, with a lower SNR improvement of around 33 dB
and noisy QRS complex and T wave. The noise cancellation results shown in this paper are
useful for signal processing applications where the signal to noise ratio is much less than unity.
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