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We study (stationary) Laplacian transport by the Dirichlet-to-Neumann formalism. Our results con-

cern a formal solution of the geometrically inverse problem for localisation and reconstruction of the

form of absorbing domains. Here, we restrict our analysis to the one- and two-dimensional cases.

We show that the last case can be studied by the conformal mapping technique. To illustrate this, we

scrutinize the constant boundary conditions and analyze a numeric example.

Keywords: Laplacian transport, Dirichlet-to-Neumann operators, Conformal mapping.

1. Introduction

1. Is is known (see e.g. [8]) that the problem of determining a conductivity matrix
field γ(p) = [γi,j(p)]

d
i,j=1, for p in a bounded open domain Ω ⊂ Rd, is related to

”measuring” the elliptic Dirichlet-to-Neumann map for the associated conductivity
equation. Notice that the solution to this problem has numerous practical applica-
tions in various domains: geophysics, electrochemistry etc. It is also an important
diagnostic tool in medicine, e.g. in the electrical impedance tomography; the tissue
in the human body is an example of highly anisotropic conductor [1].

Assuming there are no current sources or sinks, the potential v(p), p ∈ Ω,
for a given voltage f(ω), ω ∈ ∂Ω, on the (smooth) boundary ∂Ω of Ω is a solution
of the Dirichlet problem:

(P1)

{
div(γ∇v) = 0 in Ω,

v|∂Ω = f on ∂Ω.

Then, the corresponding (P1) Dirichlet-to-Neumann map (operator) Λγ,∂Ω is (for-
mally) defined by [16]

Λγ,∂Ω : f 7→ ∂vf/∂νγ := ν · γ ∇vf |∂Ω . (1.1)

Here, ν is the unit outer-normal vector to the boundary at ω ∈ ∂Ω and the function
v := vf is a solution of the Dirichlet problem (P1).
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The Dirichlet-to-Neumann operator (1.1) is also called the voltage-to-current
map, since the function Λγ,∂Ωf gives the induced current flux trough the boundary
∂Ω. The key (inverse) problem is whether one can determine the conductivity
matrix γ by knowing the electrical boundary measurements, i.e. the corresponding
Dirichlet-to-Neumann operator. In general, this operator does not determine the
matrix γ uniquely, see e.g. [4].

The main question in this context is to find sufficient conditions insuring
that the inverse problem is uniquely soluble.
2. The problem of electrical current flux in the form (P1) is an example of so-
called diffusive Laplacian transport [17]. Besides the voltage-to-current problem, the
motivation to study of this kind of transport comes for instance from the transfer
across biological membranes, see e.g. [13], [3].

Let some “species” of concentration C(p), x ∈ Rd, diffuse stationary in the
isotropic bulk (γ = I) from a (distant) source localised on the closed boundary
∂Ω towards a semipermeable compact interface ∂B of the cell B ⊂ Ω, where they
disappear at a given rate W ≥ 0. Then, the steady field of concentrations (Laplacian
transport with a diffusion coefficient D ≥ 0) obeys the set of equations:

(P2)∗


∆C = 0, p ∈ Ω \B ,

C |∂Ω (p) = C0, a constant concentration at the source ∂Ω ,

−D ∂νC |∂B (ω) = W (C − C∗) |∂B (ω), on the interface ω ∈ ∂B

Usually, one assumes that C(p) = C∗ ≥ 0, p ∈ B, is a constant concentration of the
”species” inside the cell B.

This example motivates the following abstract stationary diffusive Laplacian
transport problem with absorption on the surface ∂B:

(P2)


∆u = 0, p ∈ Ω \B , (u(p) = Const , p ∈ B),

u |∂Ω (p) = f(p), p ∈ ∂Ω ,

(α u+ ∂νu) |∂B (ω) = h(ω), ω ∈ ∂B .

This is the Dirichlet problem for the domain Ω ⊃ B with the Dirichlet-Neumann (or
Robin [6]) boundary conditions on the absorbing surface ∂B. Varying α between
α = 0 and α = +∞ one recovers respectively the Neumann and the Dirichlet
boundary conditions.

Now, similar to (1.1), we can associate with the problem (P2) a Dirichlet-
to-Neumann operator

Λγ=I,∂Ω : f 7→ ∂νuf |∂Ω=: g . (1.2)

Domain dom(ΛI,∂Ω) belongs to a certain Sobolev space of functions on the boundary
∂Ω, which contains uf := U

(α,h)
f , the solutions of the problem (P2) for given f and

for the Robin boundary condition on ∂B fixed by α and h.
Then, there are at least two (in fact related) geometrical inverse problems

that are of interest:
(a) Given the Dirichlet data f and the corresponding (measured) Neumann data g
(1.2) on the accessible outer boundary ∂Ω, to reconstruct the shape of the interior
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boundary ∂B.
(b) A simpler inverse problem concerns the localisation of the domain (cell) B of a
given shape and fixed parameters α and h.
3. The aim of the present paper is to study the above problems (a) and (b) in
the framework of application outlined in the problem (P2)* and to work out the
corresponding formalism based on the Dirichlet-to-Neumann operators.

In Section 2.1 we formulate the mathematical setup of the these problems,
and we consider uniqueness of the forward boundary value problem (P2) solution.
There, we illustrate our strategy by an explicit example of one-dimensional inverse
problem for Ω ⊂ R1 and B = (a, b).

Our main results (Section 3) concern the two-dimensional case, when the
compact Ω ⊂ R2. Notice that there are three points that need particular attention.
The first is that the problems (P2)* and (P2) are formulated for non-simply con-
nected domains Ω\B. The second point concerns the peculiarity of the combination
of Dirichlet and Robin boundary conditions. As a third point, one has to mention
that the geometrically inverse problem is poorly formulated.

The present paper first presents the formal solution for the case when α =
+∞, i.e. the Dirichlet boundary conditions u |∂B (ω) = 0, ω ∈ ∂B. For this
case, our approach is motivated by important papers [9], [12]. Here we refine their
results in the framework of the Dirichlet-to-Neumann formalism and add certain
observations in the case of a fixed geometry of domains B and Ω following [2].

In Section 4 we consider an explicit example and give numerical calculation
for constant external boundary conditions f = 1 to illustrate abstract results for
α = +∞.

For finite α ≥ 0 and h = 0 we restrict the discussion to a few remarks,
(Section 5) as a more thorough investigation will be presented in future publications.
The same concerns our formal scheme for d = 2, since the corresponding inverse
problem is ill-posed.

The case d = 1 allows explicit calculations and serves to illustrate of our
main ideas, whereas, for solution of the inverse Problems, i.e. for d = 2, we use a
method of conformal mappings for harmonic functions in doubly connected domains
Ω \B.

2. Setup of the Problems and Uniqueness

1. Below, we suppose that Ω and B ⊂ Ω be open bounded domains in Rd with
C2-smooth disjoint boundaries ∂Ω and ∂B, that is ∂(Ω \ B) = ∂Ω ∪ ∂B and
∂Ω ∩ ∂B = ∅.

Then, the unit outer-normal to the boundary ∂(Ω\B) vector-field ν(p)p∈∂(Ω\B)

is well-defined, and we consider the normal derivative in (P2) as the interior limit:

(∂νu) |∂B (ω) := lim
p→ω

ν(ω) · (∇u)(p) , p ∈ Ω \B . (2.1)
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The existence of the limit (2.1) as well as the restriction u |∂B (ω) := limp→ω u(p)
is insured since u has to be a harmonic solution of the problem (P2) for C2-smooth
boundaries ∂(Ω \B), [15].

Now, we introduce some indispensable standard notations and definitions [5].
Let H be Hilbert space L2(M) on domain M ⊂ Rd and ∂H := L2(∂M) denote
the corresponding boundary space. By W s

2 (M), we denote the Sobolev space of
L2(M)-functions, whose s-derivatives are also in L2(M), and similar, W s

2 (∂M) is
the Sobolev space of L2(∂M)-functions on the C2-smooth boundary ∂M .

Proposition 2.1. Let f, h ∈ W
1/2
2 (∂Ω) for C2-smooth boundaries ∂(Ω \ B). If

α ≥ 0, then the Dirichlet-Robin problem (P2) has a unique (harmonic) solution in
domain Ω \B.

Proof. For existence, we refer to [15]. To prove the uniqueness, we consider the
problem (P2) for f = 0 and h = 0. Then, by the Gauss-Ostrogradsky theorem, the
corresponding solution u yields:∫

Ω\B
dp (∇u(p) · ∇u)(p)) =

∫
Ω\B

dp div(u(p) (∇u)(p)) =∫
∂B

dσ(ω) u(ω) (∂νu)(ω) = −α
∫
∂B

dσ(ω) |u(ω)|2 ≤ 0 . (2.2)

The estimate (2.2) implies that u(x ∈ Ω \ B) = Const. Hence, by the Robin
boundary conditions, (αu) |∂B (ω) = 0, and by virtue of u |∂Ω (p) = f(x ∈ ∂Ω) =
0, we obtain that for α ≥ 0 the harmonic function u(p) = 0 for x ∈ Ω \B. �

The next statement is key for the analysis of inverse geometrical problems (a)
and (b). Since we use it below in the case R2, our formulation is two-dimensional.

Proposition 2.2. Consider two problems (P2) corresponding to a bounded domain
Ω ⊂ R2 with C2-smooth boundary ∂Ω and to two subsets B1 and B2 with the
same smoothness of the boundaries ∂B1, ∂B2. If for solutions u(1)

f,h, u
(2)
f,h of these

problems one has

∂νu
(1)
f,h |∂Ω= ∂νu

(2)
f,h |∂Ω , (2.3)

then ∂B1 = ∂B2.

Proof. By virtue of u(1)
f,h |∂Ω= u

(2)
f,h |∂Ω= f and by condition (2.3), the problem

(P2) has two solutions for identical external (on ∂Ω) and internal (on ∂B1 and
∂B2) Robin boundary conditions. Then, by the standard arguments based on the
Holmgren uniqueness theorem [14] for harmonic functions on R2, one obtains that
∂B1 = ∂B2. �
2. We finish this section by a simple illustration of the explicit solution of the
Inverse Problems (a) and (b) in the one-dimensional case. Motivated by the Laplace
transport (P2)* we consider the case: f = c0, h = α c∗, and α = W/D ≥ 0, for
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Ω := (−R,R) ⊂ R1 and B := (a, b):

(Pd=1)


∆u = 0, x ∈ (−R,R) \ [a, b] ,

u |∂Ω (x = ∓R) = f(∓R) =: c∓,

(α u+ ∂νu) |∂[a,b] (a) = (α u+ ∂νu) |∂[a,b] (b) = α c∗ ,

where R > 0 and −R < a < b < R.
The solution of the problem (a) is straightforward, since in the one-dimensional

case, the shape of absorbing cell is trivial: it is the interval B := (a, b).
Now notice that a general solution of the problem (Pd=1) is a combination

of linear functions supported in domain Ω := (−R,R) \ [a, b] and a constant c∗ in
the interval [a, b]:

−R < x < a : u(x) = − c− − c∗

(R + a) + α−1
(R + x) + c− , (2.4)

a ≤ x ≤ b : u(x) = c∗ ,

b < x < R : u(x) = − c+ − c∗

(R− b) + α−1
(R− x) + c+ . (2.5)

Given Dirichlet data c0 on the boundary ∂Ω and measuring on this boundary
the Neumann data in the form of the flux currents:

j− := −∂νu |∂Ω (x = −R) =
c− − c∗

(R + a) + α−1

j+ := −∂νu |∂Ω (x = +R) = − c+ − c∗

(R− b) + α−1
,

one can explicitly solve both problems (a) and (b).
In the one-dimensional case the shape of the cell is defined by its size:

(b− a), whereas localization is fixed by the points:

a = (c− − c∗)/j− −R− α−1 ,

b = (c+ − c∗)/j+ +R + α−1 .

3. Two-Dimensional Inverse Problem: Conformal Mapping and the Shape
of ∂B

1. The relevance of the conformal mapping in the study of the boundary value
problems for harmonic functions (solutions of the Laplace equation) is well-known,
see e.g. [7] (Ch.III), or [11] (Ch.13).

Recall that if the complex function w : z 7→ C is holomorphic in the open
domain {Ω ⊂ C : z = x + i y ∈ Ω}, then by the Cauchy-Riemann conditions the
functions u(x, y) := (Rew)(x, y) and v(x, y) := (Imw)(x, y) are harmonic in Ω.
Here, w(z) = u(x, y) + i v(x, y).

Remark 3.1. There is an elementary inverse problem of the complex analysis :
given a harmonic function u(x, y) in Ω to construct in this domain the harmonic
function v(x, y) (harmonic conjugate to u) such that the complex function w =
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u+ i v is holomorphic. In fact, one finds the harmonic conjugate from the Cauchy-
Riemann conditions,

∂xu = ∂yv , ∂yu = −∂xv , (3.1)

since for a given u this is a system of partial differential equations for v. Notice
that for a simply connected domain Ω, the solution of this system always exists
and it is unique up to a constant, whereas in non-simply connected domains the
harmonic conjugate may not be a single-valued function. Conversely, in any simply
connected subset Ω0 ⊂ Ω, one can select a single-valued branch of this function.
Consequently this means a selection of the single-valued branch of the total complex
function w.

Application of conformal mappings to the analysis of harmonic functions
and the Laplace equation are based on the following observations:

Proposition 3.2. Let ζ : z 7→ ζ(z) be a conformal mapping ζ(z) : N → M by a
holomorphic function ζ(z) = ξ(x, y) + iη(x, y). If the function ũ(ξ, η) is harmonic
in M , then the composition

u(x, y) := (ũ ◦ ζ)(x, y) = ũ(ξ(x, y), η(x, y)) , (3.2)

is a harmonic function of x, y in N .

In particular one obtains:

(∆zu)(x, y) = |∂zζ(z)|2 (∆ζ ũ)(ξ(x, y), η(x, y)) . (3.3)

(Here we explicitly distinguish Laplacians in different coordinates, ∆z := ∂2
x + ∂2

y

and ∆ζ := ∂2
ξ + ∂2

η , but we ignore these subindexes below, in order to avoid any
confusion.) Notice that this statement is based only on a straightforward application
of the Cauchy-Riemann conditions for the mapping ζ(z), i.e. it does not assume the
existence of a harmonic conjugate neither for ũ, nor for u. Although, for a simply
connected N0 ⊂ N , one can show that every harmonic function is a real part of a
branch of holomorphic in N0 function.

The second observation is related to the Dirichlet-to-Neumann formalism and
makes clear the importance of the notion of the harmonic conjugate function, [7],
Ch.III.

Proposition 3.3. Let Ω be open simply connected bounded domain in R2 with a
C2-smooth boundary ∂Ω. Then the solution of the Neumann problem

(PN)

{
∆u = 0, p ∈ Ω \B ,

∂νu |∂Ω (p) = g(p), p ∈ ∂Ω ,

reduces to the Dirichet problem for the function v, which is harmonic conjugate to
the function u.

To make this evident, notice first that the normal derivative here is defined in the
sense of (2.1). Let the boundary ∂Ω be parameterized by the natural parameter of
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its arc-length: ∂Ω = {Γ(τ) ∈ C}τ∈[0,l). Then, the Cauchy-Riemann conditions (3.1)
imply that

∂τv |∂Ω (p) = ∂νu |∂Ω (p) = g(p). (3.4)

Since by integration along the contour Γ, one obtains

v(p1) = v(p0) +

∫ τ1

τ0

dτ ∂τv(Γ(τ)) = v(p0) +

∫ τ1

τ0

ds g(Γ(τ)) =: f(p1) ,

the solution of (PN) is equivalent to the Dirichlet problem (PD) for v and the
boundary conditions f .
2. To outline the main steps in reconstructing the unknown boundary ∂B, we
consider first the problem (P2) for the Dirichlet case α = +∞:

(P∞d=2)


∆u = 0, p ∈ Ω \B ,

u |∂Ω (p) = f(p), p ∈ ∂Ω ,

u |∂B (ω) = 0, ω ∈ ∂B .

It is well-known, see e.g. [7], [10], that the doubly connected bounded
domain Ω \B is the image of a conformal mapping of an annulus

AB := {z ∈ C : 0 < ρB < |z| < 1} (3.5)

produced by a bijective holomorphic function ζ(z). This function maps boundaries
to boundaries: ζ : CρB → ∂B and ζ : Cr=1 → ∂Ω.
(i) The first step is to find the trace ζ |C1 of the unknown function ζ(z) on the
external unit circle Cr=1.
(ii) Then the next step is to reconstruct the function ζ(z) in the whole annulus AB,
which solves the geometrical inverse problem (see Introduction 1.2 (a)) by tracing
the boundary ∂B as the limit of ζ from inside: ∂B = {ζ(z)} |z→CρB := ζ(CρB).
(i) Let external boundary in the problem (P∞d=2) be parameterized by the natural
parameter of its arc-length: ∂Ω = {Γ(τ) ∈ C}τ∈[0,l). Then the trace of the conformal
mapping ζ : C1 → ∂Ω defines by the equation:

ζ(eiφ) = Γ(τ) , for φ ∈ [0, 2π) , (3.6)

with the condition ζ(eiφ) |φ=0= Γ(0), a bijective function φ : τ 7→ φ(τ) ∈ [0, 2π).
Therefore, to calculate the trace of the function ζ(z) on the external unit

circle Cr=1 is equivalent to finding a solution φ(τ) of (3.6), or the corresponding
inverse function τ(φ).

To this end, let uf be a solution of the problem (P∞d=2). Then, by Proposition
3.2, the function ũf̃ := uf ◦ ζ is harmonic in the annulus AB and is a solution of
the Dirichlet problem

(P̃∞d=2)


∆ũ = 0, p ∈ AB ,

ũ |C1 (p) = f̃(p) , p ∈ C1 ,

ũ |CρB (ω) = 0, ω ∈ CρB .

Here f̃(p) = (f ◦ ζ)(p) = f(ζ(p)) = f(ξ(x, y), η(x, y)) and p = (x, y) ∈ C1.
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Consider the solution uf of the Dirichlet problem (P∞d=2). Then, the
Dirichlet-to-Neumann operator Λ∂Ω for the external boundary ∂Ω is defined sim-
ilarly to (1.2):

Λ∂Ωf = ∂νuf |∂Ω=: g . (3.7)

Let vf be harmonic conjugate to uf . Then by (3.4) we obtain that for external
boundary ∂Ω

∂τvf |∂Ω (τ) = ∂τvf (Γ(τ)) = ∂νuf (Γ(τ)) = (Λ∂Ωf)(Γ(τ)) =

(Λ∂Ωf)(ζ(eiφ(τ))) = (Λ∂Ωf ◦ ζ)(eiφ(τ)) . (3.8)

With conformal mapping ζ , the relation (3.8) can be rewritten as:

∂τvf (Γ(τ)) = ∂τvf (ζ(eiφ(τ))) = ∂φ(vf ◦ ζ)(eiφ(τ)))∂τφ(τ) . (3.9)

Since ũf̃ := uf ◦ ζ and ṽf̃ := vf ◦ ζ , see (P̃∞d=2), by (3.4), we obtain

∂φ(vf ◦ ζ)(eiφ)) = ∂φṽf̃ (φ) = ∂ν ũf̃ |C1 (φ) = ΛC1(f ◦ ζ)(eiφ) , (3.10)

with a usual convention about the normal derivative ∂ν(·) |C1 on the unit circle C1.
Here, ΛC1 : f̃ 7→ ∂ν ũf̃ |C1 is the Dirichlet-to-Neumann operator corresponding to

the problem (P̃∞d=2).
Relations (3.8)-(3.10) yield the following differential equation for φ = φ(τ):

∂τφ =
(Λ∂Ωf ◦ ζ)(eiφ)

ΛC1(f ◦ ζ)(eiφ)
. (3.11)

For a given boundary Γ, the solution φ(τ) of equation (3.11) gives a trace of the
function ζ(z) on the circle C1. Indeed, by (3.6), we obtain that on C1 it is defined
by:

ζ(eiφ) = Γ(τ(φ)) , for φ ∈ [0, 2π) , (3.12)

where τ(φ) is the function, which is inverse to φ(τ).
3. Hence, for a fixed boundary Γ, one can in principle find the trace ζ(z) |C1 using
the scheme outlined above. To this end, let f̃ ∈ W 1

2 (C1), where we identify C1 with
[0, 2π], see problem (P̃∞d=2). Then, the solution of this problem takes the form:

ũf̃ (ρ, φ) = a0 ln ρ+ b0 + (3.13)
∞∑
n=1

[
(anρ

n + bnρ
−n) cosnφ+ (cnρ

n + dnρ
−n) sinnφ

]
,

The coefficients in expansion (3.13) are equal to the following:

an =
f̃1,n

(1− ρ2n
B )

, bn = − ρ2n
B f̃1,n

(1− ρ2n
B )

, a0 = − f̃1,0

ln ρB
, b0 = f̃1,0 , (3.14)

cn =
f̃2,n

(1− ρ2n
B )

, dn = − ρ2n
B f̃2,n

(1− ρ2n
B )

. (3.15)
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They are related to the Fourier series coefficients for f̃(φ):

f̃1,0 =
1

2π

∫ 2π

0

dφf̃(φ), f̃1,n =
1

π

∫ 2π

0

dφf̃(φ) cosnφ, f̃2,n =
1

π

∫ 2π

0

dφf̃(φ) sinnφ.

Then, the corresponding Dirichlet-to-Neumann operator (3.10) acts as a bounded
operator from W 1

2 (C1) to L2(C1):

ΛC1 f̃(φ) = ∂ν ũf̃ |C1 (φ) = (3.16)

− f̃1,0

ln ρB
+
∞∑
n=1

n [(an − bn) cosnφ+ (cn − dn) sinnφ] .

By (3.10) and (3.16), we obtain the identity:∫ 2π

0

dφΛC1 f̃(φ) = − 1

ln ρB

∫ 2π

0

dφf̃(φ) ,

which implies by (3.8)-(3.10) that the radius of the internal circle is defined as

ρB = exp

{
−
(∫ 2π

0

dφ (f ◦ ζ)(eiφ)

)(∫
∂Ω

dτ ∂τφ(τ)∂φ(vf ◦ ζ)(eiφ(τ))

)−1
}

= exp

{
−
(∫ 2π

0

dφ (f ◦ ζ)(eiφ)

)(∫
∂Ω

dτ ∂νuf (Γ(τ))

)−1
}

. (3.17)

Relation (3.17) allows the calculation of ρB if one knows the trace ζ(z) |C1 ,
but by (3.12), we have ζ(eiφ(τ)) = Γ(τ), the first equation to solve is (3.11).
Notice that by definition ∂Ω = {Γ(τ) ∈ C}τ∈[0,l) and by (3.6),(3.11) one notes this
constraint:

l =

∫ 2π

0

dφ
ΛCρB ,C1(f ◦ ζ)(eiφ)

(Λ∂B,∂Ωf ◦ ζ)(eiφ)
, (3.18)

as well as that the solution τ(φ) of (3.11) must be a 2π-periodic function of φ.
Here, we explicitly recall the second boundary dependence for the both Dirichlet-
to-Neumann operators: ΛC1 = ΛCρB ,Cρ=1 and Λ∂Ω = Λ∂B,∂Ω.

Example 3.4. We illustrate the above by a trivial example of the round Dirichlet
absorbing cell. Let boundaries ∂Ω = CR and ∂B = CrB be two concentric circles
with radius rB, which the only unknown parameter that should be defined as a
solution of the inverse geometrical problem. Following our scheme, the domain
Ω \B is the image of a conformal mapping of an annulus

AB := {z ∈ C : 0 < ρB < |z| < 1} (3.19)

produced by a bijective holomorphic function ζ(z). This function maps boundaries
to other boundaries: ζ : CρB → ∂B and ζ : Cr=1 → ∂Ω.

By virtue of the rotational symmetry, one can try to solve this problem for
∂B via (P∞d=2) with boundary conditions u |∂Ω (p) = f independent of arg(p).
Then solution of the direct problem (P∞d=2) is given by the n = 0 version of (3.13):
uf (ρ, φ) = a ln ρ + b for rB < ρ < R. Taking into account boundary conditions
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one finds a and b and the explicit form of the corresponding Dirichlet-to-Neumann
operator:

Λ∂B,∂Ω : f 7→ ∂νuf |CR =
1

R (lnR− ln rB)
f . (3.20)

(Note that our example is so simple that the one-measure of the ”voltage-current”
data {f, j := Λ∂B,∂Ωf} is enough to uniquely define the operator Λ∂B,∂Ω that solves
the problem of rB explicitly.)

Since the conformal mapping for the exterior boundaries gives ζ(eiφ) =

R eiφ, for p ∈ C1 (trace ζ |C1), one gets f̃(p) := (f ◦ ζ)(p) = f(ζ(eiφ)) =
f(Reiφ) = f . Then, by (3.13), the Dirichlet-to-Neumann operator for the problem
(P̃∞d=2) has the form:

ΛCρB ,Cρ=1 : f̃ 7→ ∂ν ũf̃ |C1= −
1

ln ρB
f̃ . (3.21)

Then, by (3.20), we get for the numerator in (3.11):

(Λ∂B,∂Ωf ◦ ζ) =
1

R (lnR− ln rB)
f ◦ ζ =

{
R ln

R

rB

}−1

f̃ , (3.22)

and by (3.21) one obtains for denominator in (3.11):

ΛCρB ,Cρ=1(f ◦ ζ) = − 1

ln ρB
f̃ . (3.23)

Inserting (3.22) and (3.23) into (3.17) (or into (3.18), where l = 2π R) we obtain
that ρB = rB/R, i.e. for internal boundaries, the conformal mapping gives:
ζ(ρBe

iφ) = rBe
iφ = R ρBe

iφ. This implies that the mapping is ζ(z) = R z (see
(ii)), and also the evident final result about the form of the boundary ∂B as the
trace of ζ(z) on the CρB .

4. This example shows that τ(φ) is a 2π-periodic extension of the linear function

τ0(φ) :=
l

2π
φ , φ ∈ [0, 2π) . (3.24)

The result is a simple linear form of the corresponding conformal mapping. Any
deviation from concentric domains ∂Ω = CR and ∂B = CrB makes the function
τ(φ) non-linear, but still obeying condition (3.18).

A less trivial application of the scheme presented above is the example of
non-concentric domains ∂Ω = CR and ∂B = CrB . In this case the conformal
mapping ζ is a priori known: it is the Möbius transformation, and one can proceed
with this trial ζ along the same line of reasoning as in Example 3.4, see [2].
Illustration of the inverse geometrical problem solution needs a complete application
of the above formalism, since now, one has to solve two coupled equations (3.11)
and (3.17) with condition (3.18). (ii) We rewrite these equations (incorporating the
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constraint (3.18)) in the following form:

ρB = exp

{
−
(∫ 2π

0

dφ (f ◦ ζ)(eiφ)

)(∫
∂Ω

dτ ∂νuf (Γ(τ))

)−1
}
, (3.25)

∂φτ =
l

2π
+

ΛCρB ,C1(f ◦ ζ)

(Λ∂B,∂Ωf ◦ ζ)
− 1

2π

∫ 2π

0

dφ
ΛCρB ,C1(f ◦ ζ)(eiφ)

(Λ∂B,∂Ωf ◦ ζ)(eiφ)
. (3.26)

Notice that by (3.22) and (3.23) for concentric domains ∂Ω = CR and ∂B = CrB
the last two terms in (3.26) cancel. Therefore, one can consider this case as the zero-
order approximation τ = τ0(φ) for the solution of (3.26) with ζ = ζ0(z) := z and
ρB = ρ0 := rB/R. This observation implies that one can consider equations (3.25)
and (3.26), together with relations ζn(eiφ) = Γ(τn(φ)), see (3.12), as a non-linear
iterative scheme to obtain ρB and the function τ(φ) (or ζ(z)), cf [9]:

ρn = exp

{
−
[∫ 2π

0

dφ(f ◦ ζn)(eiφ)

] [∫
∂Ω

dτ∂νuf (Γ(τ))

]−1
}
, (3.27)

∂φτn+1 =
l

2π
+

ΛCρn ,C1(f ◦ ζn)

(Λ∂B,∂Ωf ◦ ζn)
− 1

2π

∫ 2π

0

dφ
ΛCρn ,C1(f ◦ ζn)(eiφ)

(Λ∂B,∂Ωf ◦ ζn)(eiφ)
, (3.28)

ζn(eiφ) = Γ(τn(φ)) . (3.29)

Remark 3.5. Suppose that for n→∞ the iterations converge: ρn → ρB, τn(φ)→
τ(φ) and for given Γ: ζn(z)→ ζ(z). Then, the function Γ(τ(φ)) can be presented
as the Fourier series:

Γ(τ(φ)) =
∑
s∈Z

γse
isφ . (3.30)

Since Γ(τ(φ)) is the image of the external boundary C1 by the seeking function
ζ(z), the coefficients γs are the same as in the Laurent series for this function in
the annulus AB:

ζ(z) =
∑
s∈Z

γsz
s . (3.31)

Now, the final step is to observe that the unknown internal boundary ∂B
coincides with the conformal image {Γ∂B(φ)}0≤φ<2π = ζ(CρB) of the internal AB-
circle CρB with the radius ρB < 1 calculated by iterations (3.27):

Γ∂B(φ) =
∑
s∈Z

(ρB)s γse
isφ . (3.32)

The relation (3.32) formally solves the inverse geometrical problem for Dirichlet
boundary conditions on the unknown contour ∂B = {Γ∂B(φ)}0≤φ<2π.

4. Constant boundary conditions

1.1 Problem (Pf±=1,0). Below we suppose that Ω and B ⊂ Ω are open bounded
domains in R2 with C2-smooth disjoint boundaries ∂Ω and ∂B, that is, ∂(Ω \B) =
∂Ω ∪ ∂B and ∂Ω ∩ ∂B = ∅.



Diffusion and Laplacian Transport for Absorbing Domains 457

The unknown internal boundary ∂B should be found from the solution u of
the Dirichlet problem:

(Pf±=1,0)


∆u = 0, p ∈ Ω \B ,

u |∂Ω (p) = f+(p) = 1, p ∈ ∂Ω ,

u |∂B (p) = f−(p) = 0, p ∈ ∂B ,

with help of the given (measured) Neumann data: g(p) = ∂νu |∂Ω (p), exterior
normal derivative on the external boundary p ∈ ∂Ω.

Remark 4.1. Notice that one can always find a conformal mapping that transforms
domain Ω into a unit disc. Therefore, we put for simplicity Ω = Dr=1, the unit
disc, i.e. ∂Ω = C1, is the unit circle.

Remark 4.2. Since below we use a conformal map approach to the localization of
the internal boundary ∂B, we identify the R2-points p = (x, y) with those of the
complex plane C by: p 7→ z(p) := x + iy ∈ C. Then it is known, see e.g. [7],
that the harmonic function solving (Pf±=1,0) can be viewed as the real part of a
holomorphic in domain Ω \ B function û(z) , i.e., u(p) = Re û(z(p)). We put
û(z) = u(x, y) + iv(x, y), where v(x, y) is harmonic conjugate to u(x, y), [7].
Recall that for a doubly-connected domain, the function û(z) may be multi-valued.
Then, we consider for û(z) only one (principle) branch.

Remark 4.3. Recall that in polar coordinates z = reiφ ∈ C the measured Neumann
data g on C1 take the form:

g(φ) = er · ∇u |z∈C1= (cosφ ∂xu+ sinφ ∂yu) |z∈C1=

= ∂ru(r cosφ, r sinφ) |r=1 . (4.1)

We also recall that the Cauchy-Riemann conditions in these coordinates can be
written as:

∂ru =
1

r
∂φv ,

1

r
∂φu = − ∂rv . (4.2)

1.2 Problem (P ∗f±=1,0). Let the holomorphic function w : z = (x+iy) 7→ (w1 +iw2)

Map the doubly-connected bounded domain D1 \B ⊂ C into annulus

AB := {w ∈ C : 0 < ρB < |w| < 1} . (4.3)

This function maps boundaries to other boundaries: w : ∂B → CρB and w : ∂Ω =
C1 → C1 and define the function U(w1, w2) by

u(x, y) = (U ◦ w)(x, y) = U(w1(x, y), w2(x, y)) . (4.4)

Then, the problem (Pf±=1,0) transfers into

(P∗f±=1,0)


∆U = 0, p ∈ D1 \DρB ,

U |C1 (p) = 1, p ∈ C1 ,

U |CρB (p) = 0, p ∈ CρB ,
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with the exterior normal derivative:

∂νU |z∈C1 (w(z)) =

(
1

|w′(z)|
g(z)

) ∣∣∣
z∈C1

. (4.5)

Notice that the value of the normal derivative (4.5) is B-dependent via conformal
mapping w.
1.3 Solution of the Problem (P ∗f±=1,0). For the general solution, one easily finds a
representation in the (complex) polar coordinates w = ρeiϕ:

U(ρ, ϕ) = a+ b ln ρ+
∑
n∈Z\0

(anρ
neinϕ + bnρ

−ne−inϕ) ,

which is simply the standard Fourier-series representation. By virtue of the boundary
conditions, we obtain:

a = 1 , b = − 1

ln ρB
, an = bn = 0 .

Then, Consequently, we get for the solution the explicit form:

U(w1, w2) = U(ρ, ϕ) =
ln(ρ/ρB)

ln(1/ρB)
=

1

ln(1/ρB)
ln
|w|
ρB

, (4.6)

and the corresponding B-dependent normal derivative on the external boundary C1,
cf. (4.5):

∂νU |C1 (w) = ∂ρU(ρ, ϕ) |ρ=1=
1

ln(1/ρB)
. (4.7)

Notice that in contrast to the Problem (Pf±=1,0), the Neumann data (4.7) for the
Problem (P ∗f±=1,0) are isotropic and they depend on B only via radius ρB.

It is clear that to proceed with localization of the internal boundary ∂B, one
has to find the conformal mapping w(z). The relations (4.5) and (4.7) yield the
functional equation:

1

ln(1/ρB)
=

(
1

|w′(z)|
g(z)

) ∣∣∣
z∈C1

(4.8)

for w. This equation is insufficient, since it is localized only on the boundary C1.
To overcome this difficulty, we use complex extensions of (Pf±=1,0) and (P ∗f±=1,0)
indicated in Remark 4.2.
2.1 Complex extension. Let us define the complex extension of (4.6) by

Û(w = w1 + iw2) :=
1

ln(1/ρB)
ln

w

ρB
= (U + iV )(w) , (4.9)

where V = argw is the harmonic conjugate to U = ln |w| and corresponds to the
principle branch of the logarithm. Hence, one can similarly introduce the function

û(z) := Û(w(z)) = (u+ iv)(z) =
1

ln(1/ρB)
ln
w(z)

ρB
, (4.10)

where v is the harmonic conjugate to u.
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2.2 Complex extension and the Problem (Pf±=1,0). By (4.10), one gets

u(x, y) = Re û(z) =
1

ln(1/ρB)
ln
|w(z)|
ρB

.

Let z = reiφ. Then by virtue of (4.1), (4.10) and

∂rû(z) = (∂ru+ i∂rv)(z) = û
′
(z) eiφ =

1

ln(1/ρB)

w
′
(z)

w(z)
eiφ , (4.11)

we obtain the following equation:

∂ru |C1= Re

{
1

ln(1/ρB)

w
′
(eiφ)

w(eiφ)
eiφ
}

= g(φ) . (4.12)

Notice that the Cauchy-Riemann conditions (4.2) implies:

∂rv(z = reiφ) = −1

r
∂φu(reiφ) = − 1

r ln(1/ρB)
∂φ ln |w(reiφ)| . (4.13)

Since for r = 1, we have |w(eiφ)| = 1, one gets ∂rv(z) |C1= 0, i.e. the condition
Re in (4.12) is superfluous as soon as we stick to the external boundary C1:

1

ln(1/ρB)

w
′
(eiφ)

w(eiφ)
eiφ = g(φ) . (4.14)

2.3 Solution for conformal mapping w(z). Motivated by (4.14), we define a
continuation of (4.12) from the external boundary C1 into domain Ω \ B. To this
end, we introduce a holomorphic in Ω\B function F with the corresponding Laurent
series:

F (z) :=
1

ln(1/ρB)

w
′
(z)

w(z)
z = F0 +

∞∑
n=1

(Fn z
n + F−n z

−n) . (4.15)

Then by periodicity of g and by (4.14), (4.33) we obtain the relation

g(φ) =
∑
n∈Z

gne
inφ = F (z = eiφ) , (4.16)

which implies Fn = gn and gn = g−n, for n ∈ Z, as well as equation

1

ln(1/ρB)

w
′
(z)

w(z)
z = g0 +

∞∑
n=1

(gnz
n + g−nz

−n) . (4.17)

Therefore, one has

∂z lnw(z) = ln(1/ρB)

[
g0

z
+
∞∑
n=1

(gnz
n−1 + g−nz

−n−1)

]
. (4.18)

Hence, we obtain:

w(z) = w0 z
g0 ln(1/ρB) exp

[
ln(1/ρB)

∞∑
n=1

(gnz
n − g−nz−n)/n

]
. (4.19)
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Since w : C1 → C1, one obviously gets

w(eiφ) = eiϕ(φ) and w(ei(φ+2π)) = eiϕ(φ+2π) = eiϕ(φ) , (4.20)

which implies that g0 ln(1/ρB) = 1 and

ρB = e−1/g0 , (4.21)

i.e., we must put g0 > 0. Notice that |w(eiφ)| = 1 and (4.21) yield |w0| = 1, which
we can choose to be real. Therefore, one finally obtains for the conformal mapping
w the expression:

w(z) = z exp

[
(1/g0)

∞∑
n=1

(gnz
n − g−nz−n)/n

]
, (4.22)

which is completely defined by the measured Neumann data g(p) on the external
boundary C1.

Remark 4.4. In spite of the obvious remark: ∂φ|w(eiφ)| = 0, which we used to
establish (4.14), the derivative ∂φw(eiφ) = eiϕ(φ) ∂φϕ(φ) 6= 0. This means that ϕ(φ)
is a nontrivial periodic function on C1 , see (4.20).

3.1 Inverse conformal mapping. According to our construction (see 1.2), the
inverse function z(w) maps CρB into the contour ∂B, i.e. formally ∂B = {z(w =
ρBe

iϕ)}ϕ∈[0,2π).
Note that by using (4.33), we can introduce the holomorphic function:

G(w) := F (z(w))−1 = ln(1/ρB)
z
′
(w)

z(w)
w = G0 +

∞∑
n=1

(Gnw
n +G−nw

−n) , (4.23)

where the last sum is the corresponding Laurent series. Hence, following the same
line of reasoning as in Section 2, we obtain:

z(w) = z0 w
G0/ ln(1/ρB) exp

[
(ln(1/ρB))−1

∞∑
n=1

(Gnw
n −G−nw−n)/n

]
. (4.24)

Notice that on the circle C1 the function z(w = eiϕ) is periodic. Then, the
same is true for G. By arguments similar to those in Section 2, this function has the
Fourier coefficients satisfying the same properties as gn in (4.16), i.e. by (4.23) one
gets:

Gn = G−n =
1

2π

∫ π

−π
dϕ G(eiϕ) e−inϕ . (4.25)

3.2 Localization of ∂B. Since z : C1 → C1, then similar to Section 2, the
representation (4.24) for this periodic function implies that we can choose z0 = 1
and that G0/ ln(1/ρB) = 1, or G0 = 1/g0. By virtue of (4.16) and (4.23) the other
coefficients are given by

Gm =
1

2πi

∫
C1

dw
1

wm+1

1

F (z(w))
=

1

2π

∫ 2π

0

dφ
eiφ

g(φ)

w′(eiφ)

wm+1(eiφ)
. (4.26)
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Since the conformal mapping w has been already calculated in (4.22) for given
Neumann data g, formulae (4.26) solve the problem of inversion z(w) , see (4.24).

Hence in the cases f+ = 1 and f− = 0, the position of unknown boundary
∂B is defined for a given Neumann data g as a set:

∂B = {z(w = ρBe
iϕ)}ϕ∈[0,2π) , (4.27)

which is uniquely defined by (4.24),(4.26) and auxiliary radius ρB = e−1/g0 .
3.3 Existence and uniqueness. Notice that existence and uniqueness of the solution
(4.27) follow from the explicit construction in the above subsection 3.2. This
statement is not unconditional. The first necessary condition is:
(i) g0 > 0, see (4.21).
Another restriction follows directly from the f±-boundary conditions for the Problem
(Pf±=1,0):
(ii) g(φ) > 0, see (4.5) and (4.7).
(iii) A more subtle constraint for the given Neumann data g(φ) follows from the
conditions insuring the invertibility of the conformal mapping w. We study this
restriction first for the particular example in the next subsection 4.1.
4.1 Let g0 > 0 and g1 > 0. By (4.22) one gets

w(z) = z exp
[
(g1/g0)(z − z−1)

]
, (4.28)

but our aim is to inverse the function w(z), i.e. to find (4.24) and then to calculate
the unknown boundary ∂B (4.27).

It is worth noting that despite |w(z = eiφ)| = 1, the conformal mapping
(4.28) acts nontrivially on C1 since, see (4.20):

w(eiφ) = eiφ exp [2i(g1/g0) sinφ] = eiϕ(φ) . (4.29)

Equation (4.29) yields for the function ϕ(φ) the expression:

ϕ(φ) = φ+ 2(g1/g0) sinφ . (4.30)

4.2 Notice first that the general conditions on g(φ) imply: g0 > 0 and g0 > 2g1,
see (i) and (ii). For example, the importance of g0 > 2g1 is directly related to
monotonicity of the function (4.30).

A more delicate condition (iii) requires that w : ∂B → CρB and in particular:

w(z = r(φ)) |φ=0= r(φ) exp
[
(g1/g0)(r(φ)− r(φ)−1)

]
|φ=0= ρB ,(4.31)

w(z = −r(φ)) |φ=π= −r(φ) exp
[
(g1/g0)(−r(φ) + r(φ)−1)

]
|φ=π= −ρB .(4.32)

Notice that for given g0 > 0 and g0 > 2g1, the solution of (4.31) for r(φ = 0)
always exists and is unique. Whereas for r(φ = π), this is not true. Indeed, for any
r < 1, the function defined by the left side of (4.32):

Fε(r) := r exp
[
ε(−r + r−1)

]
> 0 , ε := g1/g0 < 1/2 , (4.33)

is monotonously increasing, for increasing ε. Hence, there is a critical value εcr :
0 < εcr < 1/2, corresponding to condition

min
r≤1

Fεcr(r) = ρB , (4.34)
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and there are no solutions r(φ = π) < 1 of (4.32) for ε > εcr. Let g0 = 1. Then,
one obtains from (4.34) the equation for εcr in the form:

ln[(1−
√

1− 4ε2)/2ε] +
√

1− 4ε2 + 1 = 0 . (4.35)

Equation (4.35) implies that a solution for r(φ = π) does not exist, when 1/2 > g1,
but g1 > gcr = 0, 13796148... . This means that for g1 > gcr, the conformal map w
is not invertible, i.e. the image ∂B is not correctly defined.

We illustrate this evolution of conformal mapping and the form of the internal
absorbing boundary ∂B as a function of g1 for g0 = 1 by Figures 1-5.

FIG. 1. Internal boundary ∂B for g0 = 1 and g1 = 0, 125 < gcr

On the last two figures, one observes that the boundary ∂B is not closed
because of small gaps for ϕ(φ = π) = π, see (4.30). This is a numerical indication
that the conformal map w is not invertible for g1 > gcr.

5. Concluding remarks

1. First, we comment the case α = 0, i.e. the Neumann boundary conditions on
the absorbing cell ∂B, see (P2). Then, (P∞d=2) is transformed into the following
problem:

(Pα=0
d=2)


∆u = 0, p ∈ Ω \B ,

u |∂Ω (p) = f(p), p ∈ ∂Ω ,

∂νu |∂B (ω) = g(ω), ω ∈ ∂B .

To map domain Ω \ B onto annulus (4.3), we use the same holomorphic func-
tion ζ(z). Since conformal mappings preserve angles, the corresponding problem
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FIG. 2. Internal boundary ∂B for g0 = 1 and g1 = 0, 135 < gcr

FIG. 3. Internal boundary ∂B for g0 = 1 and g1 = 0, 13796148 < gcr

assumes the form:

(P̃α=0
d=2)


∆ũ = 0, p ∈ AB ,

ũ |C1 (p) = f̃(p) , p ∈ C1 ,

∂ν ũ |CρB (ω) = |∂zζ(ω)|g̃(ω), ω ∈ CρB .

Here ∂ν(·) |CρB is the external normal derivative at the point ω ∈ CρB = ζ(∂B) for
a value proportional to g̃(ω) = (g ◦ ζ)(ω).
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FIG. 4. Internal boundary ∂B for g0 = 1 and g1 = 0, 13815648 > gcr

FIG. 5. Internal boundary ∂B for g0 = 1 and g1 = 0, 13824948 > gcr

It is clear now that our scheme must be considerably modified (simplified),
since the actual boundary conditions depend on an unknown conformal mapping ζ .
Note that this cannot be aided by Proposition 3.3 to reduce the Neumann boundary
condition to Dirichlet, since our domain is not simply connected. The external data
for solving the inverse geometrical problem correspond to f̃(p), so we prefer to
simplify the conditions on the cell surface ∂B and set g = 0, which excludes the
annoying dependence of the Neumann boundary conditions on derivative ∂zζ .
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2. Consider the problem (P̃α=0
d=2) for g̃ = 0.

(P̃0
d=2)


∆ũ = 0, p ∈ AB ,

ũ |C1 (p) = f̃(p) , p ∈ C1 ,

∂ν ũ |CρB (ω) = 0 , ω ∈ CρB .

Example 5.1. As above (see Example 3.4) we first illustrate a possible strategy to
solve (P̃0

d=2) by a simple example of the round Neumann absorbing cell.
Let boundaries ∂Ω = CR and ∂B = CrB be two concentric circles with

radius rB, which is the only unknown parameter that should be defined as a
solution of the inverse geometrical problem. Moreover, since ζ : CρB → ∂B = CrB
and ζ : Cr=1 → ∂Ω = CR, we find this conformal mapping coincides with the same
linear mapping, ζ(z) = Rz, as in Example 3.4, i.e. ρB = rB/R.

Notice that the constant external condition f̃(p) = (f ◦ζ)(p) = f(Reiφ) = f ,
p ∈ C1, implies a trivial constant solution uf = ũf = f . Therefore, we consider
the one-mode boundary condition defined by f̃(eiφ) = (f ◦ ζ)(eiφ) = f(Reiφ) =
f(φ) := f cosφ. Then by general solution (3.13) in annulus one obtains for the
Dirichlet-to-Neumann operator, (Pα=0

d=2) with g = 0:

Λ∂B,∂Ω : f(φ) 7→ ∂νuf |CR =
R2 − r2

B

R (R2 + r2
B)
f(φ) . (5.1)

Similarly one obtains for for the problem (P̃0
d=2):

ΛCρB ,Cρ=1 : f(φ) 7→ ∂ν ũf̃ |C1=
1− ρ2

B

(1 + ρ2
B)

f(φ) . (5.2)

By virtue of ρB = rB/R, (5.1) and (5.2) imply that relations (3.17) and (3.18),
where l = 2π R, are valid with solution (3.24): τ0(φ) := (l/2π)φ , φ ∈ [0, 2π) .

This example shows that following along verbatim through the arguments of
Section 3.4, one obtains the same iterative scheme (3.27)-(3.29), but with Dirichlet-
to-Neumann operators that are defined by the Neumann problems (Pα=0

d=2) and
(P̃0

d=2). Example 5.1 gives the zero-order approximation for solution. 3. Re-
call that the aim of present note is to advocate a formal solution of some d = 2
inverse geometrical problems, see e.g. Remark 3.5. Since the error in calculations
of the coefficients {γs}s∈Z, see (3.30), can be exponentially amplified in expression
(3.32) for the boundary ∂B, it is clear that the problem is ill-posed, i.e. it demands
further analysis.

We plan to return to numerical implementations of this formal iterative
scheme elsewhere. The cut-offs and regularizations, as well as their possible gener-
alizations to Robin boundary conditions need to be studied.
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ON SPECTRAL GAPS IN GRAPHENE
IN A WEAK CONSTANT MAGNETIC FIELD
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mikkelhb@math.aau.dk, cornean@math.aau.dk

We present a mathematical introduction to a widely used discrete tight-binding model for graphene. We also
introduce the “Peierls substitution,” modelling the Hamiltonian of a 2d crystal in a perpendicular uniform
magnetic field in this setting. We consider a discrete single-cone Hamiltonian closely related to the (double-
cone) graphene Hamiltonian. Finally, we announce in this paper a result concerning an opening of gaps
in the spectrum of this single-cone Hamiltonian, when the Peierls phase-factor arises from a weak, but
non-zero, external magnetic field. Full proofs will be given elsewhere.

1. Introduction

Graphene, carbon atoms arranged in a flat honeycomb lattice, possesses many
interesting electronic properties [1, 9]. After the realization of large graphene crystals in
the laboratory [10] the interest, theoretical and experimental, has been intense. One of the
main features is what physicists call the “relativistic behavior” of electrons in graphene,
electrons in graphene can be viewed as massless fermions living in a 2d space, with their
dynamics generated by a Weyl Hamiltonian, i.e., a Dirac Hamiltonian with zero rest mass.

We present here a standard analysis of graphene which shows the Weyl fiber, a
discrete treatment of graphene which dates back to [13], if not earlier.

We have for some time been interested in the electronic properties of a graphene
sheet subjected to a perpendicular uniform magnetic field. We model this situation by
multiplying the Hamiltonian integral kernel by unimodular phase factors, this technique is
known as “Peierls substitution” [6,7, 11].

2. The Setting and Main Result

2.1. A Crystal Structure in the 𝑋𝑌 -plane

We will now introduce our notation for the set of atom-sites of a two-dimensional
crystal lying in the 𝑋𝑌 -plane. A crystal structure is constructed by the indefinite periodic
repetition of a crystallographic basis1. The honeycomb structure of a graphene monolayer
is an example of such a crystal structure. More generally, consider a two-dimensional
crystal structure embedded in the 𝑋𝑌 -plane of ℝ3. The set of primitive vectors {𝔞, 𝔟},
where we denote 𝔞 = (𝔞1, 𝔞2) and 𝔟 = (𝔟1, 𝔟2), generates the Bravais lattice:

Γ = Bravais lattice := {𝛾 = (𝛾1, 𝛾2) ∈ ℝ
2 : 𝛾 = 𝑚𝔞+ 𝑛𝔟, 𝑚, 𝑛 ∈ ℤ}. (2.1)

A primitive unit cell of Γ is given by

Ω = unit cell :=
{
𝑥 = (𝑥1, 𝑥2) ∈ ℝ

2 : 𝑥 = 𝜃1𝔞+ 𝜃2𝔟,−1

2
< 𝜃1, 𝜃2 ≤ 1

2

}
. (2.2)

1We will use the crystallographic nomenclature to distinguish between a Bravais lattice and a general
crystal structure. This nomenclature unfortunately includes the word “basis” for the entity which is being
repeated in definitely to generate the crystal.
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We choose the order of the primitive vectors such that the ordered set of vectors (𝔞, 𝔟, 𝑧)
defines a right-handed coordinate system. Then the area of the unit cell is given by
∣Ω∣ = ∣𝔞 ∧ 𝔟∣ = ∣𝔞1𝔟2 − 𝔞2𝔟1∣. In our model B contains two vectors:

B = crystallographic basis = {𝝃, 𝜻},
it is no restriction to put 𝝃 = 0. The crystal structure now has the form

Λ = Γ + B. (2.3)

An element 𝑥 ∈ Λ is the position, or site, of an nucleus of an atom in the two-dimensional
crystal filling the 𝑋𝑌 plane. The reciprocal lattice Γ∗ is generated by the primitive vectors
{𝔞∗, 𝔟∗} that satisfies the identities:

𝔞 ⋅ 𝔞∗ = 𝔟 ⋅ 𝔟∗ = 2𝜋, 𝔞 ⋅ 𝔟∗ = 𝔟 ⋅ 𝔞∗ = 0, (2.4)

where 𝑣 ⋅ 𝑤 denotes the euclidean scalar product between vectors 𝑣, 𝑤 in ℝ
𝑛. One can

easily see that this fixes {𝔞∗, 𝔟∗} from {𝔞, 𝔟}:
𝔞∗ =

2𝜋

∣Ω∣(𝔟2,−𝔟1), 𝔟∗ =
2𝜋

∣Ω∣(−𝔞2, 𝔞1). (2.5)

The reciprocal lattice is regarded as a subset of ℝ2:

Γ∗ = reciprocal lattice := {𝛾∗ = (𝛾∗1 , 𝛾
∗
2) ∈ ℝ

2 : 𝛾∗ = 𝑚𝔞∗ + 𝑛𝔟∗, 𝑚, 𝑛 ∈ ℤ}. (2.6)

The first Brillouin zone is the Wigner-Seitz primitive cell of the reciprocal lattice:

Ω∗ := {𝑘 = (𝑘1, 𝑘2) : ∥𝑘∥ ≤ ∥𝑘 − 𝛾∗∥, for all 𝛾∗ ∈ Γ} , (2.7)

that is, Ω∗ is the closure of all the points of ℝ2 that are closer to zero than any other point
in the reciprocal lattice. Note that

∣Ω∣∣Ω∗∣ = (2𝜋)2, (2.8)

where ∣𝑆∣ denotes the Lebesgue measure of a Borel set 𝑆 ⊂ ℝ2.
We work in a one-electron setting, neglecting electron-electron interactions. Our

Hilbert space is ℓ2(Λ), in which the Kronecker-basis {𝛿𝑥}𝑥∈Λ;

𝛿𝑥(𝑥
′) :=

{
1 if 𝑥′ = 𝑥,

0 if 𝑥′ ∕= 𝑥,

is a total orthonormal set. We denote the inner product between two vectors 𝜓, 𝜓′ of ℓ2(Λ)
by ⟨𝜓, 𝜓′⟩.
2.2. Bloch–Floquet Decomposition, Version 1

Suppose a Γ-periodic (Hamilton) integral operator

𝐻0 : ℓ
2(Λ) → ℓ2(Λ), (2.9)

is given. We define Γ-periodicity to mean that that the integral kernel of 𝐻0 satisfies

𝐻0(𝑥, 𝑦) := ⟨𝛿𝑥, 𝐻0𝛿𝑦⟩ = 𝐻0(𝑥+ 𝛾, 𝑦 + 𝛾) (𝑥, 𝑦 ∈ Λ, ∀𝛾 ∈ Γ).

The periodicity allows for Bloch-Floquet decomposition; ℓ2(Λ) is unitarily equivalent with
the constant fiber Hilbert space

∫ ⊕
Ω∗ ℂ

2 𝑑𝑘 by a unitary operator, which is the extension of
�̃� : ℓ2𝑐 →

∫ ⊕
Ω∗ ℂ

2 𝑑𝑘 defined by

(�̃�𝜓)(𝑘; 𝑥) :=
1√∣Ω∗∣

∑
𝛾∈Γ

𝑒−𝑖𝑘⋅𝛾𝜓(𝛾 + 𝑥) (𝜓 ∈ ℓ2𝑐(Λ), 𝑘 ∈ Ω∗, 𝑥 ∈ B). (2.10a)
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where every 𝑓(𝑘) in the fiber spaces ℂ2, 𝑘 ∈ Ω∗ has the form

𝑓(𝑘) =

[
𝑓(𝑘; 𝝃)
𝑓(𝑘; 𝜻).

]

Note that we use �̃� for the extension of �̃� also. The variable 𝑘 is often called the crystal-
momentum or quasi-momentum. 𝐻0 is a fibered operator �̃�𝐻0�̃�

∗ =
∫
Ω∗ ℎ̃0(𝑘) 𝑑𝑘 with

fibers ℎ̃0(𝑘) =
[
ℎ̃0(𝑘; 𝝃, 𝝃) ℎ̃0(𝑘; 𝝃, 𝜻)

ℎ̃0(𝑘; 𝜻, 𝝃) ℎ̃0(𝑘; 𝜻, 𝜻)

]
satisfying

𝐻0(𝛾 + 𝑥, 𝑥
′) =

1

∣Ω∗∣
∫
Ω∗
𝑑𝑘 𝑒𝑖 𝑘⋅𝛾ℎ̃0(𝑘; 𝑥, 𝑥′) (𝑥, 𝑥′ ∈ B; 𝛾 ∈ Γ),

ℎ̃0(𝑘; 𝑥, 𝑥
′) =

∑
𝛾∈Γ

𝑒−𝑖𝑘⋅𝛾𝐻0(𝑥+ 𝛾, 𝑥
′) (𝑥, 𝑥′ ∈ B; 𝑘 ∈ Ω∗).

(2.10b)

The main result of this article concerns two isolated energy bands touching in “Dirac”-cones,
for instance, when Λ is the honeycomb lattice (graphene), and 𝐻0 is a tight-binding Hamil-
tonian. We briefly remind the reader of a nearest-neighbour tight-binding calculation of
the graphene band structure, not essentially different from the one presented in [13]. The
nearest-neighbour tight-binding band structure is one the simplest band structure calcu-
lations for graphene. Note that the Dirac-cones is a general artifact of the honeycomb
lattice, not a property of the nearest-neighbour tight-binding approximations, see [4].

2.3. A Calculation of the Energy Spectrum of Graphene

First, fix the length-scale such that the nearest-neighbour distance is 1. For
graphene a standard choice of Bravais lattice is 𝔞 = 1

2
(
√
3, 3), 𝔟 = 1

2
(−√

3, 3), see Fig. 1,
leading to the dual lattice vectors 𝔞∗ = 2𝜋( 1√

3
, 1
3
), 𝔟∗ = 2𝜋(− 1√

3
, 1
3
). We choose the

𝝃

𝝃𝝃

𝝃

𝝃

𝝃

𝝃

𝜻

𝜻

𝜻

𝜻

𝜻

𝜻

𝜻

𝔟 𝔞
1

Ω

Fig. 1. Graphene crystal structure. The vectors 𝔞 and 𝔟 generates the Bra-
vais lattice Γ. We choose the length-scale such that the nearest neighbour
distance is 1.

graphene basis, see Fig. 1,
B𝐺 = {(0, 0), (0, 1)}. (2.11)
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A simple discrete Hamiltonian for graphene is the often used nearest-neighbour model:

𝐻𝐺
0 (𝑥, 𝑥

′) =

{
1 if ∥𝑥− 𝑥′∥ = 1,

0 if ∥𝑥− 𝑥′∥ ∕= 1
(𝑥, 𝑥′ ∈ Λ). (2.12)

In this model, the fiber matrix, found by inserting (2.11) and (2.12) into formula (2.10b) is

ℎ̃𝐺0 (𝑘) =

[
0 2𝑒−𝑖 3

2
𝑘2 cos(

√
3
2
𝑘1) + 1

2𝑒𝑖
3
2
𝑘2 cos(

√
3
2
𝑘1) + 1 0

]
(2.13)

and the famous band functions are given by the eigenvalues of (2.13) as function of
𝑘 = (𝑘1, 𝑘2) ∈ Ω∗:

𝜆1(𝑘1, 𝑘2) = −
√√√⎷3 + 2 cos

(√
3𝑘2

)
+ 4 cos

(√
3

2
𝑘2

)
cos

(
3

2
𝑘1

)
,

𝜆2(𝑘1, 𝑘2) =

√√√⎷3 + 2 cos
(√

3𝑘2

)
+ 4 cos

(√
3

2
𝑘2

)
cos

(
3

2
𝑘1

)
,

(2.14)

plotted in Fig. 2. At the Dirac points

𝐾± =

(
±2𝜋

3
,
2𝜋

3
√
3

)
(2.15)

see Fig. 2, the bands touch; 𝜆1(𝐾±) = 𝜆2(𝐾±) = 0. All other values of 𝑘 where 𝜆1(𝑘) ≥ 0,
or 𝜆2(𝑘) ≤ 0 can be reached by adding integer multiples of 𝔞∗ and 𝔟∗ to 𝐾±. In this sense
𝐾± are the only distinct zeros of 𝜆𝜈 , 𝜈 = 1, 2. By symmetry of the two energy bands and
half-filling, 𝜆1(𝐾±) = 𝜆2(𝐾±) = 0 is also the Fermi energy for this model, and the Fermi
surface consists of isolated points.

en
er

gy
 / 

2.
7 

eV 𝔞∗𝔟∗ 𝐾+𝐾−

Dirac cone

Dirac point

Ω∗
𝜆1(𝑘)

𝜆2(𝑘)

𝑘1 𝑘2

Fig. 2. Electron-energies of isolated graphene as a function of the crystal momentum
𝑘 ∈ Ω∗ (in units of the nearest neighbour hopping constant ∼ 2, 7𝑒𝑉 ). Of special interest
are the “Dirac” points, 𝐾, where the two bands touch conically.

When expanding the fiber component functions ℎ𝐺0 ( ⋅ ; 𝑥, 𝑥′), 𝑥, 𝑥′ ∈ B around 𝐾+,
one gets

ℎ𝐺0 (𝑘1, 𝑘2) =
3

2

[
0 𝑘1 − 𝑖𝑘2 +

∑
∣𝛼∣≥2𝐶𝛼𝑘

𝛼

𝑘1 + 𝑖𝑘2 + . . . 0

]
, 𝑘 = 𝑘 −𝐾+.
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which to first order in 𝑘1 and 𝑘2 is the fiber of the Dirac Hamiltonian for massless fermions,
also known as the Weyl Hamiltonian.

2.3.1. The uniform external magnetic field. Now consider a general one-electron Hilbert
space ℓ2(Λ), where Λ is a crystal structure of atom-sites in the 𝑋𝑌 -plane.

An uniform orthogonal magnetic field 𝐵 is incorporated into the model by Peierls
substitution [6,8, 11]; we thus define a magnetic Hamiltonian with the integral kernel

𝐻𝑏(𝛾 + 𝑥, 𝛾
′ + 𝑥′) := 𝑒𝑖𝐵(𝛾1𝛾′

2−𝛾2𝛾′
1)𝐻0(𝛾 + 𝑥, 𝛾

′ + 𝑥′) (𝛾, 𝛾′ ∈ Γ, 𝑥, 𝑥 ∈ B), (2.16)

where 𝐵(𝛾1𝛾′2− 𝛾2𝛾′1) is the flux of the magnetic field 𝐵 through the triangle generated by
origin, 𝛾 and 𝛾′.

2.3.2. Bloch-Floquet decomposition, version 2. It is convenient to introduce an operator
𝑈 defined on ℓ2(Λ) by extension of

(𝑈𝜓)(𝑘, 𝑥) :=
1√∣Ω∗∣

∑
𝛾∈Γ

𝑒−𝑖𝑘⋅(𝛾+𝑥)𝜓(𝛾 + 𝑥) (𝜓 ∈ ℓ2𝑐(Λ), 𝑘 ∈ Ω∗, 𝑥 ∈ B) (2.17)

(compare with (2.10).) 𝑈 associates a vector 𝜓 ∈ ℓ2(Λ) with a vector 𝑈𝜓 ∈ ∫ ⊕
Ω∗ ℂ

2 𝑑𝑘.
The crystal Hamiltonian is again unitarily equivalent with a fibered operator acting in∫ ⊕
Ω∗ ℂ

2 𝑑𝑘:

𝑈𝐻0𝑈
∗ =

∫ ⊗

Ω∗
𝑑𝑘 ℎ0(𝑘), (2.18)

where each fiber can be represented as a self-adjoint 2× 2 matrix

ℎ0(𝑘) =

[
ℎ0(𝑘; 𝝃, 𝝃) ℎ0(𝑘; 𝝃, 𝜻)

ℎ0(𝑘; 𝜻, 𝝃) ℎ0(𝑘; 𝜻, 𝜻)

]
(B = {𝝃, 𝜻}). (2.19)

The unitary 𝑈 fixes the integral kernel of the fibers ℎ0(𝑘) from the kernel of 𝐻0, and vice
versa:

ℎ0(𝑘; 𝑥, 𝑥
′) =

1

∣Ω∗∣
∑
𝛾∈Γ

𝑒−𝑖𝑘⋅(𝑥+𝛾−𝑥′)𝐻0(𝑥+ 𝛾, 𝑥
′) (𝑘 ∈ Ω∗, 𝑥, 𝑥′ ∈ B), (2.20a)

𝐻0(𝑥, 𝑥
′) =

1

∣Ω∗∣
∫
Ω∗
𝑑𝑘 𝑒𝑖𝑘⋅(𝑥−𝑥′)ℎ0(𝑘; 𝑥, 𝑥

′) (𝑥 = 𝑥+ 𝛾 ∈ Λ, 𝑥′ = 𝑥′ + 𝛾′ ∈ Λ).

(2.20b)

2.4. The Main Result

We will now consider a simpler situation than graphene. We suppose that the
fibered zero-field Hamiltonian has a dispersion relation with a single Dirac-cone situated
at the origin.

Theorem 2.1. Let ℒ(ℂ2) denote the space of 2 × 2 matrices with complex components.
Consider a matrix valued mapping ℎ0 : ℝ2 ⊃ Ω∗ → ℒ(ℂ2), where ℎ0(𝑘) is self-adjoint
for all 𝑘. Let 𝐻0 : ℓ

2(Λ) → ℓ2(Λ) be a zero-field crystal Hamiltonian generated by ℎ0 by
(2.19) and (2.20b). Furthermore assume that

(a): for fixed 𝑥, 𝑥′ ∈ B, the function Ω∗ ∋ 𝑘 �→ 𝑒𝑖𝑘⋅(𝑥−𝑥′)ℎ0(𝑘; 𝑥, 𝑥
′) ∈ ℂ has an

extension which is 𝐶∞(ℝ2) and Γ∗-periodic;
(b): 0 is an eigenvalue of ℎ0(0) with degeneracy 2;
(c): for 𝑘 ∕= 0, ℎ0(𝑘) has two distinct eigenvalues 𝜆1(𝑘) < 0 < 𝜆2(𝑘);
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(d): ℎ0(𝑘) = ℎ
[1]
0 (𝑘) + ℎ𝑅𝑒𝑚

0 (𝑘),where

ℎ
[1]
0 (𝑘1, 𝑘2) =

[
0 𝑘1 − 𝑖𝑘2

𝑘1 + 𝑖𝑘2 0

]
, (2.21)

and that there exists a constant 𝐶1 > 0 such that

∥ℎ𝑅𝑒𝑚
0 (𝑘)∥ ≤ 𝐶1∥𝑘∥2 (𝑘 ∈ Ω∗). (2.22)

Then the spectrum of the magnetic Hamiltonian 𝐻𝑏 : ℓ
2(Λ) → ℓ2(Λ), defined by (2.20b)

and (2.16) above, develops gaps proportional to
√
𝑏 around the origin. To be precise: for

fixed 𝑀 = 0, 1, 2, 3, . . ., choose 𝑐1, 𝑐2 such that√
2𝑀 < 𝑐1 < 𝑐2 <

√
2(𝑀 + 1). (2.23)

Then there exists 𝑏0 > 0 such that for all 0 < 𝑏 < 𝑏0 we have

[𝑐1
√
𝑏, 𝑐2

√
𝑏] ⊂ 𝜌(𝐻𝑏). (2.24)

(see Fig. 3).

(𝑏 = 0)
𝜎(𝐻𝑏)𝜎(𝐻0)

√
2(𝑀 − 1)𝑏

√
2𝑀𝑏

√
2(𝑀 + 1)𝑏

𝑐1
√
𝑏

𝑐2
√
𝑏

0

0

𝜆2(𝑘)

𝜆1(𝑘)

Ω∗

Fig. 3. Left: The two energy band functions 𝜆1 and 𝜆2, in the zero field case,
qualitatively sketched (in reality, the functions are real-valued functions om
Ω∗ ⊂ ℝ2, of the type like Fig. 2, but only with one Dirac point at the origin).
Right: The energy spectrum in two situations; no external magnetic field
𝑏 = 0 (left vertical axis, a continuous energy band), and constant external
magnetic field, 𝑏 > 0 (right vertical axis). Gaps [𝑐1

√
𝑏, 𝑐2

√
𝑏] between the

low Landau levels
√
2𝑀𝑏, 𝑀 = 0, 1, 2, . . . (marked by stars) appear in the

spectrum of 𝐻𝑏 when 𝑏 is sufficiently small bur non-zero.
√
2𝑀 < 𝑐1 < 𝑐2 <√

2(𝑀 + 1) for some 𝑀 ∈ ℕ0 small enough. Note that the right vertical
axis only covers a tiny portion of the energy values which are inside the
zero-field energy band, the two vertical axis are not of same scale!

2.5. About the Proof

Full proofs will be given in another paper of M.H. Brynildsen, H.D. Cornean, and
I. Herbst. We construct aa approximation for (𝐻𝑏 − 𝑧)−1, using a cut-and-paste method.
The main idea is to treat fibers ℎ0(𝑘), with 𝑘 near the Dirac points, with the continuous
Dirac-resolvent, this is where the Landau levels come into play. The proof heavily relies
on the

√
𝐵-behaviour of the Hausdorff distance between spectra of Hamiltonians which

differ only by a Peierls phase, as proven in [2].
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3. Conclusions

Our result can be extended to the double-cone situation. The fact that there are
gaps near the Dirac points is in agreement with the numerical calculations of Hofstadter-
type [5], which were applied to the honeycomb-lattice in [12] and expanded in [3]. They
plot the spectrum for values of 𝐵 for which the relative flux of the external magnetic field
through one unit cell has rational values.

For small intensities of the external magnetic field the Hofstadster-Rammal plot
becomes increasingly computationally heavy to produce, so the more modern articles
with better access to computer-power have extended the “Hofstadter-Rammal butterfly”
spectrum plot to lower field-strengths (compare, for instance, our result with [3, Fig. 2a]).

Our method does not distinguish between rational or irrational fluxes, since we do
not concern ourselves with the nature of the spectrum, we only want to show the existence
of gaps in the spectrum. Also, our result holds for all 𝐵 in a small neighborhood of zero,
whereas the Hofstadter approach requires more computations, the smaller 𝐵 is.
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Let Ω ⊂ R2 be a domain having a compact boundary Σ which is Lipschitz and piecewise C4 smooth, and let ν

denote the inward unit normal vector on Σ. We study the principal eigenvalue E(β) of the Laplacian in Ω with

the Robin boundary conditions ∂f/∂ν + βf = 0 on Σ, where β is a positive number. Assuming that Σ has no

convex corners, we show the estimate E(β) = −β2 − γmaxβ + O
(
β

2
3

)
as β → +∞, where γmax is the maximal

curvature of the boundary.

Keywords: eigenvalue, Laplacian, Robin boundary condition, curvature, asymptotics.

1. Introduction

Let Ω ⊂ R2 be an open connected set having a compact Lipschitz piecewise smooth
boundary Σ. For β > 0 consider the operator Hβ which is the Laplacian f 7→ −∆f with the
Robin boundary conditions,

∂f

∂ν
+ βf = 0 on Σ,

where ν is the inward unit normal vector. More precisely, Hβ is the self-adjoint operator in
L2(Ω) associated with the sesquilinear form

hβ(f, g) =

∫∫
Ω

∇f∇g dx− β
∫

Σ

f g dσ, domhβ = H1(Ω); (1)

here σ denotes the one-dimensional Hausdorff measure on Σ. The operator Hβ is semibounded
from below. If Ω is bounded, then Hβ has a compact resolvent, and we denote by Ej(β),
j ∈ N, its eigenvalues taken according to their multiplicities and enumerated in the non-
decreasing order. If Ω is unbounded, then the essential spectrum of Hβ coincides with [0,+∞),
and the discrete spectrum consists of a finite number of eigenvalues, which we denote again by
Ej(β), j ∈ {1, . . . , Nβ}, and enumerate them in the non-decreasing order taking into account
the multiplicities. In the both cases, the principal eigenvalue E(β) := E1(β) may be defined
through the Rayleigh quotients

E(β) = inf
06=f∈domhβ

hβ(f, f)

‖f‖2
L2(Ω)

.

It is easy to check that E(β) < 0: for bounded Ω one can test on f = 1, and for unbounded Ω,
one may use f(x) = exp

(
− |x|α/2

)
with small α > 0.

The study of the principal eigenvalue arises in several applications: work [1] discusses
the stochastic meaning of the Robin eigenvalues, paper [2] shows that the eigenvalue problem
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appears in the study of long-time dynamics related to some reaction-diffusion processes, and a
discussion of an interplay between the eigenvalues and the estimate of the critical temperature
in a problem of superconductivity may be found in [3].

In the present note, we are interested in the asymptotic behavior of E(β) for large
values of β. For bounded Ω, this question was already addressed in numerous papers. It was
conjectured and partially proven in [2] that one has the asymptotics

E(β) = −CΩβ
2 + o(β2) as β → +∞, (2)

for some constant CΩ > 0. It seems that the paper [4] contains the first rigorous proof
of the above equality for the case of a C1 smooth Σ, and in that case one has CΩ = 1,
as predicted in [2]. Under the same assumption, it was shown in [5] that the asymptotics
Ej(β) = −β2 + o(β2), β → +∞, hold for any fixed j ∈ N. The paper [6] proved the
asymptotics (2) for domains whose boundary is C∞ smooth with the possible exception of a
finite number of corners. If the corner opening angles are αj ∈ (0, π)∪(π, 2π), j = 1, . . . ,m,
and θ := minαj/2, then CΩ = (sin θ)−2 if θ < π/2, otherwise CΩ = 1. We remark that
the paper [6] formally deals with bounded domains, but the proofs can be easily adapted to
unbounded domains with compact boundaries. It should pointed out that domains with cusps
need a specific consideration, and the results are different [6, 7]. Various generalizations of the
above results and some related questions concerning the spectral theory of the Robin Laplacians
were discussed in [7–12]. The aim of the present note is to refine the asymptotics (2) for a
class of two-dimensional domains. More precisely, we calculate the next term in the asymptotic
expansion for piecewise C4 smooth domains whose boundary has no convex corners, i.e. we
assume that either the boundary is smooth or that all corner opening angles are larger than π;
due to the above cited result of [6] we have CΩ = 1 in the both cases.

Let us formulate the assumptions and the result more carefully. Let Σk, k = 1, . . . , n, be
non-intersecting C4 smooth connected components of the boundary Σ such that Σ =

⋃n
k=1 Σk.

Denote by `k the length of Σk and consider a parametrization of the closure Σk by the arc
length, i.e. let [0, `k] 3 s 7→ Γk(s) ≡

(
Γk,1(s),Γk,2(s)

)
∈ Σk be a bijection with |Γ′k| = 1, such

that Γk ∈ C4
(
[0, `k], R2

)
, and we assume that the orientation of each Γk is chosen in such a

way that νk(s) :=
(
−Γ′k,2(s),Γ′k,1(s)

)
is the inward unit normal vector at the point Γk(s) of the

boundary. If two components Σj , Σk meet at some point P := Γj(`j) = Γk(0), then two options
are allowed: either Σj ∪ Σk is C4 smooth near P or the corner opening angle at P measured
inside Ω belongs to (π, 2π).

We denote by γk(s) the signed curvature of the boundary at the point Γk(s) and let γmax

denote its global maximum:

γk(s) := Γ′k,1(s)Γ′′k,2(s)− Γ′′k,1(s)Γ′k,2(s), γmax := max
k∈{1,...,n}

max
s∈[0,`k]

γk(s);

note that the decomposition of the boundary Σ into the pieces Σk is non-unique, but the value
γmax is uniquely determined. Our result is as follows:

Theorem 1. Under the preceding assumptions there holds

E(β) = −β2 − γmaxβ +O
(
β

2
3

)
as β → +∞.

We believe that it is hard to improve the asymptotics without any additional information
on the set at which the curvature attains its maximal value. For example, one may expect that
the case of a curvature having isolated maxima and the case of a piecewise constant curvature
should give different resolutions of the remainder, and we hope to progress in this direction in
subsequent works.
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At first sight, the Robin eigenvalue problem may look rather similar to the eigenvalue
problem for δ-potentials supported by curves, see e.g. [13–15]. This first impression is wrong,
and the result of Theorem 1 concerning the secondary asymptotic term is very different from the
one obtained in the papers [13,14] for strong δ-potentials; nevertheless, a part of the machinery
of [13] plays an important role in our considerations. On the other hand, the asymptotic
behavior of the principal Robin eigenvalue shows some analogy with the lowest eigenvalue of
the Neumann magnetic Laplacian studied in the theory of superconductivity [16–18].

2. Dirichlet-Neumann bracketing on thin strips

In this section we introduce and study an auxiliary eigenvalue problem, and the results
obtained will be used in the next section to prove theorem 1.

Let ` > 0 and let Γ : [0, `] → R2, s 7→ Γ(s) =
(
Γ1(s),Γ2(s)

)
∈ R2, be an injective C4

map such that
∣∣Γ′(s)∣∣ = 1 for all s ∈ (0, `). We denote

S := Γ
(
(0, `)

)
, κ(s) := Γ′1(s)Γ′′2(s)− Γ′′1(s)Γ′2(s), κmax := max

s∈[0,`]
κ(s),

K := max
s∈[0,`]

∣∣κ(s)
∣∣+ max

s∈[0,`]

∣∣κ′(s)∣∣+ max
s∈[0,`]

∣∣κ′′(s)∣∣.
Due to κ ∈ C2

(
[0, `]

)
, the above quantity K is finite.

For a > 0, consider the map

Φa : (0, `)× (0, a)→ R2, Φa(s, u) =

(
Γ1(s)− uΓ′2(s)

Γ2(s) + uΓ′1(s)

)
.

As shown in [13, Lemma 2.1], for any a ∈ (0, a0), a0 := (2K)−1, the map Φa defines a
diffeomorphism between the domains �a := (0, `)× (0, a) and Ωa := Φa(�a). In what follows,
we always assume that a ∈ (0, a0) and we will work with the usual Sobolev space H1(Ωa) and
its part H̃1

0 (Ωa) :=
{
f ∈ H1(Ωa) : fd∂Ωa\S = 0

}
; here the symbol d means the trace of the

function on the indicated part of the boundary.
Here, we introduce two sesquilinear forms in L2(Ωa). The first one, hN,aβ , is defined on

domhN,aβ := H1(Ωa) by the expression

hN,aβ (f, g) =

∫∫
Ωa

∇f∇g dx− β
∫
S

fg dσ,

and the second one, hD,aβ , is its restriction to domhD,aβ := H̃1
0 (Ωa). Both forms are densely

defined, symmetric, closed and semibounded from below, and we denote

EN/D(β, a) = inf
06=f∈domh

N/D,a
β

h
N/D,a
β (f, f)

‖f‖2
L2(Ωa)

. (3)

We show the following results:

Lemma 2. There exists a1 > 0 such that for any a ∈ (0, a1) one has the estimate
EN/D(β, a) = −β2 − κmaxβ +O(β

2
3 ) as β → +∞.

The rest of this section is devoted to the proof of lemma 2. We first introduce a
suitable decomposition of Ωa and then provide two-side eigenvalue estimates using operators
with separated variables.
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Define Ua : L2(Ωa) → L2(�a) by
(
Uaf

)
(s, u) =

√
1− uκ(s)f

(
Φa(s, u)

)
. Clearly, Ua

is a unitary operator, and one has Ua
(
H1(Ωa)

)
= H1(�a) and

Ua
(
H̃1

0 (Ωa)
)

= H̃1
0 (�a) :=

{
f ∈ H1(�a) : f(0, ·) = f(`, ·) = 0 and f(·, a) = 0

}
,

where the restrictions should be again understood as the traces. Using integration by parts, one
may easily check that for any f, g ∈ H1(Ωa), one has hN,aβ (f, g) = qN,aβ (Uaf, Uag), where the

form qN,aβ is defined on the domain dom qN,aβ := H1(�a) by the expression

qN,aβ (f, g) =

∫∫
�a

1(
1− uκ(s)

)2

∂f

∂s

∂g

∂s
ds du+

∫∫
�a

∂f

∂u

∂g

∂u
ds du

−
∫∫

�a

V (s, u)f g ds du− β
∫ `

0

f(s, 0)g(s, 0) ds

− 1

2

∫ `

0

κ(s) f(s, 0)g(s, 0) ds+
1

2

∫ `

0

κ(s)

1− aκ(s)
f(s, a)g(s, a) ds

+
1

2
κ′(`)

∫ a

0

u(
1− uκ(`)

)3 f(`, u)g(`, u) du

− 1

2
κ′(0)

∫ a

0

u(
1− uκ(0)

)3 f(0, u)g(0, u) du

(4)

with

V (s, u) :=
uκ′′(s)

2
(
1− uκ(s)

)3 +
5u2κ′(s)2

4
(
1− uκ(s)

)4 +
κ(s)2

4
(
1− uκ(s)

)2 .

Similarly, for any f, g ∈ H̃1
0 (Ωa), one has hD,aβ (f, g) = qD,aβ (Uaf, Uag), where qD,aβ is the

restriction of qN,aβ to the domain dom qD,aβ := H̃1
0 (�a); note that for f, g ∈ dom qD,aβ the three

last terms on the right-hand side of (4) vanish. Using the unitarity of Ua we may rewrite the
equalities (3) in the form:

EN/D(β, a) = inf
0 6=f∈dom q

N/D,a
β

q
N/D,a
β (f, f)

‖f‖2
L2(�a)

. (5)

We would like to reduce the estimation of these quantities to the study of the eigenvalues of
certain one-dimensional operators.

Using the one-dimensional Sobolev inequality on (0, `) we see that one can find a
constant C > 0 independent of a, such that for all f ∈ H1(�a), one has∫ a

0

∣∣f(0, u)
∣∣2 du+

∫ a

0

∣∣f(`, u)
∣∣2 du ≤ C

(∫∫
�a

∣∣∣∂f
∂s

∣∣∣2ds du+

∫∫
�a

|f |2ds du
)
.

One can also find a constant v > 0, such that
∣∣V (s, u)

∣∣ ≤ v for all (s, u) ∈ �a and all
a ∈ (0, a0). Furthermore, again for (s, u) ∈ �a and any a ∈ (0, a0), we have∣∣∣ κ(s)

1− aκ(s)

∣∣∣ ≤ 2K,
2

3
≤ 1

1− uκ(s)
≤ 2.
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For any M ∈ N, we denote

δ :=
`

M
, IjM := (jδ − δ, jδ), �j

a,M := IjM × (0, a),

κ−M,j := inf
s∈IjM

κ(s), κ+
M,j := sup

s∈IjM

κ(s), j = 1, . . . ,M,

and introduce functions κ±M : (0, `)→ R as follows: κ±M(s) := κ±M,j if s ∈ IjM , and κ±M(jδ) := 0

for j = 1, . . . ,M − 1. In addition, we assume that 0 < a < (10KC)−1. Now, we introduce two
new sesquilinear forms which will be used to obtain a two-side estimate for EN/D(β, a). The
first one, t−,M,a

β , is defined by

dom t−,M,a
β = H1

( M⋃
j=1

�j
a,M

)
'

M⊕
j=1

H1
(
�j
a,M

)
,

t−,M,a
β (f, g) =

(4

9
− 4aKC)

∫∫
�a

∂f

∂s

∂g

∂s
ds du+

∫∫
�a

∂f

∂u

∂g

∂u
ds du

− (v + 4aKC)

∫∫
�a

fg ds du−
∫ `

0

(
β +

κ+
M(s)

2

)
f(s, 0)g(s, 0) ds

−K
∫ `

0

f(s, a)g(s, a) ds.

The second one, t+,M,a
β , is defined on the domain dom t+,M,a

β =
⊕M

j=1 H̃
1
0 (�j

a,M),

H̃1
0 (�j

a,M) :=
{
f ∈ H1(�j

a,M) : f(jδ − δ, ·) = f(jδ, ·) = 0 and f(·, a) = 0
}
,

through

t+,M,a
β (f, g) = 4

∫∫
�a

∂f

∂s

∂g

∂s
ds du+

∫∫
�a

∂f

∂u

∂g

∂u
ds du

+ v

∫∫
�a

fg ds du−
∫ `

0

(
β +

κ−M(s)

2

)
f(s, 0)g(s, 0) ds.

One clearly has the inclusions dom t+,M,a
β ⊂ dom qD,aβ ⊂ dom qN,aβ ⊂ dom t−,M,a

β and the in-
equalities

t−,M,a
β (f, f) ≤ qN,aβ (f, f), f ∈ dom qN,aβ ,

qN,aβ (f, f) = qD,aβ (f, f), f ∈ dom qD,aβ ,

qD,aβ (f, f) ≤ t+,M,a
β (f, f), f ∈ dom t+,M,a

β ,

which justify the estimates

E−M(β, a) ≤ EN(β, a) ≤ ED(β, a) ≤ E+
M(β, a), (6)

where we denote

E±M(β, a) := inf
06=f∈dom t±,M,aβ

t±,M,a
β (f, f)

‖f‖2
L2(�a)

.

Now, we are going to estimate E±M(β, a) using separation of variables. Note that the forms
t±,M,a
β are densely defined, semibounded from below and closed in L2(�a), therefore, they

define some self-adjoint operators T±,M,a
β in L2(�a), and E±M(β, a) = inf specT±,M,a

β . On the
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other hand, due to the fact that the domains �j
a,M are disjoint and isometric to one another , we

can identify T±,M,a
β '

⊕M
j=1 T

±,M,a
β,j , where T±,M,a

β,j are self-adjoint operators acting in L2(�δ,a),

�δ,a := (0, δ)× (0, a), and associated respectively with the sesqulinear forms t±,M,a
β,j ,

t−,M,a
β,j (f, g) =

(4

9
− 4aKC)

∫ δ

0

∫ a

0

∂f

∂s

∂g

∂s
du ds+

∫ δ

0

∫ a

0

∂f

∂u

∂g

∂u
du ds

− (v + 4aKC)

∫ δ

0

∫ a

0

fg du ds−
(
β +

κ+
M,j

2

)∫ δ

0

f(s, 0)g(s, 0) ds

−K
∫ δ

0

f(s, a)g(s, a) ds, dom t−,M,a
β,j = H1(�δ,a),

t+,M,a
β,j (f, g) = 4

∫ δ

0

∫ a

0

∂f

∂s

∂g

∂s
du ds+

∫ δ

0

∫ a

0

∂f

∂u

∂g

∂u
du ds

+ v

∫ δ

0

∫ a

0

fg du ds−
(
β +

κ−M,j

2

) ∫ δ

0

f(s, 0)g(s, 0) ds,

dom t+,M,a
β,j =

{
f ∈ H1(�δ,a) : f(0, ·) = f(δ, ·) = 0 and f(·, a) = 0

}
.

It is routine to check that T±,M,a
β,j = Q±M ⊗ 1 + 1⊗ L±,jβ,a , where Q±M are the operators acting in

L2(0, δ) as follows:

Q−Mf = −
(

4

9
− 4aKC

)
f ′′ − (v + 4aKC) f,

domQ−M =
{
f ∈ H2(0, δ) : f ′(0) = f ′(δ) = 0

}
,

Q+
Mf = −4f ′′ + vf,

domQ−M =
{
f ∈ H2(0, δ) : f(0) = f(δ) = 0

}
,

and L±,jβ,a are the self-adjoint operators in L2(0, a) both acting as L±,jβ,af = −f ′′ on the domains

domL−,jβ,a =
{
f ∈ H2(0, a) : f ′(0) +

(
β +

κ+
M,j

2

)
f(0) = 0, f ′(a)−Kf(a) = 0

}
,

domL+,j
β,a =

{
f ∈ H2(0, a) : f ′(0) +

(
β +

κ−M,j

2

)
f(0) = 0, f(a) = 0

}
.

The spectra of Q±M can be calculated explicitly; in particular, one has

inf specQ−M = −v − 4aKC, inf specQ+
M =

4π2

δ2
+ v ≡ 4π2M2

`2
+ v.

Therefore, denoting E±,j(β, a) := inf specL±,jβ,a , we arrive at

E−M(β, a) = min
j

(
inf specT−,M,a

β,j

)
= −v − 4aKC + min

j
E−,j(β, a),

E+
M(β, a) = min

j

(
inf specT+,M,a

β,j

)
=

4π2M2

`2
+ v + min

j
E+,j(β, a).

(7)

To study the lowest eigenvalues of L±,jβ,a , we prove two auxiliary estimates.

Lemma 3. For a, β, γ > 0, let Λa,β,γ denote the self-adjoint operator in L2(0, a) acting as
f 7→ −f ′′ on the functions f ∈ H2(0, a) satisfying the boundary conditions
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f ′(0) + βf(0) = f ′(a)− γf(a) = 0, and let E(a, β, γ) be its lowest eigenvalue. Let β > 2γ
and βa > 1, then β2 < −E(a, β, γ) < β2 + 123β2e−2βa.

Proof. Let k > 0. Clearly, E = −k2 is an eigenvalue of Λa,β,γ if one can find
(C1, C2) ∈ C2 \

{
(0, 0)

}
such that the function f : x 7→ C1e

kx + C2e
−kx belongs to the do-

main of Λa,β,γ . The boundary conditions give

0 = f ′(0) + βf(0) = (β + k)C1 + (β − k)C2,

0 = f ′(a)− γf(a) = (k − γ)ekaC1 − (k + γ)e−kaC2,

and one has a non-zero solution if the determinant of this system vanishes, i.e. if k satisfies the
equation (k + β)(k + γ)e−ka = (k − β)(k − γ)eka. Let us look for solutions k ∈ (β,+∞). One
may rewrite the preceding equation as

g(k) = h(k), g(k) =
k + β

k − β
, h(k) =

k − γ
k + γ

e2ka. (8)

Both functions g and h are continuous. It is readily seen that the function g is strictly decreasing
on (β,+∞) with g(β+) = +∞ and g(+∞)=1. Conversely, for β > 2γ, the function h is
strictly increasing in (β,+∞), being the product of two strictly increasing positive functions,
and we have h(β+) = e2βa(β − γ)/(β + γ) < +∞ and h(+∞) = +∞. These properties of
g and h show that there exists a unique solution k = k(a, β, γ) ∈ (β,+∞) of (8) and that
E(a, β, γ) = −k(a, β, γ)2.

To obtain the required estimate we use again the monotonicity of h on (β,+∞) and the
inequality β > 2γ. We have

k + β

k − β
= g(k) = h(k) > h(β+) =

β − γ
β + γ

e2βa ≥ e2βa

3
,

which gives (1 − 3e−2βa)k < (1 + 3e−2βa)β. The assumption βa > 1 gives the inequality
3e−2βa < 1/2, and we arrive at

k <
1 + 3e−2βa

1− 3e−2βa
β < (1 + 3e−2βa)(1 + 15e−2βa)β < (1 + 41e−2βa)β

and k2 < (1 + 41e−2βa)2β2 < (1 + 123e−2βa)β2. Together with the inclusion k ∈ (β,+∞) this
gives the result. �

Lemma 4. For a, β > 0, let Πa,β denote the self-adjoint operator in L2(0, a) acting as
f 7→ −f ′′ on the functions f ∈ H2(0, a) satisfying the boundary conditions
f ′(0) + βf(0) = f(a) = 0, and let E(a, β) be its lowest eigenvalue. Assume that βa > 4/3,
then β2 − 4β2e−βa < −E(a, β) < β2.

Proof. Let k > 0. Proceeding as in the proof of lemma 3, we see that E = −k2 is an
eigenvalue of Πa,β if k satisfies the equation (β + k)e−ka = (β − k)eka. As the left sideof
the equation is strictly positive, the right side must be positive as well, which means that
all solutions k belong to (0, β). Let us rewrite the equation in the form g(k) = 0 with
g(k) := log(β + k)− log(β − k)− 2ka. One has g(0) = 0, the function g is strictly de-
creasing in (0, k0) and strictly increasing in (k0, β), with k0 :=

√
β2 − β/a. Moreover,

g(β−) = +∞. Therefore, the equation g(k) = 0 has a unique solution in (k0, β). It fol-
lows from the assumption βa > 4/3 that k0 > β/2, and we can represent k = β − s
with some s ∈ (0, β/2). Using again the condition g(k) = 0, we arrive at the inequality
log s = log(2β − s)− 2βa+ 2sa < log(2β)− βa, which gives s < 2βe−βa and
k = β − s > β(1− 2e−βa). Finally, −E(a, β) = k2 > β2(1− 2e−βa)2 > β2(1− 4e−βa). To-
gether with the first inequality k < β this gives the desired estimate . �
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Let us complete the proof of lemma 2. Denote a1 := min
{
a0, (10KC)−1

}
and pick any

a ∈ (0, a1), and let β > 3K + 1 + 4/(3a). Applying lemma 3 to each of the operators L−,jβ,a and

lemma 4 to each of the operators L+,j
β,a , we arrive at the estimates

E−,j(β, a) > −
(
β +

κ+
M,j

2

)2

− 123
(
β +

κ+
M,j

2

)2

exp

[
− 2a

(
β +

κ+
M,j

2

)]
,

E+,j(β, a) < −
(
β +

κ−M,j

2

)2

+ 4
(
β +

κ−M,j

2

)2

exp

[
− a
(
β +

κ−M,j

2

)]
.

To simplify the form of the remainders, we choose βa > 0 sufficiently large such that for β > βa
we have (

β +
K

2

)2

exp

[
− 2a

(
β − K

2

)]
+ 4
(
β +

K

2

)2

exp

[
− a
(
β − K

2

)]
≤ 1

β
,

then for β > βa + 3K + 1 + 4/(3a) and all j = 1, . . . ,M , we have

E−,j(β, a) > −β2 − κ+
M,jβ −

K2

4
− 1

β
, E+,j(β, a) < −β2 − κ−M,jβ +

1

β
.

Using the inequality κ+
M,j ≤ κmax, we obtain

min
j
E−,j(β, a) > −β2 − κmaxβ −

K2

4
− 1

β
. (9)

Conversely, let l ∈ {1, . . . ,M} be such that κ+
M,l = κmax. This means that there exists s ∈ I lM

such that κ(s) = κmax. Using the Taylor expansion near s, we obtain

κ−M,l ≥ κ+
M,l −Kδ = κmax −Kδ ≡ κmax −

K`

M
. (10)

In the previous considerations the number M was arbitrary, and now we pick M ∈
[
β

1
3 , 2β

1
3

]
∩N,

then

min
j
E+,j(β, a) ≤ E+,l(β, a) < −β2 − κ−M,lβ +

1

β

= −β2 − κmaxβ +
K`

M
β +

1

β
≤ −β2 − κmaxβ +K`β

2
3 +

1

β
. (11)

Substituting the estimates (9) and (11) into (7) we arrive at

E+
M(β, a) ≤ −β2 − κmaxβ +K`β

2
3 +

1

β
+

4π2M2

`2
+ v

= −β2 − κmaxβ +
(
K`+

16π2

`2

)
β

2
3 + v +

1

β
,

E−M(β, a) ≥ −β2 − κmaxβ −
K2

4
− v − 4aKC − 1

β
,

and the assertion of lemma 2 follows from the two-side estimates (6) .
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3. Proof of Theorem 1

We continue using the notation introduced just before theorem 1. For a > 0, consider
the maps

Φk,a : (0, `k)× (0, a)→ R2, Φk,a(s, u) =

(
Γk,1(s)− uΓ′k,2(s)

Γk,2(s) + uΓ′k,1(s)

)
, k = 1, . . . , n.

As in section 2, we can find a0 > 0 such that for any a ∈ (0, a0) these maps are diffeo-
morphic between �k,a := (0, `k) × (0, a) and Ωk,a := Φk,a(�k,a), that Ωk,a ⊂ Ω, and that
Ωj,a ∩ Ωk,a = ∅ for j 6= k. Note that the last property follows from the fact that the opening

angles of the boundary corners (if any) are reflex. In addition, we set Ω0,a := Ω \
(⋃n

k=1 Ωk,a

)
.

Denote H̃1
0 (Ωk,a) :=

{
f ∈ H1(Ωk,a) : fd∂Ωk,a\Σk = 0

}
, k = 1, . . . , n, and introduce two new

sesquilinear forms hN/D,aβ in L2(Ω), both defined by the same expression as hβ on the domains

domhN,aβ =
n⊕
k=0

H1(Ωk,a), domhD,aβ = H1
0 (Ω0,a)∪

( n⊕
k=1

H̃1
0 (Ωk,a)

)
,

and define

EN/D(β, a) := inf
06=f∈domh

N/D,a
β

h
N/D,a
β (f, f)

‖f‖2
L2(Ω)

.

Due to the inclusions domhD,aβ ⊂ domhβ ⊂ domhN,aβ , we have the inequalities

EN(β, a) ≤ E(β) ≤ ED(β, a). (12)

Furthermore, due to the fact that the parts Ωk,a are disjoint and that the set Σ∩ ∂Ω0,a is finite
(this is exactly the set of the corners), we have the equality EN/D(β, a) = mink∈{0,...,n}Ek,N/D(β, a),
with

E0,N(β, a) := inf
06=f∈H1(Ω0,a)

‖∇f‖2
L2(Ω0,a)

‖f‖2
L2(Ω0,a)

,

Ek,N(β, a) := inf
0 6=f∈H1(Ωk,a)

‖∇f‖2
L2(Ωk,a) − β‖f‖2

L2(Σk)

‖f‖2
L2(Ωk,a)

, k = 1, . . . , n,

E0,D(β, a) = inf
06=f∈H1

0 (Ω0,a)

‖∇f‖2
L2(Ω0,a)

‖f‖2
L2(Ω0,a)

,

Ek,D(β, a) := inf
0 6=f∈H̃1

0 (Ωk,a)

‖∇f‖2
L2(Ωk,a) − β‖f‖2

L2(Σk)

‖f‖2
L2(Ωk,a)

, k = 1, . . . , n.

We have clearly E0,N/D(β, a) ≥ 0. Furthermore, in virtue of lemma 2 we can find a > 0 such
that for each k ∈ {1, . . . , n} for β → +∞ we have

Ek,N/D(β, a) = −β2 − γk,maxβ +O
(
β

2
3

)
, γk,max := max

s∈[0,`k]
γk(s),

which gives EN/D(β, a) = −β2− γmaxβ +O
(
β

2
3

)
, and the assertion of theorem 1 follows from

the two-side estimate (12).

Remark 5. A more detailed asymptotic analysis is beyond the scope of the present note, but
we mention one case in which the remainder estimate can be slightly improved with minimal
efforts. Namely, assume that one of the following conditions is satisfied:
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• the boundary Σ is of class C4 (i.e. there are no corners),
• the curvature does not attain its maximal value γmax at the corners,

then
E(β) = −β2 − γmaxβ +O

(√
β
)

as β → +∞. (13)
Indeed, let us pick any k ∈ {1, . . . , n} such that γk,max = γmax and revise the proof of lemma 2
with Γ := Γk, κ := γk and ` := `k. For any s ∈ [0, `] with κ(s) = κmax we have then κ′(s) = 0,
and we may replace the inequality (10) with

κ−M,l ≥ κ+
M,l −Kδ

2 = κmax −Kδ2 ≡ κmax −
K`2

M2
,

and by choosing M ∈
[

4
√
β, 2 4

√
β
]
∩N we arrive at the estimate

EN/D(β, a) = −β2 − κmaxβ + O(
√
β ) as β → +∞, which in turn gives the asymptotics

(13).
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We deal with two dynamical systems associated with a Riemannian manifold with boundary. The first one is a

system governed by the scalar wave equation, the second is governed by Maxwells equations. Both of the systems

are controlled from the boundary. The inverse problems are to recover the manifold via the relevant measurements

at the boundary (inverse data). We show that that the inverse data determine a C*-algebras, whose (topologized)

spectra are identical to the manifold. By this, to recover the manifold is to determine a proper algebra from the

inverse data, find its spectrum, and provide the spectrum with a Riemannian structure. This paper develops an

algebraic version of the boundary control method (M.I.Belishev’1986), which is an approach to inverse problems

based on their relations to control theory.

Keywords: inverse problems on manifolds, C*-algebras, boundary control method.

1. Setup

1.1. Acoustics

We deal with a compact C∞-smooth Riemannian manifold Ω with the boundary Γ,
dim Ω = n > 2; ∆ is the (scalar) Beltrami-Laplace operator on Ω; H := L2(Ω).
Forward problem of acoustics is to find a solution u = uf (x, t) of the system

utt −∆u = 0 in (Ω\Γ)× (0, T ) (1.1)

u|t=0 = ut|t=0 = 0 in Ω (1.2)

u = f on Γ× [0, T ] , (1.3)

where f ∈ FT := L2 (Γ× [0, T ]) is a (given) boundary control.
With the system one associates a response operator RT : FT → FT ,

RTf :=
∂uf

∂ν

∣∣∣∣
Γ×[0,T ]

(for smooth enough f ), ν is the outward normal to Γ.
Inverse problem is: given for a fixed T > diam Ω the operator R2T , to recover Ω.

1.2. Electrodynamics

Let Ω be oriented, dim Ω = 3. The definitions of the vector analysis operations
∧, curl , div on a manifold see, e.g., in [9].
Forward problem Find a solution e = ef (x, t), h = hf (x, t) of the Maxwell system

et = curlh, ht = −curl e in Ω× (0, T ) (1.4)

e|t=0 = 0, h|t=0 = 0 in Ω (1.5)

ν ∧ e = f in Γ× [0, T ] , (1.6)
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f ∈ FT := L2 ([0, T ];TΓ) is a boundary control (time-dependent tangent field on Γ).
With the system, one associates a response operator RT : FT → FT ,

RTf := ν ∧ hf
∣∣∣∣
Γ×[0,T ]

(for smooth enough f ).
Inverse problem is: given for a fixed T > diam Ω the operator R2T , to recover Ω.

1.3. Nonuiqueness

Let Ω′ be such that ∂Ω′ = ∂Ω = Γ and there is an isometry i : Ω → Ω′ provided
i|Γ = id. Then, for the response operators of the systems (1.1)–(1.3) and (1.4)–(1.6) one has
R′T = RT for all T > 0.

Hence, the map ”manifold 7→ its response operator” in not injective. By this, to de-
termine Ω uniquely is impossible, and we have to clarify the setup of the inverse problems as
follows [3]. The only reasonable setup is: given R2T for a fixed T > diam Ω, to construct a
Riemannian manifold Ω̃ such that ∂Ω̃ = ∂Ω = Γ and R̃′ 2T = R2T .
Philosophical question: From what ”material” can such an Ω̃ be constructed?
Answer in advance: Ω̃ is a spectrum of a relevant C*-algebra determined by R2T .

2. Eikonal algebra in Acoustics

2.1. Reachable sets

Return to the system (1.1)–(1.3).
Controllability For an open σ ⊂ Γ, define a reachable set

U sσ :=
{
uf ( · , T ) | supp f ⊂ σ × [T − s, T ]

}
⊂ H (0 < s 6 T )

of delayed controls acting from σ. Denote

• Ωs[σ] := {x ∈ Ω | dist (x, σ) < s} (the metric neighborhood of σ)
• H〈Ωs[σ]〉 := {y ∈ H | supp y ⊂ Ωs[σ]} (the subspace of functions supported in Ωs[σ]).

A finiteness of the wave propagation speed in Ω implies U sσ ⊂ H〈Ωs[σ]〉. The Holngren-
John-Tataru uniqueness theorem leads to the relation

U sσ = H〈Ωs[σ]〉 (2.1)

(closure in H), which is referred to as a local approximate boundary controllability of the
system (1.1)–(1.3) [1]. For T > diam Ω, one has UTσ = H.
Eikonals Let P s

σ be the projection in H onto U sσ. By (2.1) one has

P s
σy =

{
y in Ωs[σ]

0 in Ω\Ωs[σ]
, (2.2)

i.e., P s
σ cuts off functions on Ωs[σ]. An operator

τσ :=

∫ T

0

s dP T
σ

is called an eikonal. If T > diam Ω, then (2.2) implies

(τσy) (x) = dist (x, σ) y(x), x ∈ Ω ,

i.e., τσ is a multiplication by the distant function. It is a bounded self-adjoint operator in H.
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2.2. Algebra T

Recall that a spectrum Â of a commutative Banach algebra A is the set of its maximal
ideals endowed with the Gelfand topology [7], [8]. If A and B are two isometrically isomorphic

algebras (we write A isom
= B), then their spectra are homeomorphic (as topological spaces; we

write Â hom
= B̂). For the algebra of real continuous functions C(Ω), one has Ĉ(Ω)

hom
= Ω [7], [8].

For a set S ⊂ A, by ∨S we denote the minimal norm-closed subalgebra of A,
which contains S. Let B(H) be the (normed) algebra of bounded operators in H. By
T := ∨{τσ | σ ⊂ Γ} ⊂ B(H) we denote the (sub)algebra generated by eikonals.

Theorem 1. If T > diam Ω then T
isom
= C(Ω) and hence T̂

hom
= Ĉ(Ω)

hom
= Ω.

2.3. Solving IP

Connecting operator With the system (1.1)–(1.3) one associates a connecting operator
CT : FT → FT defined by the relation(

CTf, g
)
FT =

(
uf ( · , T ), ug( · , T )

)
H , f, g ∈ FT .

It is a positive bounded operator. The following is a key fact of our approach (the Boundary
Control method).

Proposition 1. The operator CT is determined by the response operator R2T via a simple and
explicit formula [1], [3].

Isometry UT By the definitions, the map

UT : UTΓ 3 uf ( · , T ) 7→ (CT )
1
2f ∈ FT

is an isometry. For T > diam Ω, one has UTΓ = H, and UT is a unitary operator from H onto

(CT )
1
2FT .

Let P̃ s
σ := UTP s

σ(UT )∗ be the projection in FT onto the subspace{
(CT )

1
2f | supp f ⊂ σ × [T − s, T ]

}
= UTU sσ .

By Proposition 1, P̃ s
σ is determined by the response operator R2T .

By the latter, the operators

τ̃σ := UT τσ(UT )∗ =

∫ T

0

s d
[
UTP s

σ(UT )∗
]

=

∫ T

0

s d P̃ s
σ (2.3)

are also determined by R2T . We define an algebra T̃ := UTT(UT )∗ ⊂ B
(

(CT )
1
2FT

)
. By

the definition, we have

T̃ = UT [∨{τσ | σ ⊂ Γ}] (UT )∗ = ∨{τ̃σ | σ ⊂ Γ} . (2.4)

By the aforesaid, this algebra and its spectrum ̂̃T =: Ω̃ are determined by the response operator

R2T . Since T̃
isom
= T, with regards to Theorem 1 one has

Ω
hom
= T̂

hom
= ̂̃T =: Ω̃ (2.5)

as T > diam Ω.
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Reconstruction The response operator R2T (provided T > diam Ω) determines the manifold Ω
up to a homeomorphism by the following scheme:

R2T Prop 1⇒ CT ⇒
{

(CT )
1
2f | supp f ⊂ σ × [T − s, T ]

}
σ⊂Γ
⇒

⇒ {P̃ s
σ | σ ⊂ Γ} (2.3)⇒ {τ̃σ | σ ⊂ Γ} (2.4)⇒ T̃⇒

⇒ ̂̃T (2.5)
= Ω̃

hom
= Ω .

Then, one can endow Ω̃ with a proper Riemannian metric and identify ∂Ω̃ with Γ (see, e.g., [5]).
As a result, we get a Riemannian manifold Ω̃, which is isometric to the original (un-

known) Ω by construction, and R̃2T = R2T does hold. The inverse problem for the system
(1.1)–(1.3) is solved.

3. Eikonal algebra in Electrodynamics

3.1. Maxwell system

Turn to the system (1.4)–(1.6). The Hilbert space ~L2(Ω) of the square-summable vector
fields (sections of the tangent bundle TΩ) contains the subspace of curls

C :=
{

curlh
∣∣ h, curlh ∈ ~L2(Ω)

}
.

Electric reachable sets For an open σ ⊂ Γ, define

Esσ :=
{
ef ( · , T ) | supp f ⊂ σ × [T − s, T ]

}
⊂ C (0 < s 6 T ) .

We denote C〈Ωs[σ]〉 := {y ∈ C | supp y ⊂ Ωs[σ]}. The finiteness of the electromagnetic wave
propagation speed in Ω implies Esσ ⊂ C〈Ωs[σ]〉.
Controllability The Eller-Isakov-Nakamura-Tataru uniqueness theorem leads to

Esσ = C〈Ωs[σ]〉 (3.1)

(the local boundary controllability). For T > diam Ω, one has ETσ = C.
Projections Let Es

σ be the projection in C onto Esσ. This projection acts in more complicated
way than its acoustic analog: its action is not reduced to cutting off fields. Moreover, in the
general case, for the different σ and σ′ the projections Es

σ and Es′

σ′ do not commute.
Eikonals An operator

εσ :=

∫ T

0

s dEs
σ

acts in the space C and is called an eikonal. Since diam Ω < ∞, εσ is a bounded positive
self-adjoint operator. In the general case, for σ 6= σ′ the eikonals ET

σ and ET
σ′ do not commute.

The following fact plays a key role.

Lemma 1. (M.N.Demchenko [6]) The representation

(εσy) (x) = dist (x, σ) y(x) +
(
KTy

)
(x), x ∈ Ω

holds with a compact operator KT : C → ~L2 (Ω).
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3.2. Algebra E

Let B(C) be the (normed) algebra of bounded operators in C. It contains the two-side
ideal K(C) of compact operators.

We denote by
E := ∨{εσ | σ ⊂ Γ}

the algebra generated by (electric) eikonals. Also, we denote K[E] := E ∩ K(C) and introduce
the factor-algebra

Ė := E/K[E]

Theorem 2. (M.N.Demchenko [6]) The factor-algebra Ė is a commutative Banach algebra.

The relation Ė
isom
= C(Ω) holds and implies ̂̇E hom

= Ω.

3.3. Solving IP

Connecting operator A Maxwell connecting operator CT : FT → FT is introduced
by the relation (

CTf, g
)
FT =

(
ef ( · , T ), eg( · , T )

)
C

for smooth controls f, g ∈ FT vanishing near t = 0 [3]. In contrast to the scalar (acoustic) case,
this CT is an unbounded operator. However, the following principal fact of the BC-method
remains valid.

Proposition 2. The operator CT is determined by the response operator R2T via a simple and
explicit formula [3], [5].

Isometry UT By the definitions, the map

UT : ETΓ 3 ef ( · , T ) 7→ (CT )
1
2f ∈ FT

is an isometry. For T > diam Ω, by (3.1) one has ETΓ = C, and UT is a unitary operator from

C onto (CT )
1
2FT ⊂ FT .

By Proposition 2, the projection Ẽs
σ := UTEs

σ(UT )∗ in (CT )
1
2FT onto the subspace{

(CT )
1
2f
∣∣ supp f ⊂ σ × [T − s, T ]

}
= UTEsσ

is determined by the response operator R2T .
An operator

ε̃Tσ := UT εTσ (UT )∗ =

∫ T

0

s d
[
UTEs

σ(UT )∗
]

=

∫ T

0

s d Ẽs
σ

acts in (CT )
1
2FT and is determined by the response operator R2T .

An algebra

Ẽ := UTE(UT )∗ = UT [∨{εσ | σ ⊂ Γ}] (UT )∗ = ∨{ε̃σ | σ ⊂ Γ}

is a subalgebra of B
(

(CT )
1
2FT

)
. By the aforesaid, this algebra, the factor-algebra ˙̃E := Ẽ/K[Ẽ]

and its spectrum ̂̃̇
E =: Ω̃

are determined by the response operator R2T .
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The isometry Ẽ
isom
= E implies the isometry of the factors ˙̃E

isom
= Ė. Theorem 2 leads to

Ω
hom
= ̂̇E hom

=
̂̃̇
E =: Ω̃ .

Reconstruction The response operator R2T (provided T > diam Ω) determines the manifold Ω
up to a homeomorphism by the following scheme:

R2T ⇒ CT ⇒
{

(CT )
1
2f
∣∣ supp f ⊂ σ × [T − s, T ]

}
σ⊂Γ
⇒

⇒ {Ẽs
σ | σ ⊂ Γ} ⇒ {ε̃σ | σ ⊂ Γ} ⇒ Ẽ⇒ ˙̃E

⇒
̂̃̇
E =: Ω̃

hom
= Ω .

Then, one can endow Ω̃ with a proper Riemannian metric and identify ∂Ω̃ with Γ (see, e.g., [5]).
As a result, we get a Riemannian manifold Ω̃, which is isometric to the original (un-

known) Ω by construction, and R̃2T = R2T does hold. The inverse problem for the Maxwell
system (1.4)–(1.6) is thus solved.
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The local density of states of the carbon nanostructures can be calculated in different ways. Here, we present
the Haydock recursion method which, using the Green’s function approach, transforms the given surface into
a chain of equivalent sites. Then, using the continued fraction, we apply this procedure on the surface of the
nanocylinders.

Keywords: graphene, carbon nanostructures, disclination, Green function, continued fraction.

1. Introduction

The local density density of states (LDoS) is one of the most important character-
istics describing the electronic properties of the carbon nanostructures. Different methods
were used for its calculation: The first exploits the form of the electronic spectra [1], the
second deals with the gauge-theory model and the Dirac equation [2, 3], the third works
with the Green function which can be calculated using different methods.

In this paper, we first describe the Haydock recursion method and the procedure
of the calculation of the Green function. Then we apply this method to the calculation of
the Green function and related quantities in the edge sites of the carbon nanocylinder and
of the graphene nanoribbon perturbed by two heptagonal defects. Then we investigate the
changes of the LDoS for the changing distance of the defects and estimate the minimal
and maximal distance of the defects on the perturbed surface of the nanocylinder.

2. Haydock recursion method

The LDoS can be defined as

LDoS(E) = lim
δ→+0

1

π
ImG00(E − iδ), (1)

where G00(E) is the Green function. It can be calculated using the recursion procedure
which transforms an arbitrary surface into 1−dimensional chain. This procedure is called
the Haydock recursion method [5]. It divides the positions of the investigated surface into
the groups of sites, each of them represents the site in the 1−dimensional chain. Each
site is represented by the state vector |n〉. Then, from the knowledge of the state |1〉,
which corresponds to the usual state of the carbon atom, we can recursively compute the
coefficients an, bn corresponding to the particular sites of the chain using

|n+ 1〉 = (H − an)|n〉 − bn−1|n− 1〉. (2)
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The maximal value of n which is nmax determines the recursion depth. It is given by the
size of the concrete surface, but in the case of infinitely large graphene, nanocone etc., it
is up to our choice and it provides the rate of precision. Then we define G00(E) as [4]

G00(E) =
1

E − a1 − b1g1(E)
, (3)

where

gi(E) =
1

E − ai+1 − bi+1gi+1(E)
, i = 1, ..., n. (4)

3. LDoS of nanocylinder

In Fig. 1, we see the surface of armchair and zig-zag nanocylinder together with
the labeling of the sites in accordance with the technique described in the previous section.
The armchair form should be always metallic, the zig-zag form is mostly semimetallic and
rarely metallic. The evidence of the metallicity is given by the peak in the LDoS for the
Fermi level [1].

FIG. 1. Surface of two forms of the carbon nanocylinders: armchair (left)
and zig-zag (right); the labeling of the sites corresponds to the technique
described in the section 2; there are equivalent sites in each line parallel with
the edge and that is why we label each line by the same number; the dashed
lines consisting of sites denoted by black or white color are identical on the
real surface.

To apply the Haydock recursion method, we have to choose the recursion depth
nmax, which closely corresponds to the length of the nanocylinder. The LDoS for different
forms of the nanocylinder is shown in Fig. 2 together with the chosen values of the
circumferential and the longitudinal number of atoms. The chosen value of the parameter
δ in (1) is 0.1.

3.1. The case of perturbation

Let us investigate the LDoS in the edge sites of a perturbed graphene nanoribbon
of the sizes which have the same values as the above mentioned cylindrical surface (see
Fig. 3). Because the structure of the surface is different from the previous case (Fig. 1),
the placement and labeling of the equivalent sites is changed. For the chosen edge sites,
the result is presented in Fig. 4. In this case, the chosen value of the parameter δ is 0.2.

To derive the limiting sizes of the disclinated nanocylinder, we investigate the LDoS
in the sites of the defects denoted by number 1 in the disclinated surfaces depicted in Fig.
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FIG. 2. LDoS for armchair and zig-zag cylinder; longitudinal number of
atoms: 12, circumferential number of atoms: 10 for armchair, 20 for zig-zag;
here, δ = 0.1.

FIG. 3. Surface of the nanoribbon with a small perturbation; due to the
mirror symmetry, we have pairs of equivalent sites in each line parallel with
the edge, but there is not any line composed of equivalent sites only; so, we
distinguish only the sites which are neighboring, next-neighboring etc. with
the site 1 for which the LDoS we calculate; the whole number of the sites in
the chain is 9; in the case of the semi closed, nanocylindrical structure, the
dashed lines consisting of sites denoted by black or white color are identical
on the real surface.
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FIG. 4. LDoS of the perturbed cylinder with surface depicted in Fig. 3; here,
δ = 0.2.

5 and we compare the results with the results presented in [1], where the LDoS for the
simple graphene was presented.

In Fig. 5, we define the distance of the defects in the units of the distance of
the neighboring sites. Using the Haydock recursion scheme, we get the plots of the
LDoS outlined in Fig. 6. The acquired results should be similar to the LDoS of simple
graphene [1]. Then, we suppose the presence of the local minimum for the Fermi level in
the corresponding plot.

Let us look through the plots of the LDoS in Fig. 6. From these plots we see that
the growing distance of the defects causes decrease of the LDoS for the Fermi energy and
violation of the peak. The case (d) in Fig. 6 corresponds to the expected shape of the
LDoS [1] and so, it corresponds to the minimal necessary size of the perturbed cylindrical
surface.

4. Conclusion

We applied the Haydock recursion method on the calculation of the LDoS of the
carbon nanocylinder. We can compare the results presented in Fig. 2 with the calculation
in [1], where the form of the electronic spectrum is applied. The results presented in this
paper are close to our results. They are also similar to the plots presented in [6]. In both
of these papers as well as in Fig. 2, the difference between the armchair and the zig-zag
form is given by the peak for the armchair form at the Fermi level. But in Fig. 2, the
peak at the Fermi level should be much closer. The inaccuracy is given by the choice of
the values of δ and of the parameters an, bn in the Haydock recursion method which does
not provide a single solution.

Next, we derived that the minimal size of the disclinated cylindrical surface con-
taining 2 heptagonal defects corresponds to the case (d) in Fig. 5 and that the maximal
size corresponds to the surface which is twice longer.

The model of 2 defects can be also applied on a simulation of a dipole or a quadrupole
present on a defect-free graphene surface: the dipole can be given by a combination of
one pentagonal and one heptagonal defect and the quadrupole by two pentagonal and two
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FIG. 5. Perturbed nanostructured surfaces with different distances of the
defects. We calculate the LDoS for the denoted sites; in the case of the semi
closed, nanocylindrical structure, the dashed lines consisting of sites denoted
by black or white color are identical on the real surface.

FIG. 6. LDoS for the particular cases of the perturbed cylindrical surfaces.
The notation (a)-(d) corresponds to Fig. 5. The value of the parameter δ is
0.2.
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heptagonal defects. Of course, higher number of defects can give much more possibilities.
In the future, the calculations will be focused on these problems.
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The classical capacity of quantum channels is the tight upper bound for the transmission rate of classical
information. This is a quantum counterpart of the foundational notion of the channel capacity introduced by
Shannon. Bosonic Gaussian quantum channels provide a good model for optical communications. In order to
properly define the classical capacity for these quantum systems, an energy constraint at the channel input
is necessary, as in the classical case. A further restriction to Gaussian input ensembles defines the Gaussian
(classical) capacity, which can be studied analytically. It also provides a lower bound on the classical capacity
and moreover, it is conjectured to coincide with the classical capacity. Therefore, the Gaussian capacity
is a useful and important notion in quantum information theory. Recently, we have shown that the study
of both the classical and Gaussian capacity of an arbitrary single-mode Gaussian quantum channel can be
reduced to the study of a particular fiducial channel. In this work we consider the Gaussian capacity of the
fiducial channel, discuss its additivity and analyze its dependence on the channel parameters. In addition, we
extend previously obtained results on the optimal channel environment to the single-mode fiducial channel. In
particular, we show that the optimal channel environment for the lossy, amplification, and phase-conjugating
channels is given by a pure quantum state if its energy is constrained.

Keywords: Quantum channels, Information transmission, Quantum Information, Channel Capacity.

1. Introduction

Information transmission and processing are ubiquitous in modern human society.
By the end of the XXth century information technologies experienced tremendous growth
accompanied by “exponential” downscaling of the hardware elements. Simple extrapolation
shows that the element size will soon achieve the level where quantum effects cannot be
neglected. This is one of the reasons why the interdisciplinary field known as quantum
information theory appeared. Another reason comes from a possibility to apply particular
properties of quantum systems in order to solve those problems which are intractable using
only classical means. Information theory provides a quantitative measure of information
and the tools for studying the information transmission through communication channels.
A fundamental quantity characterizing their performance is the maximal achievable rate at
which the information can be reliably transmitted. This tight upper bound is called capacity
of the communication channel. If the quantum nature of information carriers is taken into
account one has to describe communication channels as transformations of quantum states.
One of the most general transformations allowed by quantum mechanics is a completely
positive trace-preserving map which is identified with a quantum channel.
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In addition to the information in a usual sense, which can be measured in bits, in
quantum information theory one introduces also other types of information related to the
non-classical properties of quantum states, e.g., entanglement. In our paper we discuss the
classical capacity of quantum channels focussing on bosonic Gaussian quantum channels.
They provide a realistic model for the information transmission via optical communication
lines.

The paper is organized as follows. In Section 2 we define the classical capacity of
quantum channels. In Section 3 we describe Gaussian quantum channels. In Section 4
we introduce the Gaussian capacity and the type of Gaussian ensembles that achieve this
capacity. In Section 5 we present our recently proposed decomposition of Gaussian channels
in terms of a particular fiducial channel, find the Gaussian capacity of the fiducial channel
and discuss its additivity. In Section 6 we apply this decomposition to maximize the
Gaussian capacity of the fiducial channel over the set of states of the environment mode
which respect an energy constraint. In Section 7 we present our conclusion.

2. Classical capacity of quantum channels

Quantum channels are completely positive trace-preserving (CPTP) maps Φ that
act on density operators ρ̂ defined on a Hilbert space H [1]. The transmission of classical
information by quantum channels involves an encoding of classical symbols (alphabet) into
a set of quantum input states ρ̂i. The input state transmitted via a quantum channel Φ
is transformed to the output state ρ̂out,i = Φ[ρ̂in,i]. Depending on the coding scheme each
individual symbol state ρ̂in,i is used for the information transmission with some probability
pi, therefore, the average input state sent through the channel is ˆ̄ρin =

∑
i piρ̂in,i. Since the

CPTP map is linear the average output state is ˆ̄ρout = Φ[ˆ̄ρin] =
∑

i piΦ[ρ̂in,i] =
∑

i piρ̂out,i. In
other words, the channel outputs the state ρ̂out,i with probability pi. The so-called “Holevo
χ-quantity” given by following equation [1]

χ[Φ, {ρ̂i, pi}] = S
(

ˆ̄ρout

)
−
∑
i

piS (ρ̂out,i) (1)

provides a tight upper bound for the maximal amount of information that one can ex-
tract from the output ensemble {Φ[ρ̂i], pi} by using all possible measurements. Then, the
supremum of the Holevo χ-quantity over the whole set of input ensembles

Cχ(Φ) = sup
{ρ̂i,pi}

χ[Φ, {ρ̂i, pi}] (2)

gives the tight upper bound on the amount of information that can be transmitted on
average by one invocation of quantum channel Φ provided that the input symbol states are
not entangled over different channel uses [2], [3]. This quantity is called the one-shot
capacity. However, one may increase the amount of information transmitted per channel
use by entangling the input states over a sequence of channel uses. Therefore, the classical
capacity is defined by the limit [2], [3]

C(Φ) = lim
m→∞

1

m
Cχ(Φ⊗m) ≥ Cχ(Φ). (3)

If the equality C(Φ) = Cχ(Φ) holds then the classical capacity is additive. The additivity
of the classical capacity of quantum channels has long been an open problem until Hast-
ings has shown an example of a channel whose capacity is non-additive [4]. Hence, the
additivity has to be studied for each particular channel individually. We focus our study
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on bosonic Gaussian channels which constitute an important part of “Gaussian quantum
information” [5].

3. Gaussian channels

Bosonic systems are so-called continuous variables systems described by observ-
ables with continuous spectra acting on states defined in an infinite-dimensional Hilbert
space. The typical example of bosonic systems is the quantized electromagnetic field seen
as a collection of quantum harmonic oscillators (bosonic modes). The infinite-dimensional
Hilbert space of each mode is spanned by a countable basis of Fock states (number stats),
which are the eigenstates of the number operator N̂ |n〉 = n|n〉, where n is a non-negative
integer number and the number operator N̂ = â†â is defined via bosonic creation and
annihilation operators that act as follows:

â|0〉 = 0, â|n〉 =
√
n|n− 1〉 if n ≥ 1,

â†|n〉 =
√
n+ 1|n+ 1〉.

(4)

These operators satisfy the bosonic commutation relation [â, â†] = 1 (throughout the paper
we are using natural units h̄ = ω = 1).

A convenient representation of these infinite-dimensional systems is the phase-space
representation based on the use of quadrature operators

q̂ =
1√
2

(
â+ â†

)
, p̂ =

i√
2

(
â− â†

)
. (5)

These operators have a continuous spectrum and satisfy the same canonical commutation
relations as position and momentum operators. For m bosonic modes one defines a vector
of quadrature operators

x̂ = (x̂1, x̂2, . . . , x̂2m)T = (q̂1, p̂1, . . . , q̂m, p̂m)T . (6)

Then the canonical commutation relation is expressed as {x̂i, x̂j} = iΩij, where Ωij is the
matrix element of symplectic matrix

Ω =
m⊕
n=1

(
0 1
−1 0

)
. (7)

In this representation quantum state ρ̂ of m modes is described by its Wigner function:

W (x) =

∫
R2m

d2mξ

(2π)m
〈q + ξ/2|ρ̂|q − ξ/2〉e−ipξ (8)

where |q〉 is an eigenstate of operator q̂ = (q̂1, q̂2, . . . , q̂m)T. The Wigner function is com-
monly called quasiprobability distribution because, on one hand, its marginals provide
valid probability distributions for both quadratures q and p. On the other hand, it may take
negative values and, in any case, it cannot be a joint probability distribution of the values
of observables q̂ and p̂ because if such distribution existed it would violate the Heisenberg
uncertainty relation. In order to define the Wigner function one has to know, in gen-
eral, its values in all points of the 2m-dimensional phase-space. However, the amount of
parameters, which determine the Wigner function of a Gaussian state, can be essentially
reduced.
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Given a density operator ρ̂ one defines the displacement vector of the first moments

d = Tr[x̂ρ̂] (9)

and the covariance matrix (CM) V of the second “centered” moments of the quadratures

Vij =
1

2
Tr[{x̂i − di, x̂j − dj}ρ̂], (10)

where { , } is the anticommutator. Then the Wigner function of a Gaussian state is com-
pletely determined by the displacement vector d and the covariance matrix V :

W (x) =
1

(2π)m
√

detV
e−

1
2

(x−d)TV −1(x−d). (11)

Quantum channels which preserve the “Gaussian” property of quantum states are
called Gaussian channels. They are CPTP maps which are closed on the set of Gaussian
states. Any such transformation of m-mode Gaussian input states to m-mode Gaussian
output states is given by its action on the parameters determining the state

dout = Xdin + dch, (12)

V out = XV inX
T + Y , (13)

where dch is the displacement introduced by the channel, X is a real 2m× 2m matrix, and
Y is a real, symmetric and positive-semidefinite 2m × 2m matrix fulfilling the following
condition:

Y +
i

2

(
Ω−XΩXT

)
≥ 0. (14)

Matrices X, Y , and vector dch completely define a Gaussian channel Φ(X,Y ,dch).

4. Gaussian capacity

The classical capacity as defined by Eqs. (1)–(3) may be infinite for bosonic chan-
nels. We can demonstrate it for the example of a Gaussian channel with detX > 0. Let
us consider a sequence of input ensembles {ρi, p(m)

i } belonging to the same set of symbol
states ρi but taken with different probability distributions p(m)

i in such a way that the en-
ergy of the average state is increasing up to infinity if m→∞. In this case the entropy of
the average output state in the first term in Eq. (1) can be increasing up to infinity while
the second term remains the same. A similar problem appears for Gaussian channels in
standard (“classical”) information theory, where the meaningful definition of the capacity
is given by imposing an “input power” constraint. With this constraint, the capacity is a
function of the input power. A similar constraint exists in the quantum case. Namely, the
mean number of photons of the average input state is upper bounded. Therefore, for one
bosonic mode we have

Tr
[
ˆ̄ρinâ

†â
]
≤ N̄ , ˆ̄ρin =

∫
µ(dw)ρ̂w, (15)

where N̄ is the mean number of photons per quadrature and µ(dw) is a probability measure
on the whole set of quantum states parametrized by w (the probability measure plays a
role of pi for the continuous variables case). For simplicity we will call this bound “input
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energy constraint”. Then the classical one-shot capacity of a bosonic channel Φ is defined
as:

Cχ(Φ, N̄) = max
µ: ˆ̄ρin∈EN̄

χ(Φ, µ), (16)

χ(Φ, µ) = S(Φ[ˆ̄ρin])−
∫
µ(dw)S(Φ[ρ̂w]), (17)

where the average input state ˆ̄ρin is given by Eq. (15) and EN̄ denotes the set of states
satisfying the input energy constraint (15). The classical capacity constrained on a set E
of average input states was considered in [6, 7]. The definition of the classical capacity
given by Eq. (3) requires the generalization of the constraint (15) to an arbitrary number
of modes Tr[ˆ̄ρ(m)N̂⊗m] ≤ 2m(N̄ + 1/2). This constraint leads to another possible type
of non-additivity, which is not related to the entanglement of the input states. Indeed,
this constraint specifies the amount of input photons per channel use only on average.
Even if the one-shot capacity Cχ(Φ) constrained on a given number of input photons is
additive, by distributing the available amount of input photons between the channel uses
in a proper way, one may expect to achieve a higher Cχ(Φ⊗m) compared to χ(Φ⊗m, µ̄),
where µ̄ corresponds to the uniform distribution of the amount of input photons between
the uses of the channel. Nevertheless, as proven in [7], this scenario does not take place
due to the concavity of χ(Φ, µ̄) as a function of µ. In particular, it is proven that the
uniform distribution of the amount of input photons between the channel uses achieves
the classical capacity of Gaussian channels if the one-shot capacity is additive for a fixed
(though possibly different) amount of input photons at each channel use [7]. This is the
case, indeed, for entanglement breaking channels, whose classical capacity was proven to
be additive [8,9].

Thus, the additivity problem for the classical capacity of Gaussian channels is re-
solved for the class of the entanglement breaking channels. Hence, in order to evaluate
their capacity it is sufficient to find only the one-shot capacity. However, this simplified
problem is still a highly non-trivial task. At the moment the classical capacity is known
only for the lossy channel provided that its environment is pure (i.e., in a squeezed vacuum
state) and its energy is above some threshold [10,11] (the lossy channel can be realized by
a beamsplitter mixing the input signal mode with the environment mode). Therefore, the
evaluation of different bounds on the capacity is a valuable alternative.

A natural lower bound is the Gaussian capacity defined as the classical capacity
with an additional restriction on the set of admissible input states. In [12] we defined
this quantity by requiring that all individual symbol states and the modulated average state
are Gaussian. We have shown there that the optimal ensemble achieving the Gaussian
capacity, as we define it, is the same input ensemble as the one that was imposed by a
previous more restrictive definition (see, for example, [13]). This optimal input ensemble
is generated by phase space translates of a single Gaussian pure state modulated according
to a Gaussian distribution with CM V m. For such an ensemble, the covariance matrices of
the individual symbol states are the same. Thus, the CM of the average input state V̄ in is
equal to V in + V m and the input energy constraint therefore reads

Tr [V in + V m] ≤ 2N̄ + 1. (18)

Recall that the von Neumann entropy of a Gaussian state depends only on its covariance
matrix. Moreover, the action of a Gaussian channel on the covariance matrix does not
depend on displacements din and dch. Hence, all output entropies in the second term of
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Eq. (1) are equal. Therefore, the Holevo χ-quantity is the difference of the von Neumann
entropies of the average output state and output symbol state:

χ[Φ, V̄ in,V in] = S(Φ[V̄ in])− S(Φ[V in]) = g

(
ν̄ − 1

2

)
− g

(
ν − 1

2

)
, (19)

g(x) = (x+ 1) log2(x+ 1)− x log2(x), (20)

where ν̄ and ν are symplectic eigenvalues of the CM of the average output state Φ[V̄ in]
and an individual output symbol state Φ[V in], respectively. The new form of the Holevo
χ-quantity given by Eq. (19) reduces the problem of calculating the one-shot Gaussian
capacity to the maximization of the difference of two entropies under the constraint (18).
This maximization can be done using the method of Lagrange multipliers. The evaluation
of the Gaussian capacity is relatively simple due the restriction to Gaussian states. Below
we will show that it can be expressed in a closed form in a certain domain of parameters.
The importance of this bound is also highlighted by the fact that in all cases where the
classical capacity is known, the Gaussian capacity coincides with it. In addition, Gaussian
states maximize the von Neumann entropy on the set of all states with the same energy.
This leads to a natural conjecture that the Gaussian capacity always coincides with the
classical capacity.

5. Single-mode Gaussian channels

One can try to further simplify the calculation of the Gaussian capacity using an
equivalence of any single-mode Gaussian channel Φ to one of seven canonical channels
ΦC [9,14,15] preceded and followed by unitary operations:

Φ = U2 ◦ ΦC ◦ U1. (21)

Since unitary transformations do not change the entropy the Holevo χ-quantity of any
Gaussian channel Φ is equal to the one of the corresponding canonical channel ΦC. How-
ever, if the unitary transformation U1 which precedes the canonical channel in the decom-
position (21) involves a squeezing operation then the energy of the state at the input of Φ
and Φ, respectively, is different.

In order to find the Gaussian capacity of Φ one has to consider both the canonical
channel and preceding squeezing operation. Actually, in this case, the expressions for
the Gaussian capacity can be obtained in a closed form for five of the seven canonical
channels preceded by squeezing operations. However, this is possible only if the input
energy N̄ exceeds a certain energy threshold. The latter depends on the parameters of the
corresponding canonical channel and the squeezing parameter [16]. These five canonical
channels have the same matrix Y which is proportional to identity: Y = y I. Moreover,
all of them transform thermal input states to thermal output states. Therefore, we call
them thermal channels ΦTH. They include lossy, amplification, classical additive-noise,
phase-conjugating and zero-transmission channels [14].

In order to go beyond the aforementioned results, we proposed another decomposi-
tion in terms of a fiducial channel ΦF [12]

Φ = U2 ◦ ΦF ◦Θ1, (22)

where Θ1 is a passive unitary operation which corresponds to a rotation in the phase space.
If a Gaussian channel Φ(X,Y ,d) is canonically equivalent to one of the thermal channels
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ΦTH, then the fiducial channel ΦF(XF,Y F, 0) in Eq. (22) is given by two matrices [see
Eqs. (12)-(14)]

XF = XTH =
√
|τ |
(

1 0
0 sgn(τ)

)
, Y F = y

(
e2s 0
0 e−2s

)
,

τ = detX, y = detY .

(23)

The dependence of the squeezing parameter s on the matrices X,Y that define Φ is
presented in [12]. The fiducial channel is defined by three scalar parameters (τ, y, s).
The decomposition (22) is important for the following reason. Rotations change neither
the entropy nor the energy of quantum states; therefore, the state having passed through
Θ1 and entering ΦF has the same energy as the input state entering Φ. This allows us to
conclude that both the classical capacity and the Gaussian capacity of Φ(X,Y ,d) are equal
to those of the corresponding ΦF

(τ,y,s) [12]. This statement can be extended to Gaussian
channels canonically equivalent to “non-thermal” (or so-called “pathological”) channels.
These canonical channels may be considered as limiting cases of the fiducial channel with
properly chosen preceding squeezing operations. Thus, we have reduced the classical
capacity (and Gaussian capacity) of any Gaussian channel to the one of the corresponding
fiducial channel. For this reason it is sufficient to study the Gaussian capacity of the fiducial
channel in the full range of its parameters in order to obtain the Gaussian capacity of any
single mode Gaussian channel. This can be done using the method of Lagrange multipliers.
It leads to a general formula for the Gaussian capacity of all Gaussian channels canonically
equivalent to thermal channels [12]:

CG
(
Φ(τ,y,s), N̄

)
= g

(
|τ |N̄ + y cosh(2s) +

|τ | − 1

2

)
− g

(
y +
|τ | − 1

2

)
, (24)

N̄ ≥ N̄thr =
1

2

(
e2|s| +

2y

|τ |
sinh(2|s|)− 1

)
. (25)

It holds for input energies, which are higher than the threshold N̄thr. This corresponds to
the so-called quantum water-filling solution [17–20]. It implies that the overall modulated
output state is a thermal state. The optimal ensemble is composed of individual symbol
states, which are displaced squeezed vacuum states determined by the same squeezing
parameter s that enters the matrix Y F [see (23)], where the latter represents the effect of
the environment in the fiducial channel

ΦF[V̄ in] ∝ I, V in =
1

2
diag(e2s, e−2s). (26)

Notice that the squeezing of the individual input symbol state requires energy.
Nevertheless, the condition (25) guarantees that the amount of input energy is sufficient
to allow such optimal input states. It is known that these optimal symbol states minimize
the entropy at the output of the channel on the set of all Gaussian states. Furthermore, the
Gaussian capacity is additive above the input energy threshold [12,21].

For both types of non-thermal canonical channels the formula (24) is never applica-
ble. However, we go a step further and find the Gaussian capacity of the fiducial channel
below the threshold and we find a solution which is also valid for non-thermal channels.
In this case the solution of the optimization problem was already found for the lossy [17]
and classical additive-noise channel [18–20] with squeezed environment. An optimal input
ensemble is given by CMs V in and V̄ in which commute with Y F. The optimal value of
the squeezing of the individual symbol state is determined by a solution of a transcendental
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equation. This solution allows us to study the properties of the Gaussian capacity as a
function of the parameters of the additive noise or lossy channels. Here, we generalize this
result by extending the solution to the fiducial channel. In our notations the corresponding
transcendental equation can be written in two equivalent forms:

g′
(
ν̄ − 1

2

)
sinh(2s̄)− g′

(
ν − 1

2

)
sinh [2(s− r)]e−2r y

ν
= 0,

g′
(
ν̄ − 1

2

)
sinh(2s̄)− g′

(
ν − 1

2

)
sinh [2(sν − r)]e−2r = 0,

(27)

where

ΦF[V̄ in] = ν̄ diag(e2s̄, e−2s̄), ΦF[V in] = ν diag(e2sν , e−2sν ), (28)

function g′(x) is the derivative of g(x), variables y and s are the parameters of the fiducial
channel (23), and r is the squeezing parameter which enters the CM of the individual input
symbol state V in = (1/2)diag(e2r, e−2r). The squeezing parameter r plays a role of the
unknown variable in the equation. By analyzing this equation we have found that the signs
of the solution r and s coincide.

6. Optimal environment

By studying how the Gaussian capacity depends on the channel parameters [19,22]
we arrived to a new problem, which was formulated first for the lossy channel [17]. Here
we consider this problem for the fiducial channel ΦF. In order to formulate it we use the
Stinespring dilation which allows us to realize the channel by a joint unitary transformation
of a two-mode (product) state. The latter consists of the input and environment modes. If
τ 6= 1 then the CM of the environment mode Ve is proportional to Y F, i.e. |1− τ |Ve = Y F.
If τ = 1 then there is no Stinespring dilation with a single environment mode however,
in this case, Y F represents a classical Gaussian noise “added” to the input state by the
channel. The CM of the classical noise Ve = Y F. In both cases, the trace of Ve has the
same meaning. It determines the energy contained in the environment mode or the energy
of the noise.

Recall that the definition of the Gaussian capacity includes a maximization of χG

[see (19)] over V̄ in and V in under the energy constraint (18). In this work we impose a
similar energy constraint also on the environment mode (or added noise) and look for the
optimal CM Ve which maximizes the Gaussian capacity. Since in all cases the CM Ve is
proportional to Y F, the constraint on its trace is equivalent to the corresponding constraint
on the trace of Y F:

Me = Tr[Y F] = 2y cosh(2s). (29)

At first, we consider the simplest case which corresponds to the input energy being
above the threshold N̄thr. In this case, we can use our expression for the Gaussian capacity
(24). Due to the constraint (29) parameter y is a function of s. According to the waterfilling
solution, if both N̄ and Me are constant the argument of the first term in (24) remains also
constant, even if s is varied. Then the first derivative of CG

(
ΦF, N̄

)
with respect to s is

obtained from the second term in (24) in the form

d

ds
CG
(
ΦF, N̄

)
= Me g

′
(
y +
|τ | − 1

2

)
sinh(2s)

cosh2(2s)
. (30)
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The sign of this derivative is the same as the sign of s because g′(x) is a positive
function and Me is a positive constant. This means that CG

(
ΦF, N̄

)
is a monotonically in-

creasing function of the absolute value of s. Therefore, its maximum lays at the boundaries
of the allowed interval for s. There are two reasons for the existence of such boundaries in
this problem.

One is due to the condition N̄ > N̄thr which provides that Eq. (30) is valid. This
condition together with the constraint (29) upperbounds by some threshold value sthr > 0
the interval of the absolute values of |s|, where Eq. (30) is applicable. As a consequence
for |s| > sthr the condition (24) is violated. The particular case τ = 0 corresponds to
the so-called zero-transmission channel where Eq. (30) is not valid. However, this case is
trivial because here the classical capacity is always equal to zero; therefore, the bound sthr

does not exist.
The second reason follows from the condition that the symbol state at the output of

the channel must be a valid quantum state. This is provided by the condition (14), which is
equivalent to Y F + i

2
(1− τ)Ω ≥ 0 for the fiducial channel (actually, it is also equivalent to

a simle inequality for channel parameters y ≥ |1− τ |/2 [12]). If τ 6= 1 then this condition
can be rewritten in the form Ve + i

2
Ω ≥ 0 (or simply y ≥ 0 ). This is equivalent to the

requirement that the environment mode must be in a valid quantum state. Due to the
constraint (29) it upperbounds the absolute values of |s| by the value s∗, which corresponds
to the environment mode being in a pure state with det (Ve) = 1/4. If τ = 1 then the
condition (14) for the fiducial channel is equivalent to Y F ≥ 0. Since it is satisfied for all
real values of s no finite upper bound s∗ exists.

If s∗ < sthr then for all |s| ≤ s∗ Eq. (30) is valid. Using Eq. (30) we conclude that
the maximum of the Gaussian capacity is achieved by the environment mode being in a
pure quantum state defined by |s| = s∗.

If s∗ > sthr (or s∗ does not exist) Eq. (24) is not applicable in the interval sthr < |s| ≤ s∗

and, therefore, we cannot apply our conclusions based on Eq. (30) to this interval of |s|.
Nevertheless, in this case, we can also study the derivative of the Gaussian capacity over
s using Eq. (27). Notice, that Eq. (27) is equivalent to (∂/∂r)χG[Φ, V̄ in,V in)] = 0. Let us
take the input states with CMs V in and V̄ in that satisfy Eq. (27). Using the constraint (29)
we deduce

d

ds
y(s)e±2s = ± Me

cosh2(2s)
. (31)

Then we have
d

ds
CG
(
Φ, N̄

)
=

∂

∂s
χG[Φ, V̄ in,V in]

=
Me

cosh2(2s)
[g′(ν − 1/2) sinh(2sν)− g′(ν̄ − 1/2) sinh(2s̄)] .

(32)

Using (27) again we can rewrite it in the form

d

ds
CG
(
Φ, N̄

)
=

Me

cosh2(2s)
g′(ν − 1/2)e2sν

(
1− e−4r

)
, (33)

where r satisfies (27). Since the sign of r is the same as the sign of s, the sign of the
first derivative of CG

(
Φ, N̄

)
coincides with the sign of s. It means that CG

(
ΦF, N̄

)
is a

monotonically increasing function of the absolute values of s regardless if |s| is higher or
lower than sthr. As a result, the only bound on |s| is s∗ (if it exists for the considered
parameters of the channel).
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Let us summarize our results for different values of τ determining the type of the
fiducial channel:

• If τ 6= 0 and τ 6= 1 then the allowed interval of s is finite. Its boundaries, where
the maximum of the Gaussian capacity is achieved, correspond to the environment
mode being in a pure state. For the lossy channel, this result was formulated as
“environment purity theorem” and proved in [17].
• If τ = 0 then the classical capacity is equal to zero for all s in the allowed interval,

which is finite, i.e. |s| ≤ s∗. The environment mode should be in a proper quantum
state, but not necessarily pure.
• If τ = 1 then the constraint (14) reduces to Y F ≥ 0 which corresponds to the

classical additive-noise channel. Since the allowed interval of s, in this case, is the
whole real axis, the optimal Ve is obtained in the limit |s| → ∞ under the condition
2y cosh(2s) = Me = const. This gives V e = diag(Me, 0) (for positive s) which
corresponds to the single-quadrature classical noise channel [9]. This inspires a
further study of optimal environment for Gaussian quantum channels. For instance,
the generalization of out results to the case of multimode environments (broadband
channels) that was discussed in [17] would be an interesting task.

7. Conclusion

We studied the classical information transmission through Gaussian quantum chan-
nels by analyzing the Gaussian capacity which, as we argue, is of great importance for the
field of quantum information theory. We have used a recently found decomposition of an
arbitrary single-mode Gaussian channel which allows us to reduce the problem of calculat-
ing its Gaussian capacity to the one of a particular fiducial channel. For the latter, we have
developed a method of evaluating its Gaussian capacity and discussed its additivity. Finally,
we have applied our results to a new problem of maximizing the Gaussian capacity under
the environment energy constraint. We have shown that for a single mode the optimal
environment almost in all cases is in a pure state. In a particular case, the environment is
classical (noise) and all the noise energy is concentrated in one quadrature of the optimal
noise CM. We expect that the decomposition in terms of the fiducial channel will be useful
in further research on the Gaussian capacity, in particular, for finding the optimal state of
the environment of multimode Gaussian channels.
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1. Introduction

Flux-flow oscillator (FFO) [1] is a long Josephson junction where the flux of Josephson
vortices (fluxons) excite linear modes of electromagnetic waves. Typically, a length of a FFO
is made considerably longer than the Josephson penetration length in order to accommodate a
chain of fluxons. Because of its potential to be used as source of Terahertz and sub-Terahertz
waves [2], it has attracted considerable attention from the scientific community. Investigation
of FFO under the influence of different conditions such as noise and inhomogeneous bias has
been done in a range of experimental [2–4] and theoretical [5–8] studies. It has been shown
that fluxons in the long Josephson junction exhibit a rich behavior which is not limited to a
one-dimensional fluxon motion, but involves a range of essentially two-dimensional effects [9],
including excitation of the transverse modes [10]. In order to investigate the influence of
two-dimensional modes on the dynamics of fluxons in a FFO, a reliable theoretical model
is needed which would take into account the Josephson self-coupling effect [11] and would
be efficient enough to be generalized to a model of a two-dimensional FFO which requires
substantial computational resources. Here, we present our studies of the conventional FFO
before proceeding to the investigation of two-dimensional effects.

2. Experimental results

Design of the harmonic mixer and all matching circuits was similar to the traditional
one that was successfully used for FFO linewidth measurements (see for details [2, 3] and [4]).
Current-voltage characteristics (IVCs) of the FFO measured at different magnetic fields are
presented in Figure 1a. The level of the microwave power delivered to SIS matched to FFO
is presented by color palette (blue corresponds to no power, red marks regions where induces
by FFO SIS current exceeds 25 per cent of the quasi-particle SIS jump, see Fig. 1b). Note that
the frequency of the FFO is determined by its voltage according to the Josephson relation. One
can see that both SIS and FFO demonstrate perfect tunnel junction behavior with small leakage
current and “0” return current of the FFO at large magnetic fields. The FFO provides enough
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FIG. 1. (a) Experimental IVCs of the FFO measured at different magnetic fields
created by current applied to integrated control line. (b) IVC of the SIS mixer:
Blue – autonomous; Red, green and cyan – pumped by the FFO at frequencies
500, 600 and 700 GHz correspondingly. Note that the Josephson steps are very
sharp and prominent. Positions of the steps exactly correspond to the FFO
frequency. (c) Numerical IVC for FFO according to the model described in the
text. The axes are normalized voltage vdc and bias current γ. Different lines
correspond to different values of the magnetic field h starting from 1.4 (top) to
4.0 (bottom) with the step 0.05. (d) Dependence of average damping 〈α〉 versus
voltage in our numerical model. Different lines correspond to different values
of the magnetic field h starting from 1.4 (top) to 4.0 (bottom) with the step
0.05. Steps corresponding to one- two- and three-quanta transitions occurring
at vg/3 = 1.9, vg/5 = 1.14 and vg/7 ≈ 0.81 are clearly visible. Four-quanta
transition step at vg/9 ≈ 0.63 may also be identified for some values of magnetic
field.

power to pump SIS in the design frequency range 400-750 GHz (0.8-1.5 mV). Furthermore,
narrowband radiation has been measured, as in the previous experimental studies [3].

3. Numerical model

To describe FFO, we use a model of a long Josephson junction [12] with x-dependent
damping parameter α(x),

ϕtt + α(x)ϕt − ϕxx − β ϕxxt + sinϕ− γ = 0 (1)
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with the boundary conditions ϕx(0, t) = ϕx(L, t) = h and homogeneous bias current γ. In a
general case, the dependence of the bias current on x would be defined by the experimental
implementation of the system. Our choice of neglecting the x-dependence is justified by our
interest in universal phenomena, in a FFO rather than those related to a specific implementation.
Nevertheless, the generalization to the x-dependent bias current γ = γ(x) is straightforward and
will not affect the computation time of the numerical scheme implemented here. The damping
parameter α(x) in eq. (1) is subjected to Josephson self-coupling (JSC) [11]. JSC arises as a
result of assisted quantum tunneling of quasiparticles in the presence of an AC field. We take
this effect into account by using a damping parameter which is related to the amplitude of the
AC field at a each point of the junction, α(x) = γqp/vdc with [13]

γqp =
n=∞∑
n=−∞

J2
n

(vac
2ω

)
γdc (vdc + 2nω) , (2)

where vdc and vac are normalized DC and AC voltages: vdc = 2eVdc/h̄ωp, vac = 2eVac/h̄ωp, ω
is normalized to the plasma frequency ωp, Jn are Bessel functions and γdc(v) is modelled by

γdc(v) = α0 v

(
1 + b

(v/vg)
p

1 + (v/vg)p

)
.

We took values of the parameters b = 35, power index p = 80, and gap voltage vg = 5.7 to
be consistent with the model used in [8]. Also, for the sake of consistency with the previous
study [8], the length of the FFO was taken to be L = 40 Josephson penetration lengths, damping
parameters α0 = 0.033 and β = 0.035. As it is reasonable to assume that self-coupling of FFO
is dominated by a single harmonic the DC and AC components can be found by approximations

vdc = 〈ϕ̇〉 and vac =
1

2
(max ϕ̇−min ϕ̇) ,

which save much of the computational time as compared to finding of the amplitudes with
the fast Fourier transform. Equation (1) was solved numerically by the explicit finite difference
scheme at fixed function α(x). The self-consistent α(x) has been found by an iterative procedure
until the desired accuracy in α(x) is reached. The number of discrete points along X was 200,
the time step and the integration time were varied in accordance with the specific choice of
parameters. The code has been written in IDL programming language widely used in astronomy
applications [14]. The results of our numerical simulations are presented on Fig. 1c and
are in qualitative agreement with our experimental results on Fig. 1a and earlier numerical
studies [6–8].

The slopes of the IVC curves differ slightly from the experimental results at high
values of the bias current. This can possibly be attributed to the fact that we have used ideal,
non-radiative boundary conditions, while in the experimental system, a certain amount of the
radiation power may escape through the boundary, causing the IVC curves to bend up as seen on
the experimental graph 1a. Fig. 1d shows our numerical results for the dependence on voltage
of the average damping parameter defined as:

〈α〉 =
1

L

∫ L

0

α(x)dx

Distribution of the AC amplitude vac and the distribution of the damping parameter α along
the FFO is shown on Fig. 2a,c and 2b,d for two different sets of values for magnetic field
and bias current. The spectrum of frequencies at the FFO’s left boundary is shown on Fig. 2e
and f. At certain regimes the spectrum becomes sophisticated with more harmonics turning up
like on Fig. 2f. In this case, although the dependence of the spectrum on the choice of the
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FIG. 2. (a), (b) - distribution of the amplitude of AC drive vac on the main
harmonics ω = vdc along the FFO; (c), (d) - distribution of damping parameter
in the FFO; (e), (f) - frequency spectrum at the FFO’s left boundary; X axis is
normalized frequency and Y axis shows vac. Calculations were performed for
two set of parameters: h = 3.0, γ = 0.3 (a,c,e) and h = 2.0, γ = 0.2 (b,d,f),
correspondingly.
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calculation parameters, such as time step and maximum integration time, has not been observed,
the influence of a numerical artifact may not be completely excluded.

4. Conclusion

To summarize, we have presented a theoretical model which is consistent with our
experimental results and previous theoretical studies. The model is numerically efficient, and
therefore, has the potential to be generalized for the study of the rich two-dimensional dynamics
of magnetic flux in two-dimensional FFOs.
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1. Introduction

In last decade, carbon nanoribbons have proven to be one of the most promising
nanosystems for microelectronics [10]. There is a huge number of works devoted to the
construction of diodes, transistors, antennas and other devices based on nanoribbons, see
e.g. recent publications [7–9]. Unfortunately, the theoretical prediction of properties of
non-trivial geometry nanoribbons a is very complicated task, which will probably not be
solved for decades. For that reason, nanoribbons are commonly simulated numerically.
The most precise methods belong to the family of ab-initio methods and are applicable to
the simulation of systems with dozens of atoms. Methods more appropriate for practical
usage are based on density functional theory, which give results quite satisfactorily with
experimental data, and are appropriate for use with systems not larger than few hundreds
of atoms [6]. The only method suitable for the simulation of systems with many thousands
of atoms is based on the tight-binding model [12]. However, even the tight-binding model
requires sophisticated implementation to simulate millions atoms [11,13].

In the present work, we describe a high-performance simulator of carbon nanorib-
bons based on a quantum graph model, which is a more precise model than the tight-binding
approximation. We describe the parallelization of the proposed algorithm, which is capable
of analyzing systems of millions atoms using existing supercomputers. A variant of genetic
algorithm for solution of inverse transport problem is provided. Crossover and mutation
operations are modified to fit the underlying physical problem.

2. Theoretical background

For convenience, we recall the basics of the quantum graph model, see for details
[1–5]. By definition, a quantum graph is a collection of line segments glued at the ends
together with Schrödinger operator on them. Almost everywhere, the quantum graph is
a one dimensional manifold with the exception of gluing points. Hence, the motion of a
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spinless nonrelativistic particle is described by the convenient one-dimensional Schrödinger
operator on every edge:

−φ′′e + qeφe = Eφe, (1)
where φe and qe are restrictions of the wave function φ and the scalar potential q to the edge
e, and E is energy. At the gluing point, the behavior of the wave function φ is determined
by boundary conditions, which are in most cases chosen to be Kirchhoff conditions:

φe1(v) = . . . = φek(v),
k∑

n=1

φ′en(v) = 0,

where e1, . . . , ek are all edges having common end v, φe(v) is the value of the wave function
at the vertex v, and φ′e(v) is the derivative of the wave function φ at the vertex v along
external normal to the edge e.

Due to the existence and uniqueness theorem for the solution of ordinary differential
equations. Equation (1) can be written as system of two algebraic energy dependent
equations:

De(E)

(
φe(0)
φe(l)

)
= Ne(E)

(
−φ′e(0)
φ′e(l)

)
,

where 0 and l denote the ends of the edge e, and the square matrices De and Ne define
Dirichlet-to-Neumann (DN) mapping (also called Weyl function or Krein Q-function). As
proven in the theory of boundary triples, the DN mapping can be chosen satisfying the
following conditions:

(1) De and Ne are entire functions of the variable E;
(2) N−1e De and D−1e Ne are meromorphic functions of E with simple poles at the Neu-

mann and Dirichlet spectra, respectively;
(3) eigenvalues of N−1e De and D−1e Ne are monotonic functions of E on every real inter-

val of continuity.
For a vanishing scalar potential, the DN mapping is known explicitly:

D(E) =
√
−E

(
α − 1

α
− 1
α

α

)
, N(E) =

(
α 1

α
1
α

α

)
, α = exp

(
i

2

√
−E
)
.

We denote by F vector of values of wave function φ at all ends of all segments of
the quantum graph, and denote by F ′ the vector of the external derivatives. Then, in terms
of DN mapping, the Schrödinger equation can be written as

D(E)F = N(E)F ′, (2)

and boundary conditions can be written as

BF = CF ′. (3)

It is worth noting that all matrices B and C satisfying BC∗ = CB∗, such that the ma-
trix (B|C) has maximal rank, define self-adjoint boundary conditions, and all self-adjoint
boundary conditions can be written in the form (3). Moreover, without loss of generality,
B and C can be chosen to be self-adjoint and B can be non-negatively defined. To solve
the Schrödinger equation for the energy E, it is convenient to consider matrix

R(E) = CN−1(E)D(E)−B,
since E is an eigenvalue of the quantum graph, if and only if R(E) is degenerate or E
belongs to the Dirichlet spectrum. The eigenvalues of R are real and monotonous functions
of E on every segment not containing points of Dirichlet spectrum, hence computation
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of zeros of the eigenvalues as functions of E is a relatively simple problem. However,
computation of the eigenvalues of R(E) is a slow operation of complexity O(n3), where n is
the number of edges in the quantum graph. The complexity can be significantly reduced in
some cases, since matrices D(E), N(E) and often B and C are sparse; the corresponding
divide-and-conquer algorithm is outlined below.

Consider a subgraph of the quantum graph. We call a lead every end of a segment
glued to an edge not belonging to the subgraph. Restriction of a solution of the stationary
Schrödinger equation on the quantum graph to the subgraph should satisfy Equations (2)
and (3) for the appropriate matrices B and C, but in this case, the matrices are not of
the maximal rank, since we have no boundary conditions at leads [1]. Solving the system
of equations with respect to the values of the wave function and derivatives of the wave
function at vertices having attached boundary conditions, we obtain smaller system again
of the form (2), but vectors F and F ′ contain in this case only values at leads. The
functions D and N in the newly obtained system define Dirichlet-to-Neumann mapping for
the subgraph and have all mentioned above properties of DN mappings. The complexity
of the DN mapping calculation by Gaussian elimination is O(m2(m − n)), where m is the
number of all ends of all edges in the subgraph, and n is the number of leads.

The proposed divide-and-conquer algorithm for the DN mapping calculation for a
subgraph is based on splitting the large subgraph graph into smaller subgraphs, which
are then divided into even smaller subgraphs and so on; the DN mapping for smallest
subgraphs (edges and vertices) are known exactly, the DN mappings for larger subgraphs
are calculated using the above-mentioned elimination process using the DN mappings for
smaller subgraphs. Clearly, the complexity of the algorithm depends on the way the
splitting is done. We denote by δ the supremum of logarithm of ratio of the number
of ends lying on a sphere in the quantum graph to the number of ends lying in the ball
bounded by the sphere. Assuming that we divide every subgraph into two parts with halved
diameter, the complexity of the algorithm is estimated as O(m3δ) + O(m lnm), where m
is the number of edges in the largest subgraph [1]. For example, a Z-periodic graph with
afinite fundamental domain, the complexity is O(m lnm), for a Z2-periodic graph with finite
fundamental domain, the complexity is O(m3/2).

Now, we consider a transport problem for a quantum graph consisting of a compact
part and attached semi-infinite segments with constant potentials. As is well-known, the
scattering matrix of the system is given by [1]

S(E) = (D(E)− T (E)N(E))−1(D(E) + T (E)N(E)), T (E) = diag
√
V − E, (4)

where V is the vector of scalar potentials on semi-infinite segments, diagV denotes the
diagonal matrix with the diagonal V . Provided D(E) and N(E) are already calculated, the
complexity of the scattering matrix calculation is equal to sum of complexities of matrix
inversion and multiplication, which are less than O(n3), where n is the number of all leads.

3. Quantum graph model of graphene nanoribbon in elecric field

The calculation of transport properties for a quantum mechanical system is generally
a complex theoretical and numerical problem, therefore, simplified models are generally
used. Current state of artdensity functional theory is used to model systems with hundreds
of atoms, while the tight binding approximation is used to model systems with millions of
atoms. In the present work, we use the quantum graph model, which is slightly slower,
but it takes into account the continuous character of electron motion. The tight binding
approximation can be considered as a special case of the quantum graph model.
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a) b)

FIG. 1. (a) Graphene nanoribbon. (b) Typical current-voltage characteristics
of parallelogram shaped nanoribbon.

One of the most challenging transport problems is transport in the presence of an
external electric field, which often breaks the symmetry of the problem. Howeve,r for the
quantum graph model, consideration of the electric field is relatively simple, since:

(1) The electric field is an explicit parameter of the model. Variation of the field does
not imply recalculation of auxiliary parameters, introducing additional assumptions
and so on.

(2) Calculation of the scattering matrix does not require one to solve the spectral
problem. In fact, the transport problem is easier to solve than the spectral problem.
Since all transport properties can be expressed in terms of the scattering matrix,

we focus on the calculation of the scattering matrix, and as an example, we consider
computation of current-voltage characteristics.

Consider a parallelogram shaped graphene nanoribbon with zigzag sides attached to
two electrodes, see Figure 1 (a). We denote by W the number of benzene rings lying on
one electrode, by L the distance between electrodes in benzene rings and by Φ the cutting
angle; let T = tan Φ. In the quantum graph model, the electron moves along segments
representing chemical bonds, and the segments are glued at the carbon atoms. Boundary
conditions are assumed to be Kirchhoff conditions. We model the electrodes by semi-infinite
segments. To avoid unrealistic interface states, we attach separate semi-infinite segments
to every atom lying on an electrode.

Typical behavior of the current-voltage characteristics (IV curve) is shown in Figure
1 (b). In applications, only key features of IV curve are of importance, e.g. in the considered
case the first local maximum (Umax, Imax) and the first local minimum (Umin, Imin) should
be taken into account.

For the quantum graph model we use the convenient Landauer formula to calculate
conductance:

e2

πh̄

∑
s,d

|Sds|2 − |Ssd|2,

where s runs over all indices of the semi-infinite segments corresponding to one electrode,
and d, to another. The crucial part of the computation is calculation of the scattering matrix
by the formula (4), which requires one to compute the Dirichlet-to-Neumann mapping. As
mentioned before, the complexity of the DN mapping computation highly depends on how
the quantum graph is split into subgraphs. Below, we provide explicit splitting which is
best suited for long narrow ribbons.

The considered nanoribbon can be divided into primitive parts as shown in Figures
2 and 3. The nanoribbon is divided to collection of chains, where all the elements of every



516 I. S. Lobanov, A. I. Trifanov, E. S. Trifanova

FIG. 2. Splitting of the nanoribbon to primitive pieces.

FIG. 3. List of primitive pieces of graphene nanoribbon.

chain are located a fixed distance from electrodes and therefore, have the same potential.
To calculate the DN mapping for one chain, we first calculate the DN mapping for two
segments having distinct angles with electric field, then compute the DN mappings for all
primitive pieces, compute the DN mappings for the chains containing pieces of one type,
and finally compute the DN mapping for the whole chain. The computation of the DN
mapping for the chain of equal elements has a complexity O(lnm), where m is the length
of the chain, since all subchains of equal length have equal DN mappings. Since the number
of leads of the primitive pieces and the number of the primitive pieces are fixed, the overall
complexity of computing the DN mapping for one chain is O(lnW ). Every chain has more
than W ends, and no more than W ends are leads (more precisely 2(W − [T ])), hence the
complexity of gluing two chains together is less than O(W 3). Since the total number of
chains is L, the complexity of the calculation of the DN mapping for the whole nanoribbon
is O(LW 3). It is worth noting that the proposed splitting gives linear complexity with
respect to length L of the ribbon, which is better than the above-given theoretical estimate
O(L3/2W 3/2). Hence, the provided splitting is best suited for very long ribbons.

For the case of a short and wide nanoribbon, one can split the quantum graph into
narrow chains of length L and then glue them. Such splitting gives us complexity O(WL3).
The worst case is a ribbon with equal W and L, where two provided partitions leads to the
algorithm of complexity O(L4).

The computation time of current for a given voltage for the nanoribbon using the
method described in the previous section is several hours for nanoribbon with W ca. 100
and L ca. 1000. Hence, for the simulation of large graphs and the use of genetic algorithms,
one should speed up computations, which can be done using both sophisticated algorithms
for matrix operations and parallel computations. Optimization of matrix operations is
a well-studied subject, see e.g. [14], documentation on LAPACK and so on. Here, we
discuss opportunities for parallelization. The main observation is the independence of the
Dirichlet-to-Nuemann mapping calculations for distinct subgraphs, hence computations for
such subgraphs can be performed concurrently. But, one should take into account that to
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a) b)

FIG. 4. (a) Flowchart for the I-V curve calculation. (b) Flowchart for the
queue generation

compute the DN mapping for a subgraph, one should preliminarily compute the mappings
for all parts of the subgraph, hence subgraphs form an hierarchy, where computations on
lower levels must be done prior to higher ones. Finally, to perform parallel a computation of
the DN mapping for the whole quantum graph, one should divide the graph into subgraphs,
calculate the dependence of the graphs, collect subgraphs to groups which can be analyzed
simultaneously and execute all groups in correct order. It is worth noting that the memory
requirement should be taken into consideration while forming computation groups, since the
storage of all temporary buffers in memory simultaneously requires much more resources
than available on modern computers. That means that some kind of dynamic memory
allocation should be done. Unfortunately, contemporary parallel memory managers are to
slow for such tasks. To overcome this difficulty, we have implemented a memory manager
that preallocates all the memory by using overlapping regions, which however will never
be accessed simultaneously under the given order of DN mappings calculation. Further
opportunities for parallelization are the parallel matrix operations and parallel calculation
for different energy and electric field values. Flowcharts for the parallel calculation of I-V
curve for the nanoribbon are shown on Figures 4-8.

4. Inverse transport problem

The inverse transport problem is to recover system geometry based on given trans-
port properties. We are going to consider the current-voltage curve, which is one of the
most important transport properties. Solution of the inverse problem is extremely complex
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FIG. 5. Flowchart for the nanoribbon splitting

FIG. 6. Demonstration of optimal splitting of chain of 42 graphs of type A to subgraphs
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FIG. 7. Flowchart for the execution of enqueued calculations

FIG. 8. Flowchart for the current-voltage characteristics calculation
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and has no general solution at the moment. However, in the present work we propose a
genetic algorithm to construct a nanoribbon with properties close to the given I-V curve.

Due to the high complexity of calculating the fitness function in the problem, only
parallel algorithms deserve consideration. At the moment, there are four main classes of
parallel genetic algorithms: global master-slave, global fine-grained, coarse grained and
hierarchical. The fine-grained algorithm was implemented, since it has good scalability as
we show below. We divide the whole population to subpopulations, which are processed
concurrently on different processing nodes. To avoid degeneracy and to balance the load,
individuals are exchanged between subpopulations. Depending on the timing of when
individuals are exchanged, the algorithm can be synchronous or asynchronous. The island
model was chosen for implementation, since it can be adapted to arbitrary topology.

We use processes of two types: the first type computes mutation, crossover and
selection, while the second type assists ones of the first type by computing the fitness
function (the I-V curve). Clearly, the number of processes in an ideal situation should
coincide with the number of individuals. One ”master” process is selected, which should
send stop signal to other nodes as soon as the desired fitness is achieved.

Every assisting node waits until the ribbon geometry is received. Upon receipt of
the gometry, the I-V curve is computed as described in the previous section, then the
fitness is calculated as the distance between the obtained curve and the desired one. The
fitness and the I-V curve are sent back to the evolution computing nodes. If the stop signal
is received, then the process terminates, otherwise the process again waits for input.

The stop conditions are only checked by the designated node. If desired fitness value
is achieved or the maximum number of iterations is done, the designated node sends a stop
signal to all nodes and prints the individual that has the geometry closest to the desired
current-voltage curve displayed.

The input parameters of the algorithm are positions of the first local maximum
(Vmax, Imax) and the first local minimum (Vmin, Imin) of the I-V curve. The results of the
computation are the width W , the length L and the cutting angle Φ of the nanoribbon. The
set of the parameters can be extended to a wider class of geometries, e.g. one can append
intrusions.

The genetic algorithm starts with the generation of a subpopulation on every island.
Every individual is a nanoribbon geometry, which in our case is described by the values
W , L and Φ. On initialization, the geometric parameters are generated randomly using
a uniform distribution, where the maximum values of W and L are bounded by available
processing power and physical motivations.

Further randomly chosen individuals mutate. The number of mutating individuals
has a constant ratio to the size of subpopulation; the ratio is a parameter of the algo-
rithm. The mutation operation has the following steps: geometric parameters subjected
to mutation are chosen randomly; a value is appended to each of the parameters normally
distributed; the obtained parameters are checked for correctness; if the geometry is invalid,
the individual is eliminated.

In the island model, crossover is done only inside subpopulations. To improve
algorithm convergence, the crossover (inside) population makes use of a simplified model.
Roughly speaking, the nanoribbon can be considered as an electrical circuit. The I-V
curves for parallel and series circuits are well known and can be used for a fast, rough
estimate of the results for gluing nanoribbons together. Hence, during crossover, the
inside subpopulation I-V curves for all individual pairs in the subpopulation are estimated
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using classical methods, and from these, the most promising pairs are chosen to produce
offspring.

As well known genetic algorithms for small populations tend to converge to a local
maximum of the fitness function, which for complex fitness functions, is most likely not
the global maximum. To avoid this trap, the population size must be increased, or in
the island model, individuals must be exchanged between islands. Experiments show that
the best convergence is obtained When the best individuals exchange islands. Since the
fitness computation time varies from several seconds to several hours, depending on the
geometry of the nanoribbon, an iteration of genetic algorithm on one island may be several
times slower than the iteration on another island. Therefore, the individual exchange must
be asynchronous. Every island, after the fitness calculation, sends a fixed number of its
best individuals to a different, randomly chosen island. Before the crossover, every island
checks, if there are migrants waiting, which are appended to the subpopulation.

Finally, if the size of a subpopulation becomes larger than the predefined value, the
worst individuals are eliminated to decrease the subpopulation size. Hence, the size of
every subpopulation varies, but cannot become larger than the fixed value determined by
the available computation power.

5. Parallel genetic logarithm convergence

The inverse transport problem is one of complex optimization, with lots of local
optima. Separation of the population into subpopulations improves the convergence to an
optimum, but the obtained solution may be far from a global optimum. If a subpopulation
comes close to a local optimum, the subpopulation starts to degenerate, which leads to a
waste of computational resources. To eliminate such a situation, we mix the population by
exchanging the best individuals between islands. In the present section, we estimate the
convergence rate of such an algorithm.

Individuals exchanged in a real situation depends on topology, but for simplicity, we
assume that the connection graph is complete.

Let f 0 be the mean value of the fitness function in the initial population. We assume
that after one iteration, the mean value of the fitness function is improved p times, that is

fk+1 = p · fk = pk · f 0.

Hence, to obtain the desired value F for the fitness function, we should make n = logp
F
f0

iterations.
Now, we consider several populations exchanged by individuals. We assume that for

every subpopulation the estimate above is valid, Hence, without exchange, an increase in
the population size gives no speed up in the convergence. We now consider the improve-
ment of the fitness function after the exchange. We denote by fkj the mean value of the
fitness function in a subpopulation j on an iteration k. We estimate the convergence by
a geometric progression, that is, we assume fk+1

j = sjf
k for some parameter sj = p · qj.

Let M be the number of all possible distinct individuals, N be the number of individuals
in every subpopulation. Taking into account the quality of individuals to exchange, we get
the estimate qk = pβ, 0 < β < 1, for non overlapping populations. Taking into account the
existence of identical species in distinct subpopulations, we get estimate

sk = pβ
∑m

j=1 Pj , Pj =
J∏
i=1

N−1∏
j=0

M − i ·N − j
M

.
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FIG. 9. Flowchart of parallel genetic algorithm

Using latter estimate, we obtain the number of steps required to achieve the desired fitness
F using k subpopulations:

nj =
logp

F
f0j

β ·
∑m

k=1 Pk
.

Hence, the parallel algorithm gives the following for rate enhancement:

S(m) =
minnj
n

.

Estimates of the rate enhancement are shown on Figure 10 for parameters N = 1000,
F
f0j

= 103, p = 1.1, β = 0.058.
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FIG. 10. Speed up of parallel genetic algorithm as function of number of processors
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The electrical properties of the granular silver films located on a surface of sapphire substrates are experimentally

investigated during deposition and thermal annealing. The strong influence of surface-based silver atom diffusion

on film formation is revealed, both during and after deposition. The effect of resistance switching in the films of the

various thicknesses close to the percolation threshold, depending on the applied voltage is found and investigated.

These sharp changes of resistance of 5–7 orders can be reversible or irreversible, depending on film thickness.

Keywords: granular metal films, metal nanoparticles, resistance switching.

1. Introduction

Thin metal films are widely used in various applications as electric current conductor,
chemical sensors, optical filters, etc. Their electrical properties depend on the nature of the
metal and, to an even greater extent, on their morphology. Continuous films have metallic con-
ductivities, characterized by low resistance and positive temperature coefficients. The resistance
of metal films consisting of separate granules is much greater than the resistance of the bulk
metal and depends on the substrate material and the distance between the granules. The conduc-
tivity of such a system is characterized by a negative temperature coefficient of resistance. The
energy of activation is estimated to be about several tenths of an eV. The charge transfer can be
carried out either by the hopping mechanism via traps in the subsurface layer of the substrate,
or by a process of thermally activated tunneling [1–4].

The granular film that is formed on a dielectric substrate at the beginning of the vac-
uum deposition process transforms into a continuous film during material accumulation. The
appearance of a continuous metal path between the electrodes, spaced from each other on a
macroscopic distance, occurs long before the formation of a continuous film, and is called
the percolation transition. After the percolation threshold, the electrical properties of the film
become similar to properties of the bulk metal.

The electrical properties of metal films at the percolation threshold are most interesting,
because when the distance between granules is very small, then small changes in the amount
and distribution of the metal cause relatively large changes in the conductivities of the films.
Such structure can be obtained by heating of the films having low resistances. Indeed, due to
the diffusion of the metal allows, the separated granules are formed [5, 6].

2. Experimental

In this study we investigated granular silver films on the surface of sapphire substrates
at the percolation threshold. The granular films were produced by the thermal evaporation of
silver onto the surface of the sapphire substrate in the gap (3 mm × 2 cm) between the silver
electrodes inside the vacuum chamber PVD 75 (Kurt J. Lesker) at a residual gas pressure less
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than 5×10-7 Torr. During the deposition, the electrical properties of the films were controlled
by a picoammeter (Keithley – 6487). We investigated films with thicknesses from 50 to 150 Å,
deposited at the rates of 0.1–1 Å/sec.

During deposition, the film resistance decreases exponentially (Fig. 1a). For the films
of the same thickness the resistance was lower provided they were obtained at a larger rate of
deposition. Immediately after the deposition, the film resistance continues to change rapidly
(Fig. 1b) and after an hour, the resistance can vary by 3–4 orders of magnitude. A day after
the deposition, the resistance of the films obtained at the low deposition rate (0.1 Å/sec) was
1.3·1012 ohms, while the resistance of the films obtained at the deposition rate of 0.6 Å/sec was
1 kohm.

FIG. 1. a) The dependence of the resistance of the films on their thicknesses and
rates of deposition; b) the change of resistance of the films during the time after
deposition (resistance was measured at a voltage of 5 V)

These results indicate the strong influence that silver atom diffusion has on film forma-
tion both during and after deposition. At the low deposition rate separate large particles with
irregular shapes and sizes of about 200–300 nm are formed (Fig. 2a). After deposition, small
particles and adsorbed atoms diffuse over the surface and stick to the larger particles. Thus, the
distance between particles increases and, as a result, the conductivity of the film diminishes. At
deposition rates of 0.5 Å/sec or more, films with the thickness of more than 50 Å are formed.
They represent the endless conductive labyrinth structure consisting of a network of irregularly-
shaped particles. These wires have cross sections of about 30 nm at a film thickness of 10 nm.
Such films have resistance typical for bulk metals, namely from several tens ohms to several
kohms.

So, it is possible to differentiate two typical cases: the film consisting of separate gran-
ules, having a complex shape, and the conductive film having a labyrinth structure. Henceforth,
we will consider only the second option.

After deposition, the granular silver films were subjected to heating. During annealing,
the material is redistributed to form separate particles. In this case, a nonlinear increase of the
resistance over time (Fig. 3) and a sharp step of the resistance after 60 minutes of heat treatment
were observed. The sharp increase in the resistance points to a breaking of the conductive metal
structure between electrodes.

The inset in Fig. 3 shows a SEM image of a 100 Å granular film deposited at a rate
of 0.6 Å/sec after heating. Particles became larger in comparison with the just deposited film.
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FIG. 2. SEM image of the granular silver films on the surface of the sapphire
substrate with thickness of 100 Å deposited at the rate of 0.1 Å /sec (a) and
0.6 Å/sec (b)

FIG. 3. Resistance of the granular silver film with thickness of 100 Å annealed
at 120◦C as a function of annealing time. On the insert the SEM image of the
silver film after heating is presented

Distances between the particles are still very small, nevertheless, this film consists of individual
separated particles as confirmed by its very high resistance. After the jump of the resistance,
heating of the film was stopped.

3. Results and Discussion

After heating, the morphology of the films and their optical properties did not change
appreciably, however, the resistance of the films increased by 10–12 orders and the films
acquired the ability to switch their resistance under the influence of applied voltage. Fig. 4a
shows the current-voltage characteristics of the silver film after heating. The 50 Å thick film
was deposited at a rate of 1 Å/sec. As can be seen, at an applied voltage of less than 7 V (region
I), the film has low conductivity with resistance of 1.5·1012 ohms. In this region the current
increases almost linearly with the applied voltage. The film switches to the high conductivity
state at the threshold field strength of 7 volts (II). Further increase of the voltage reduces the
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FIG. 4. a) I–V characteristics of the granular silver film on the surface of the
sapphire substrate with the thickness of 50 Å after heat treatment at 90 ◦C for
60 minutes with increasing (solid line) and decreasing (dashed line) voltage;
b) series of cycles of I–V characteristics measured with an interval of 3 minutes

FIG. 5. I–V characteristics of the granular silver films on the surface of the sap-
phire substrate with the thickness of 85 Å (a) and 115 Å (b) after heat treatment
at 120 ◦C for 60 minutes with increasing (solid line) and decreasing (dashed line)
voltage

resistance to 16 ohms (III). The current-voltage characteristic has an ohmic character, then the
voltage is reduced (IV), but at a voltage of 0.1 V film passes to the initial high-resistance state
(V).

During subsequent voltage increase/decrease cycles the current-voltage characteristics of
the film were very stable (Fig. 4b), with slight fluctuations in the voltage required to switch the
film into its low-resistance state.

The situation is different for thicker films. Fig. 5 shows the current-voltage charac-
teristics of heated 85 and 115 Å films , deposited at 0.6 Å/s. For these films, a nonlinear
increase of the current was observed in region I , wherein, noticeable fluctuations of the resis-
tance were observed. In repeated measurements for the 85 Å film, the switching voltage was
greatly decreased, and after the third cycle, the film remained in the low-resistance state after
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removing the applied voltage. The 115 Å film remained in the low-resistance state after the
first switching of the resistance, but it could be switched into the low-conductivity state after
short-term heating.

Similar resistance switching has been described in previous literature for different thin-
film materials. They can be divided into two general categories: threshold switching, in which
electrical power is required to maintain the ON state (state with low resistance) and memory
switching, in which both states (ON and OFF) can be maintained without electrical power [7–9].
Changes in conductivity can be either structural, involving nanoparticle deformation or diffusion
of the material under an applied voltage, or electronic, i.e. caused by the injection of electrons
under the influence of high electric fields arising between nanoparticles at film discontinuities.
However, the fact that granular silver films with thickness greater than 85 Å do not switch to
low conductivity states indicate that the transfer of material plays an important role in creation
of the conducting channels.

4. Conclusion

The paper presents the results of conductivity studies for silver granular films with
different thicknesses deposited on the surface of a sapphire substrate. The films were produced
by the standard method of thermal deposition of an atomic beam on the cold substrate. The
resistance changes during and immediately after deposition were measured. After thermal
treatment of the films, a resistance switching effect was observed, while the film structure and
its optical properties were not substantially changed. The value of the resistance switching can
be up to 107 ohms, and the voltage required to switch ON the structure (to the low-resistance
state) may vary within a wide range depending on the duration of the annealing.
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Efimov’s effect for the Fredholm type partial integral operators.
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1. Introduction

Linear equations and operators involving partial integrals appear in elasticity theory
[1–3], continuum mechanics [2, 4–6], aerodynamics [7] and in PDE theory [8, 9]. Self-
adjoint partial integral operators arise in the theory of Schrodinger operators [10–13].
Spectral properties of a discrete Schrodinger operator H are tightly connected (see [13,14])
with those of the partial integral operators which participate in the presentation of operator
H.

Let Ω1 and Ω2 be closed boundary subsets in Rν1 and Rν2 , respectively. The partial
integral operator (PIO) of Fredholm type in the space Lp(Ω1 × Ω2), p ≥ 1 is an operator of
the following form [15]

T = T0 + T1 + T2 +K, (1)
where operators T0, T1, T2 and K are defined by the following formulas:

T0f(x, y) = k0(x, y)f(x, y),

T1f(x, y) =

∫
Ω1

k1(x, s, y)f(s, y)ds,

T2f(x, y) =

∫
Ω2

k2(x, t, y)f(x, t)dt,

Kf(x, y) =

∫
Ω1

∫
Ω2

k(x, y; s, t)f(s, t)dsdt.

Here k0, k1, k2 and k are given measurable functions on Ω1 × Ω2, Ω2
1 × Ω2

2, Ω1 × Ω2

and (Ω1 × Ω2)2, respectively. All integrals have to be understood in the Lebesgue sense.
In 1975, Likhtarnikov and Vitova [16] studied spectral properties of partial integral

operators. In [16], the following restrictions were imposed: k1(x, s) ∈ L2(Ω1×Ω1), k2(y, t) ∈
L2(Ω2 ×Ω2) and T0 = K = 0. In [17] spectral properties of PIO with positive kernels were
studied (under the restriction T0 = K = 0). Kalitvin and Zabrejko [18] studied the spectral
properties of PIO in the space Lp, p ≥ 1. Kernels of PIO in all mentioned articles are
functions of two variables and T0 = 0. In [19], a full spectral description of self-adjoint
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PIO in the space C ([a, b]× [c, d]) with continuous kernels was given. Self-adjoint PIO with
T0 6= 0 were first studied in [10], where theorem about essential spectrum was proved. The
finiteness and infiniteness of a discrete spectrum of self-adjoint PIO arising in the theory
of Schrodinger operators was investigated in [11–13].

In [20], PIOs in some functional spaces were investigated and a number of applica-
tions were considered. Some important spectral properties of PIO in the space L2 are still
open. The present paper is dedicated to the mentioned problem.

We study the existence of an infinite number of eigenvalues (the existence Efimov’s
effect) for a self-adjoint partial integral operators.

2. The notations and necessary information

Let A be a linear self-adjoint operator in the Hilbert space H. Resolvent set,
spectrum, essential spectrum and discrete spectrum of the operator A are denoted by ρ, σ,
σess and σdisc, respectively (see [21]).

We define the numbers

Emin(A) = inf{λ : λ ∈ σess(A)},

Emax(A) = sup{λ : λ ∈ σess(A)}.
We call the number Emin(A) (Emax(A)) the lower (the higher) boundary of the es-

sential spectrum of A.
Let Ω1 = [a, b]ν1 , Ω2 = [c, d]ν2 and k0, k1, k2 are continuous functions on Ω1×Ω2, Ω2

1×
Ω2, Ω1 × Ω2

2 respectively, k0 is real function, k1(x, s, y) = k1(s, x, y), k2(x, t, y) = k2(x, y, t).
We define the linear self-adjoint bounded operator H in the Hilbert space L2(Ω1 × Ω2) by
rule

H = T0 − (T1 + T2). (2)
We set

T = T1 + T2.

For the essential spectrum of the operators H and T the equalities

σess(T ) = σ(T1) ∪ σ(T2),

σess(H) = σ(T0 − T1) ∪ σ(T0 − T2) (3)
are held (see [22],[10]).

Let k1(x, s, y) = α = const > 0, k2(x, t, y) = β = const > 0 in the model (2). Then
at the Emin(H) = 0 the Efimov’s effect (the existence infinite numbers of eigenvalues below
the lower boundary Emin(H) of the essential spectrum) in the model (2) was demonstrated
by S. Albeverio, S.N.Lakaev, Z.I. Muminov [11] and Rasulov T.Kh. [12].

We study the existence Efimov’s effect in the model (2) in the case Emin(H) 6=
0. Consider this problem for the function k0(x, y) of the form k0(x, y) = u(x)u(y) and
k0(x, y) = u(x) + u(y).

Let u(x) and v(y) be a continuous nonnegative function on Ω1 and Ω2, respectively
and suppose k1(x, s, y) = k1(x, s), k2(x, t, y) = k2(y, t). We define the self-adjoint compact
integral operators Q1 : L2(Ω1) → L2(Ω1) and Q2 : L2(Ω2) → L2(Ω2) by the following
equalities
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Q1ϕ(x) =

∫
Ω1

k1(x, s)ϕ(s)ds, Q2ψ(y) =

∫
Ω2

k2(y, t)ψ(t)dt

and suppose that Q1 ≥ θ, Q2 ≥ θ.
We define by V1 and V2 multiplication on the space L2(Ω1) and L2(Ω2) are acting by

the following formulas

V1ϕ(x) = u(x)ϕ(x), V2ψ(y) = v(y)ψ(y).

We consider the operators Hk, k = 1, 2 in the Friedrichs model:

H1 = V1 −Q1, (4)

H2 = V2 −Q2. (5)

3. Efimov’s effect for PIO

Let u(x) ≥ 0, x ∈ Ω1, v(y) ≥ 0, y ∈ Ω2 and u−1({0}) 6= ∅, v−1({0}) 6= ∅.
Theorem 3.1. Let k0(x, y) = u(x) + v(y), u(x) ≥ 0, v(y) ≥ 0 and Q1 ≥ θ, Q2 ≥ θ.
(a) the σess(H) = σ(H0) iff the σdisc(H) = ∅;
(b) if σdisc(H) 6= ∅, then σdisc(H1) 6= ∅ and σdisc(H2) 6= ∅;
(c) if σdisc(H) 6= ∅, then Emin(H) = inf{λ : λ ∈ σdisc(H1) ∪ σdisc(H2)};
(d) Efimov’s effect exists in the model (2) iff Efimov’s effect exists in Friedrich’s

model (4) and σdisc(H2) 6= ∅ or Efimov’s effect exists in Friedrich’s model (5) and σdisc(H1) 6=
∅.

Proof. We define the operator W = H1⊗E +E⊗H2 on the space L2(Ω1)⊗L2(Ω2).
For the spectrum of the operator W we have [18]

σ(W ) = σ(H1) + σ(H2).

But, the operators W and H is unitary equivalent (see [10]), i.e. W ∼= H. Consequently,
that

σ(H) = σ(H1) + σ(H2). (6)
Also, if we define the operators A1 and A2 by

A1 = H1 ⊗ E + E ⊗ V2, A2 = V1 ⊗ E + E ⊗H2

we see A1
∼= T0 − T1, A2

∼= T0 − T2. Thus we have

σ(T0 − T1) = σ(H1) + σ(V2),

σ(T0 − T2) = σ(V1) + σ(H2).

Then, by the equality (6) for the essential spectrum of the operator H we obtain

σess(H) = (σ(H1) + σ(V2)) ∪ (σ(V1) + σ(H2)). (7)
On the other hand

σess(Hk) = σ(Vk), k = 1, 2. (8)
Now, from the equalities (6), (7) and (8) it follows proof of theorem 1. �

Corollary 3.1. Let be k0(x, y) = u(x) + v(y) and k1(x, s, y) = k1(x, s), k2(x, t, y) =
k2(y, t).
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a) for the existence of Efimov’s effect in model (2) it is necessary, that dim(Ran(Q1)) =
∞ or dim(Ran(Q2)) =∞;

b) if dim(Ran(Q1)) < ∞ and dim(Ran(Q2)) < ∞, then Efimov’s effect is absent in
model (2).

Suppose, that k0(x, y) ≥ 0, 0 ∈ Ran(k0) and Tk ≥ θ, k = 1, 2. Let N0(H) be the
number of all eigenvalues (with account multiplicity) below the lower boundary of the
essential spectrum in model (2), i.e.

N0(H) =
∑

λ∈σdisc(H), λ<Emin(H)

nH(λ),

where nH(λ) – the multiplicity of the eigenvalue λ of the operator H and N(T ) is the
number of all eigenvalues(with account multiplicity) of the discrete spectrum of operator
T , i.e.

N(T ) =
∑

λ∈σdisc(T )

nT (λ).

Theorem 3.2. Let the relation

T0 ≥ (Emin(H) + Emax(T )) · E

is hold, where E - identical operator. Then

N0(H) ≤ N(T ).

Proof. We have

σess(Emax(T ) · E − T ) = {ξ : ξ = Emax(T )− λ, λ ∈ σess(T )}.
Then

σess(Emax(T ) · E − T ) ⊂ [0,∞)

and
0 ∈ σess(Emax(T )− T ), N(Emax(T ) · E − T ) = N(T ).

Hence it follows
Emin(T ) = Emin(Emax(T ) · E − T ) = 0.

Let the inequality

T0 ≥ (Emin(H) + Emax(T )) · E

hold. Consequently, we obtain

Emax(T ) · E − T ≤ H − Emin(H) · E
Then by lemma 2.1 [23] we have

µk(Emax(T ) · E − T ) ≤ µk(H − Emin(H) · E), k ∈ {1, 2, ..., N(T ) + 1}. (10)
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where {µk(A)} – the set of all eigenvalues of operator A below the lower boundary of the
essential spectrum, which was constructed by the mini-max principle. By theorem 2.1 [23]
we have

µN(T )+1(Emax(T ) · E − T ) = 0.

Therefore, from inequality (10)

µN(T )+k(H − Emin(H) · E) = 0, k ∈ N ∪ {0},
i.e. the number of negative eigenvalues of operator H − Emin(H) · E taking into account
multiplicity, is no more than N(T ). Consequently, the number of eigenvalues of the operator
H below the lower boundary Emin(H) of the essential spectrum, also will be no more than
N(T ), i.e.

N0(H) ≤ N(T ). �

Corollary 3.2. Let be N(T ) <∞. If

Emin(H) + Emax(T ) ≤ 0,

then Efimov’s effect is absent in model (2).

Let u(x) and v(y) be nonnegative continuous functions on Ω1 and Ω2, respectively.
Suppose, that u−1({0}) = {xmin}, v−1({0}) = {ymin}.

Theorem 3.3. Let be k0(x, y) = u(x)v(y). Then
(a) the equality Emin(H) = −max{‖Q1‖, ‖Q2‖} holds;
(b) if dim(Ran(Q1)) <∞ and dim(Ran(Q2)) <∞, then Efimov’s effect is absent in

model (2).
Proof. (a) We define the family {W1(α)}α∈Ω2 of self-adjoint operators in Fredrich’s

model on the space L2(Ω1) :

W1(α)ϕ(x) = u(x)v(x)ϕ(x)−Q1ϕ(x).

We set

σ1 = {λ ∈ (−∞, 0) : for some α0 ∈ Ω2 the number

λ is eigenvalue of the operator W1(α0)}.
Then by the theorem 6 from [24] we have

σ(T0 − T1) = σ0 ∪ σ1,

where σ0 = σ(T0). However,

((T0 − T1)f, f) ≥ −(T1f, f) ≥ −‖Q1‖, f ∈ L2(Ω1 × Ω2),

because ‖T1‖ = ‖Q1‖. Conversely, W1(ymin) = −Q1, i.e. the number −‖Q1‖ is eigen-
value of the operator W1(ymin). Consequently, −‖Q1‖ ∈ σ1, i.e. −‖Q1‖ ∈ σ(T0 − T1).
Then we have Emin(T0 − T1) = ‖Q1‖. Analogously, for the operator T0 − T2 we obtain, that
Emin(T0 − T2) = −‖Q2‖. Finally, from (3) follows, that Emin(H) = −max{‖Q1‖, ‖Q2‖}.

(b) By statement (a) of theorem 3.3 we have Emin(H) = −max{‖Q1‖, ‖Q2‖}. How-
ever, Emax(T ) = max{‖Q1‖, ‖Q2‖} (see [25]) Consequently, the condition of theorem 2 is
satisfied. Still, by theorem 3.1 from [25] (also see [18]) we have



534 Yu.Kh. Eshkabilov, R. R. Kucharov

N(T ) =
∑

p+q /∈σess(T ),
p∈σdisc(Q1),
q∈σdisc(Q2)

nQ1(p) · nQ2(q),

where σess(T ) = σ(Q1) ∪ σ(Q2). Then, from the inequality dim(Ran(Q1)) < ∞ and
dim(Ran(Q2)) < ∞, we obtain N(T ) < ∞. Consequently, by theorem 3.2 Efimov’s ef-
fect is absint in model (2). �

Remark 3.1. The author’s previous work [14] showed the existence of Efimov’s
effect in the case dim(Ran(Q1)) = 1 and dim(Ran(Q2)) = ∞ in the model (2) for the
Emin(H) 6= 0 .

4. The examples

Example 4.1. On Ω = [0, 1]ν , we consider the functions

u(x) = x1
α1 · ... · xναν , v(y) = y1

β1 · ... · yνβν ,
where αk ≥ 0, βj ≥ 0, k, j ∈ {1, .., ν}.
In the space L2(Ω2), we define the operators

T0f(x, y) = (u(x) + v(y))f(x, y),

T1f(x, y) =

∫
Ω

exp(|x− s|)f(s, y)ds,

T2f(x, y) =

∫
Ω

exp(|y − t|)f(x, t)dt,

where

|x| =
√
x1

2 + ...+ xν2.

If α1 + ... + αν > 2ν and β1 + ... + βν > 2ν, then Efimov’s effect exist for operator
(2).

We define subsets An(n ∈ N) and Bn(n ∈ N) by the following way

An = {t ∈ Ω : 0 ≤ ti <
1

n
, i = 1, ..., ν}, n ∈ N,

Bn = {t ∈ Ω : 0 ≤ ti <
1

n+ 1
, i = 1, ..., ν}, n ∈ N.

We have Bn ⊂ An, n ∈ N. We set

Gn = An\Bn, n ∈ N.

Then Gn ∩Gm = ∅ at n 6= m and Gn ⊂ O 1
n
(θ)∩Ω, where Or(θ) – the open ball with radius

r in center θ ∈ Rν(θ – the zero element of the space Rν). For the Lebesque measure µ(Gn)
of the set Gn we obtain

µ(Gn) = µ(An)− µ(Bn) =
1

nν
− 1

(n+ 1)ν
>

1

nν
− 1

nν + 1
=

1

nν(nν + 1)
>

1

2n2ν
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for all n ∈ N, n ≥ 2. On the other hand

sup
t∈Gn

u(t) =

(
1

n

)α1+ ... +αν

, n ∈ N.

Consequently, if α1 + ... + αν > 2ν, then the following inequality

sup
t∈Gn

u(t) < µ(Gn) inf
t,u∈Gn

k1(t, u), n ∈ N\{1}.

holds, i.e. the condition of theorem 4.1 from [26] is satisfied. So, by theorem 4.1 operator
H1 = V1 −Q1 has an infinite number of negative eigenvalues.

Analogously, we show that, at the β1 + ... + βν > 2ν the operator H2 = V2 − Q2

has infinite number of negative eigenvalues.

Therefore, by the theorem 3.1 Emin(H) 6= 0 and Efimov’s effect exists for the PIO H.

Remark 4.1. The statement of theorem 4.1 from [26] holds for the set Ω = [0, 1]ν

for arbitrary ν ∈ N. In work [26] proof was given for the simple case ν = 1. The proof of
theorem 4.1 [26] for the case ν ≥ 2 is analogous to the case ν = 1.

Example 4.2. We consider the sequence p0 = 0, p1 = 1/2, pn = pn−1 + 1/2n, n ∈
N. We set

qn =
pn − pn−1

2
, n ∈ N.

On [0, 1], we define the function

u(x) =

{
0, if x ∈ [0, 1/2],
u0(x), if x /∈ [0, 1/2],

where u0(x) =
∑
n∈N

δnrn(x),

rκ(x) =



pκ − x
pκ − qκ+1

, if x ∈ [pκ, qκ+1],

pκ+1 − x
pκ+1 − qκ+1

, if x ∈ [qκ+1, pκ+1],

0, if x /∈ [pκ, pκ+1],

δ1 = 1, δn ≤

(√
2

3

)n

, n ≥ 2.

In the space L2[0, 1], we consider the sequence of orthonormal functions

ϕn(y) = 2(n+1)/2 sin ξn(y), n ∈ N,
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where

ξκ(y) =


π

pκ − pκ−1

(y − pκ−1), if y ∈ [pκ−1, pκ],

0, if y /∈ [pκ−1, pκ].

We define the kernel

k2(y, t) =
∑
n∈N

(
2

3

)n
ϕn(y)ϕn(t). (11)

Series (11) converges uniformly in the square [0, 1]2. Hence, the integral operator
Q2, defined by its kernel k2(y, t), is self-adjoint and positive in L2[0, 1]. It is clear, that
dim(Ran(Q1)) = 1 and dim(Ran(Q2)) =∞.

In the space L2([0, 1]2), we consider the model

H = H0 − (γT1 + T2), γ ≥ 2

3
, (12)

where

T0f(x, , y) = u(x)u(y)f(x, y),

T1f(x, y) =

∫ 1

0

f(s, y)ds,

T2f(x, y) =

∫ 1

0

k2(y, t)f(x, t)dt.

Then

Emin(H) = Emin(H0 − (γT1 + T2))

and there exists Efimov’s effect for operator (12) below the lower boundary Emin(H) = −γ
of the essential spectrum [14].

References

[1] Kalitvin A. S. On partial integral operators in contact problems of elasticity. (in Russian) Proc. 26
Voronezh Winter School, 54, (1994).

[2] Kovalenko E.V. On the approximate solution of one type of integral equations arising in elasticity type
mathematical physics (in Russian). Izv. Akad. Nauk Arm. SSR, 34, No 5, P. 14–26 (1981).

[3] Vekua I.N. New Methods of Solving Elliptic Equations (in Russian). Gostekhizdat, Moscow-Leningrad
(1948).

[4] Aleksandrov V.M., Kovalenko E.V. On some class of integral equations arising in mixed boundary
value problems of continuum mechanics. Sov. Phys. Dokl. 25, No 2, P. 354–356 (1980).

[5] Aleksandrov V.M., Kovalenko E.V. On the contact interaction of bodies with coatings and abrasion.
Sov. Phys. Dokl. 29, No 4, P. 340–342 (1984).

[6] Aleksandrov V.M., Kovalenko E.V. Problems of Continuum Mechanics with Mixed Boundary Condi-
tions (in Russian). Nauka, Moscow (1986).

[7] Kalitvin A. S. On some class of partial integral equations in aerodynamics, (in Russian). Sost. Persp.
Razv. Nauch. – Tekhn. Pod. Lipetsk. Obl(Lipetsk). P. 210–212 (1994).

[8] Goursat E. Cours d’Analyse Mathematique. Gautheir-Villars, Paris (1943).
[9] Muntz C.H. Zum dynamischen Warmeleitungs problem. Math. Z. 38, P. 323–337 (1934).



Efimov’s effect for partial integral operators of Fredholm type 537

[10] Eshkabilov Yu.Kh. On a discrete “three-particle” Schrödinger operator in the Hubbard model. Theor.
Math. Phys., 149 (2), P. 1497–1511 (2006).

[11] Albeverio S., Lakaev S.N., Muminov Z. I. On the number of eigenvalues of a model operator associated
to a system of three-particles on lattices Russ. J. Math. Phys. 14 (4), P. 377-387 (2007).

[12] Rasulov T. Kh. Asymptotics of the discrete spectrum of a model operator assotiated with a system of
three particles on a lattice. Theor. Math.Phys. 163 (1), P.429–437 (2010).

[13] Eshkabilov Yu.Kh., Kucharov R.R. Essential and discrete spectra of the three-particle Schrödinger
operator on a lattice. Theor. Math. Phys., 170 (3), P.341-353 (2012).

[14] Eshkabilov Yu.Kh. Efimov’s effect for a 3-particle model discrete Schrödinger operator. Theor. Math.
Phys., 164 (1), P. 896-904 (2010).

[15] Appell J., Frolova E.V., Kalitvin A. S., Zabrejko P. P. Partial integral operators on C([a, b] × [c, d]).
Integral Equ. Oper. Theory, 27, P. 125–140 (1997).

[16] Likhtarnikov L.M., Vitova L. Z. On the spectrum of an integral operator with partial integrals (in
Russian). Litov. Mat. Sbornik, 15, No 2, P.41–47 (1975).

[17] Kalitvin A. S. On the spectrum of a linear operators with partial integrals and positive kernels (in
Russian). In Pribl. Funk. Spektr. Theor., Leningrad, P. 43–50 (1988).

[18] Kalitvin A. S., Zabrejko P. P. On the theory of partial integral operators. J. Integral Eq. Appl., 3 (3), P.
351–382 (1991).

[19] Eshkabilov Yu.Kh. Spectra of partial integral operators with a kernel of three variables. Central Eur. J.
Math., 6 (1), P. 149–157 (2008).

[20] Appell J., Kalitvin A. S., Zabrejko P. P. Partial Integral operators and Integro-differential Equations.
(Pure and Applied Mathematics: A Series of Monographs and Textbooks, 230), Marcel Dekker, Inc.,
New York (2000).

[21] Reed M., Simon B. Methods of Modern Mathematical Physics, Vol.1, Functional Analysis. Acad. Press,
New York (1972).

[22] Eshkabilov Yu.Kh. Essential and discrete spectre of partially integral operators. Siberian Advances in
Mathematics, 19 (4), P. 233–244 (2009).

[23] Eshkabilov Yu.Kh. On infinity of the discrete spectrum of operators in the Friedrichs model. Siberian
Advances in Mathematics, 22 (1), P. 1-12 (2012).

[24] Eshkabilov Yu.Kh. Perturbation spectra of multiplication with a partial integral operator (in Russian).
Acta NUUz, No 2, P. 17–21 (2006).

[25] Eshkabilov Yu.Kh. On the spectra of the tensor sum of compact operators (in Russian). Uzbek. Mat. J.,
No 3, P. 104–112 (2005).

[26] Eshkabilov Yu.Kh. On infinite number of negative eigenvalues of the Friedrichs model (in Russian).
Nanosystems: Physics, Chemistry, Mathematics, 3 (6), P. 16–24 (2012).



NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2013, 4 (4), P. 538–544

THE CONUCTIVITY LOW ENERGY ASYMPTOTICS
FOR MONOLAYER GRAPHENE

N. E. Firsova

Institut for Problems of Mechanical Engineering RAS, St. Petersburg, Russia

nef2@mail.ru

PACS 02.73

The electron scattering problem in the monolayer graphene with short range impurities is considered. The main

novel element in the suggested model is the band asymmetry of the defect potential in the 2+1-dimensional Dirac

equation. This asymmetry appears naturally if the defect violates the symmetry between sublattices. Our goal in

the present paper is to take into account a local band asymmetry violation arising due to the defect presence. We

analyze the effect of the electron scattering on the electronic transport parameters in monolayer graphene. The

explicit exact formulae obtained for S-matrix for δ−shell potential allowed us to study the asymptotic behavior of

such scattering data as scattering phases, transport cross section, the transport relaxation time and the conductivity

for small values of the Fermi energy. The obtained results are in good agreement with experimental curves which

show that the considered model is reasonable.

Keywords: monolayer graphene, conductivity, low energy asymptotics, Dirac equation.

1. Introduction

Recently, much attention has been paid to the problem of the electronic spectrum of
graphene (see the review [1]). Its 2D-structure and the presence of the cone points in the
electronic spectrum make actual a comprehensive study of the external field effect on the
spectrum and other characteristics of the electronic states described by the Dirac equation in
the 2+1 space-time. We consider in the present paper the transport phenomena in the 2+1
Dirac equation model of the monolayer graphene due to the short-range perturbation. We do
not take into account the inter-valley transitions. Particular attention to this case stems from
the effectiveness of short-range scatterers in contrast to the long-range ones: an effect of the
latter is suppressed by the Klein paradox [2]. Short-range potential impurities in graphene were
considered in papers [3–6]. In [6], for instance, electrons were assumed to be confined in a
quantum dot where the dot was represented by a δ(2) (~r)-potential well. Artificially representing
the quantum dot by such a strongly singular potential leads to divergences in the Lippmann-
Schwinger equation. To overcome the problem in [7] the δ-shell model was suggested which
removed the singularity. The Dirac equation for the δ-shell potential is free of such divergences.
In [7] a new model of the short-range impurities in graphene was considered where the shell
delta function potential form was suggested taking into account for the first time the obvious
fact that the Kohn-Luttinger matrix elements of the short-range perturbations calculated on the
upper and lower band wave functions are not equal in a general case. This means that the
perturbation must be generically described by a Hermitian matrix. In [7] the diagonal matrix
case corresponding to a presence of the chemical potential and the mass perturbation was studied
taking firstly into account a local band symmetry violation arising due to the defect presence.
In [7] for the model the characteristic equation for eigenvalues and resonances was obtained
describing their dependence on the perturbation parameters. In [8] in the framework of the



The conuctivity low energy asymptotics for monolayer graphene 539

model suggested in [7] the electron scattering was studied and the exact analytical formula for
S-matrix was found.

In the present paper we analyze the effect of the electron scattering studied in [8] on
the electronic transport in the monolayer graphene. We compare our theoretical results with the
available experimental data.

2. The main results

The Dirac equation describing electronic states in monolayer graphene in the framework
of the model described above (see [6, 7]) reads:[

−ih̄vF
2∑

µ=1

γµ∂µ − γ0 (m+ δm) v2F

]
ψ = (E − V )ψ, (1)

where vF is the Fermi velocity of the band electron, γµ are the Dirac matrices,

γ0 = σ3, γ1 = σ1, γ2 = iσ2,

σj are the Pauli matrices, 2mdv
2
F = Eg is the electronic bandgap, and ψ (−→r ) is the two-

component spinor. The spinor structure takes into account the two-sublattice structure of the
graphene.

We consider firstly the gapless case m = 0. Then we have[
−ih̄vF

2∑
µ=1

γµ∂µ − γ0δm v2F

]
ψ = (E − V )ψ. (2)

To treat this equation mathematically, we make (2) dimensionless dividing it by h̄vFkF .
We get [

−i
2∑

µ=1

γµ∂µ − γ0δm̃

]
ψ =

(
Ẽ − Ṽ

)
ψ. (3)

Here δm̃ = δmvF (h̄kF )−1, Ẽ = E(h̄vFkF )−1, Ṽ = V (h̄vFkF )−1. Ṽ (−→r ) is the local per-
turbation of the chemical potential. A local mass (gap) perturbation, δm̃, related to the local
sublattices symmetry violation, can be induced for instance by defects in the graphene film or
in the substrate (see [8]). We consider here the shell delta function model of the perturbation

δm̃ (r̃) = −bδ (r̃ − r̃0) , Ṽ (r̃) = −aδ (r̃ − r̃0) , (4)

where r̃ = rkF and r̃0 = r0kF are respectively the polar coordinate radius and the perturbation
radius. The finite radius r0 plays a role of the regulator and is necessary in order to exclude
deep states of the atomic energy scale. The finite perturbation radius r0 leads to the quasi-
momentum space form-factor proportional to the Bessel function that justifies our neglect of
transitions between the Brillouin band points K and K ′, [9] .The perturbation matrix elements

diag
(
Ṽ1, Ṽ2

)
δ (r̃ − r̃0) ,

are related to the a, b parameters as follows:

−Ṽ1 = a+ b, −Ṽ2 = a− b.
Solving the Dirac equation (3) in the regions 0 ≤ r̃ < r̃0, r̃0 < r̃ < ∞ and matching

these solutions at the circumference of the circle of the radius r̃ = r̃0, the characteristic equation
was obtained for eigenvalues and resonances, [7]. Calculating the ratio of the outgoing and
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ingoing waves, the formulae for S-matrix components were found in the angular momentum
representation, [8]:

Sj (kr0) = −
F

(2)
j (kr̃0)

F
(1)
j (kr̃0)

, j = ±1

2
,±3

2
, . . . , k = E, (5)

where F (α)
j (kr̃0), α = 1, 2, is given by the formula:

F
(α)
j (kr̃0) =

[
Ij−1/2 (kr̃0)H

(α−)
j+1/2

(kr̃0)− Ij+1/2 (kr̃0)H
(α)
j−1/2 (kr̃0)

]
T (a, b)

[
(a− b) Ij+1/2 (kr̃0)H

(α)
j+1/2 (kr̃0) + (a+ b) Ij−1/2 (kr̃0)H

(α)
j−1/2 (kr̃0)

]
,

α = 1, 2, j = ±1

2
,±3

2
, . . . . (6)

Here,

T (a, b) =

{
tan
√
a2 − b2 /

√
a2 − b2 if a2 > b2,

tanh
√
b2 − a2 /

√
b2 − a2 if b2 > a2,

(7)

where we choose the principal value of the roots. Since for Hankel functions we have for real

variables H(2)
n (x) = H

(1)
n (x) the scattering matrix (5), (6) is unitary on the continuum spectrum

=Ẽ = 0. Using the relation [11],

Ij−1/2 (kr̃0)Nj+1/2 (kr̃0)− Ij+1/2 (kr̃0)Nj−1/2 (kr̃0) = − 2

π (kr̃0)
, (8)

we can rewrite (6) in the form

F
(α)
j (kr̃0) =

−(−1)α
2i

π (kr̃0)
−T (a, b)

[
(a− b) Ij+1/2 (kr̃0)H

(α)
j+1/2 (kr̃0) + (a+ b) I (kr̃0)j−1/2H

(α)
j−1/2 (kr̃0)

]
,

α = 1, 2, j = ±1

2
,±3

2
, . . . . (9)

So the poles of the scattering matrix (5), i.e. the eigenvalues and resonances, are
determined as solutions of the characteristic equation

F
(1)
j (kr̃0) = 0, j = ±1

2
,±3

2
, . . . (10)

or

T (a, b)
[
(a− b) Ij+1/2 (kr̃0)H

(1)
j+1/2 (kr̃0) + (a+ b) Ij−1/2(kr̃0)H

(1)
j−1/2 (kr̃0)

]
=

2i

π (kr̃0)
, j = ±1

2
,±3

2
, . . . . (11)

Using the relations H(1)
n (x) = In (x) + iNn (x), H

(2)
n (x) = In (x) − iNn (x), we can

write S-matrix (5) as follows:

Sj (kr̃0) = −Aj (kr̃0)− iBj (kr̃0)

Aj (kr̃0) + iBj (kr̃0)
=
Bj (kr̃0) + iAj (kr̃0)

Bj (kr̃0)− iAj (kr̃0)
, j = ±1

2
,±3

2
, . . . . (12)



The conuctivity low energy asymptotics for monolayer graphene 541

Therefore, it can be presented in the standard form:

Sj (kr̃0) = exp (2iδj (kr̃0)) , j = ±1

2
,±3

2
, . . . , (13)

where for the scattering phases we have

δj (kr̃0) = tan−1
Aj (kr̃0)

Bj (kr̃0)
, j = ±1

2
,±3

2
, . . . . (14)

The functions Aj (kr̃0), Bj (kr̃0), j = ±1

2
,±3

2
, . . . are determined (see (9)) as follows:

Aj (kr̃0) = −T (a, b)
[
(a− b) I2j+1/2 (kr̃0) + (a+ b) I2j−1/2 (kr̃0)

]
, (15)

Bj (kr̃0) =

2

π (kr̃0)
− T (a, b) [(a− b) Ij+1/2 (kr̃0)Nj+1/2 (kr̃0) + (a+ b) Ij−1/2 (kr̃0)Nj−1/2 (kr̃0)],

j = ±1

2
,±3

2
, . . . . (16)

Lemma1. Scattering phases δj (kr̃0), j = ±1

2
,±3

2
, . . . , of the Sj (kr̃0)-matrix of the Dirac

equation (3) near the Dirac point k = 0, is for low energies (small momentum) i.e. for (kr̃0)→ 0
have asymptotics uniformly on a set of j

δ±j (kr̃0) = −πT (a, b) (a± b)[(
j − 1

2

)
!
]2 (

kr̃0
2

)2j

[1 + o(1)] , kr̃0 → 0, j =
1

2
,
3

2
. . . . (17)

Proof. From (14)–(16) we see

tan δj (kr̃0) =
π (kr̃0)

2
T (a, b)

[
(a− b) I2j+1/2 (kr̃0) + (a+ b) I2j−1/2 (kr̃0)

]
×
[
1 +

πkr̃0
2

T (a, b)
[
(a− b) Ij+1/2 (kr̃0)Nj+1/2 (kr̃0) + (a+ b) Ij−1/2 (kr̃0)Nj−1/2 (kr̃0)

]]−1
,

j = ±1

2
,±3

2
, . . . . (18)

Asymptotic behavior of the scattering phases δj (kr̃0) at kr̃0 → 0 can be obtained
expanding the cylinder functions for small arguments (see [11])

In (x) ∼ (1/n!) (x/2)n, n = 0, 1, 2 . . . , (19)

Nn (x) ∼

{
− (Γ (n)/π) (2/x)n for n > 0,

(2/π) log (γ∈x/2) for n = 0,
(20)

where γE ≈ 0, 577 is the Euler –Mascerone constant and Γ (n)is the gamma-function. From
(18)–(20), we obtain asymptotic uniform on the set of j

tan δ±j (kr̃0) =
πT (a, b) (a± b)[(

j − 1
2

)
!
]2 (

kr̃0
2

)2j

[1 + o(1)] , kr̃0 → 0, j =
1

2
,
3

2
. . . . (21)
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Expanding the function tan−1(tan δ±j (kr̃0) ), kr̃0 → 0, we find

δ±j (kr̃0) =
πT (a, b) (a± b)[(

j − 1
2

)
!
]2 (

kr̃0
2

)2j

[1 + o(1)]

[
1 +O

((
(kr̃0)

2

)4j
)]

,

kr̃0 → 0, j =
1

2
,
3

2
, . . . .

Hence we come to (17).�

Let us now define δ±j(kF r0) = δ±j (kr̃0), Sj (kF r0) = Sj (kr̃0), j = ±1

2
,±3

2
, . . . . Then

the transport cross section can be written in terms of the scattering phases∑
tr

(kF , r0) =
2

kF

(∑
1

)
tr

(kF r0) , (22)

where (∑
1

)
tr

(kF r0) =
(∑

1

)
tr

(kr̃0) =
∑

j=± 1
2
,± 3

2
,...

[sin (δj+1 (kr̃0)− δj (kr̃0))]
2. (23)

The transport relaxation time τtr can be calculated using the following relation:

1/τtr (kF r0) = NivF
∑

tr
(kF , r0) . (24)

The Boltzmannian conductivity is determined by the formula

σ
(
EF,r0

)
=
e2

h
(EF τtr (kF,r0)/h̄) . (25)

Theorem 1. We have for the transport cross section of the problem (2)∑
tr

(kF , r0) = π2T (a, b)2
(
a2 + 3b2

)
kF r

2
0 [1 + o (1)] , kF r0 � 1. (26)

The conductivity for problem (2) for low energies has asymptotics

σ = σ0 [1 + o(1)] , kF r0 � 1, (27)

where

σ0 =
e2

h

[
π2T (a, b)2

(
a2 + 3b2

)
Nir

2
0

]−1
. (28)

Proof. From Lemma 1, we see that δ±j (kr̃0) → 0, when (kr̃0) → 0, j =
1

2
,
3

2
. . . . It means

that expanding, we obtain

sin (δj+1 (kr̃0)− δj (kr̃0)) = (δj+1 (kr̃0)− δj (kr̃0))
(
1 +O (δj+1 (kr̃0)− δj (kr̃0))

2) ,
kr̃0 → 0, j = ±1

2
,±3

2
, . . .

or

sin (δj+1 (kr̃0)− δj (kr̃0)) = (δj+1 (kr̃0)− δj (kr̃0)) (1 + o(1)), kr̃0 → 0, j = ±1

2
,±3

2
, . . . .

So we find that (see (23))
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(∑
1

)
tr

(kr̃0) =
(∑

2

)
tr

(kr̃0) [1 + o(1)] , kr̃0 → 0, j = ±1

2
,±3

2
, . . . , (29)

where (∑
2

)
tr

(kr̃0) =
∑

j=± 1
2
,± 3

2
,...

(δj+1 (kr̃0)− δj (kr̃0))
2. (30)

Transforming (30), we get

(∑
2

)
tr

= 2

δ21/2 + δ2−1/2 − δ1/2δ−1/2 −
∑

j= 1
2
, 3

2
...

[
(δjδj+1 + δ−jδ−j−1)−

(
δ2j+1 + δ2−j−1

)] .

Using asymptotics from Lemma 1, we find(∑
2

)
tr

= 2π2T (a, b)2
(
a2 + 3b2

)((kr̃0)

2

)2

[1 + o (1)] , kr̃0 → 0.

Substituting this equation into (29), we have(∑
1

)
tr

(kr̃0) = π2T (a, b)2
(
a2 + 3b2

) (kr̃0)
2

2
[1 + o (1)] , kr̃0 → 0. (31)

Hence using (22) and (23), we obtain (26).
From (24)–(26) we see

EF τtr/h̄ =
[
π2T (a, b)2

(
a2 + 3b2

)
Nir0

2
]−1

[1 + o (1)] , kF r0 � 1. (32)

And consequently (see (25))

σ =
e2

h

[
π2T (a, b)2

(
a2 + 3b2

)
Nir0

2
]−1

[1 + o (1)] , kF r0 � 1. (33)

So Theorem 1 is proved.�

3. Discussion

The results found above were obtained in the framework of the model assuming the delta
shell form of the potential (2)–(4). For this assumption to be reasonable, the perturbation radius
r0 should be much less than the Compton wavelength (kF )−1 i.e. there should be satisfied the
estimate

kF r0 � 1. (34)

We see that this physical condition (33) of correctness for the considered δ-shell model
also guarantees the correctness of the obtained asymptotics (26), (27). From the point of view of
graphene physics, assumption (33) means that the radius of the circle contains no more than one
unit cell of the graphene hexagon lattice. So the principal term in our asymptotics describes the
physics well enough. For instance the different pairs (a, b) of intensities satisfying the relation

T (a, b)2
(
a2 + 3b2

)
= C,

with the same constant produce the same conductivity.
Consider now the mobility which can be defined as the ratio



544 N. E. Firsova

µ = σ/(en), (35)
where the carrier density at low temperature is determined as follows:

n = N/S =
1

2π

(
EF
h̄vF

)2

. (36)

Substituting (33), (36) into (35), we find

µ =
µ0

E2
F

, µ0 = eh̄v2F
[
π2T (a, b)2

(
a2 + 3b2

)
Nir0

2
]−1

[1 + o (1)] , kF r0 � 1. (37)

Notice that the obtained asymptotics for the mobility is in a good agreement with the
experimental results published by Bolotin et al. [12].

Consider now the case m 6= 0. Following the same procedure that we used for the case
m = 0, we finally see that the form of asymptotics for mobility greatly differs from that obtained
for the case m = 0 and from the corresponding experimental results. Thus, it is clear that in
the studied suspended monolayer graphene samples m = 0 i,e., there is no gap in spectrum.

4. Conclusion

In the present paper, using both the framework of the model suggested in [6, 7] and
the exact analytic formula for the S-matrix found in [7], we obtained the asymptotics near the
Dirac point for scattering phases, cross-section, conductivity and mobility. We found that these
asymptotics are in good agreement with the experimental results in the case m = 0, while in
the case m 6= 0, the theoretical asymptotics are very far from those obtained experimentally .
This contradiction means that as a matter of fact, in the samples studied experimentally, m = 0.
So, the experimental study of the sample compared to our theoretical results clearly indicates
whether or not there is a gap in the spectrum.
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Spectral properties of a system are strongly associated with its geometry. The spectral problem for the Y-bent
chain of weakly-coupled ball resonators is investigated. The Y-bent system can be described as a central ball
linking three chains consisting of balls of the same radius. There is a δ -coupling condition with parameter α
at every contact point. Specifically, it is assumed that the axis passing through the center of each ball lies
in the same plane and the centers of balls that are the closest to the central ball form an equilateral triangle.
The transfer-matrix approach and the theory of extensions are employed to solve the spectral problem for
this system. It is shown that such system with a certain value of parameter α has at most one negative
eigenvalue in the case of δ -coupling in contact points.

Keywords: negative eigenvalue, delta-coupling, operator extensions theory.

1. Introduction

The interrelation between the geometry of a system and its spectral properties is
one of the most frequently asked questions that arises during research. For example, such
a problem for quantum graphs is widely discussed, see, e.g., [1] – [5] etc. The problem
is especially interesting when one deals with a so-called decorated graph (see, e.g., [4]).
The subject of the present paper is close to this; namely, a system of coupled balls is
considered. More precisely, a Y-type branching chain is studied. We assume that the
Neumann Laplacian is defined inside the balls. The coupling is constructed by using of the
theory of self-adjoint extensions of symmetric operators ( [6] – [11]). The most intriguing
question is about the existence of eigenvalues for the system. In the paper, we proved the
existence of negative eigenvalues under certain conditions.

Let us describe briefly in general terms the problem under consideration. The
geometry of the Y-type chain is shown at figure 1. The elementary cell of this system is a
ball of unit radius. So, the system can be described as the “central”ball connected through
the contact points with three semi-infinite direct chains that consist of similar balls.

To simplify considerations, we assume that there are no external fields. The system
of units with h̄ = 2m = 1 is used. To show the method of solving such problem, a simple
example of Y-geometry with additional assumptions is discussed:

1. for each branch, there is an axis passing through the centers of the balls forming
this branch and all three axes lie in a single plane;

2. balls are numbered as shown at figure 2;
3. centers of the balls No (1,1); (2,1) and (3,1) are the vertices of an equilateral

triangle.
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FIG. 1. Scheme of Y-type chain. FIG. 2. Basic Y-type chain.

The described geometry of the system will subsequently be called “basic Y-type chain”.
The weak coupling between resonators in our case should be considered as follows:

all the interactions between elementary cells occur through pinholes (cf, [6] – [13]) at the
contact points of resonators.

The wave function ψ(x) of the stationary state of a spinless non-relativistic particle
satisfies the stationary Schrödinger equation:

Ĥ(x)ψ(x) = λψ(x).

And it is also considered that the Neumann boundary condition is satisfied at the boundary
of the ball:

∂ψ

∂n

∣∣∣∣
∂Ω

= 0.

We use “restriction-extension”procedure, i.e., first, one constructs a symmetric re-
striction of the initial self-adjoint operator. Then, one considers its self-adjoint extensions,
paying attention to those differing from the initial one. We restrict the operator −∆ on
the set of all functions from D(−∆) that are equal to zero near the contact points xi,j
(index i refers to chain’s number, index j — to ball’s number in a chain and the central ball
has index 0). Thus, the symmetrical operator −∆0 is obtained and its deficiency elements
are Green’s functions G(x,xj, λ) (cf, [14]). In our case, the Green’s function written in
spherical coordinates has the following form:

G (r, θ, ϕ, rj, θj, ϕj, λ) =
∞∑
k=1

∞∑
l=0

l∑
m=−l

Ψklm (r, θ, ϕ)Ψklm (rj, θj, ϕj)

λlk − λ
,

where λlk = x2
lk are the eigenvalues, Ψklm (r, θ, ϕ) = Nlkjl (xlkr)Y

l
m (θ, ϕ) are the eigenfunc-

tions of the Neumann problem for the Laplace operator inside the ball, Y l
m (θ, ϕ) are the

spherical harmonics, jl (x) are the spherical Bessel’s functions, xlk is the kth root of the
following equation: j′l (x) = 0, Nlk are the normalization coefficients.

As mentioned earlier, operator −∆0 is a symmetrical operator, but it is not a self-
adjoint operator. Keeping in mind that all self-adjoint extensions of −∆0 are restrictions of
the adjoint operator, we construct the operator −∆∗0.

Any function U , U ∈ D (−∆∗0), has the following form:

U = U0 +
a

|x− x0|
+ b,

where U0 ∈ D (−∆∗0), U0 (x0) = 0; a, b are some coefficients. Henceforth, the following
designations will be used: a+

i,j, a
−
i,j are the coefficients corresponding to pinholes in the ball
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boundary with number i, j as you can see at the figure 3 (coefficients b+
i,j, b

−
i,j are denoted

by a similar argument).

FIG. 3. Scheme of direct chain: coefficient’s denotation

Using these notations one can describe a self-adjoint extension by the following
relations between the coefficients: {

a+
i,j = −a−i,j−1,

b+
i,j = b−i,j−1.

(1)

Using these notations, one can describe a self-adjoint extension by the following
relations between the coefficients: {

a+
i,j = −a−i,j−1,

b+
i,j = b−i,j−1.

(2)

We assume additionally that there are point-like potentials at the coupling points.
This letter discusses these results only. Full proofs will be published subsequently

in a more detailed paper.

2. δ -coupling

The so-called δ -coupling imposes slightly different requirements for coefficients a±i,j,
b±i,j. Resonators are supposed to be connected at the contact points by δ-coupling with the
parameter α, so the following relations for the coefficients (instead of (2)) are considered:{

a+
i,j = −a−i,j−1,

b+
i,j − b−i,j−1 = αa−i,j−1,

(3)

where coefficients b+
i,j, b

−
i,j−1 have the following form:

b+
i,j = a+

i,j lim
x→xi,j

(G (x,xi,j, λ)−G (x,xi,j, λ0)) + a−i,jG (xi,j+1,xi,j, λ) , (4)

b−i,j−1 = a−i,j−1 lim
x→xi,j

(G (x,xi,j, λ)−G (x,xi,j, λ0)) + a+
i,j−1G (xi,j−1,xi,j, λ) . (5)

b−i,0 = a−i,0 lim
x→xi,1

(G (x,xi,1, λ)−G (x,xi,1, λ0)) +
∑
n6=i

a+
n,0G (xn,1,xi,1, λ), i, n = 1, 3. (6)

Matching of equations (3) and (4,5) for different points xi,j allows one to obtain the discrete
spectrum equation.



548 A. S. Anikevich

The relationship between coefficients a±i,j and a±i,j−1 ∀j ≥ 2, i = 1, 3 can be obtained
by substituting expressions (4,5) and the first equation of the system (3) into the second
equation of this system:(

a+
i,j

a−i,j

)
=

(
0 −1

G(xi,j−1,xi,j ,λ)

G(xi,j+1,xi,j ,λ)

α+2 (G(x,xi,j ,λ)−G(x,xi,j ,λ0))|x=xi,j

G(xi,j+1,xi,j ,λ)

)(
a+
i,j−1

a−i,j−1

)
= Mj

(
a+
i,j−1

a−i,j−1

)
,

where matrix Mj is a transfer matrix (cf [15]). It is simple to find its eigenvalues µ±j and
the corresponding eigenvectors ν±j . Let us choose unit first components of the eigenvectors.
Then, it has the form:

ν±j =

(
1
−µ±j

)
.

The relation between coefficients a±i,1 and a±i,0 where i = 1, 3 can be also obtained
by substituting of expressions (4,6) into system (3). Considering now equality (up to
a multiplicative constant) of one of vectors (assume for certainty vector

(
a+

1,1, a
−
1,1

)T
) to

eigenvector ν and using linear dependence, one obtains the following system:
(µ±2 −X)c+ Aa−2,0 +Ba−3,0 = 0
Ac+ (µ±2 −X)a−2,0 − Ca−3,0 = 0
Bc− Ca−2,0 + (µ±2 −X)a−3,0 = 0

(7)

where c is a constant and the following notations were used:

X = α + 2 lim
x→xi,1

(G (x,xi,1, λ)−G (x,xi,1, λ0)) ,

A = G (x2,1,x1,1, λ) , B = G (x3,1,x1,1, λ) , C = G (x3,1,x2,1, λ) .

It is obvious that system (7) has a nontrivial solution relative to c, a−2,0 and a−3,0 if
its determinant equals zero:(

X − µ±2 G
)3 −

(
X − µ±2 G

) (
A2 +B2 + C2

)
+ 2ABC = 0. (8)

Equation (8) is the main equation to investigate, but due to our additional assumptions,
(namely, A = B = C) it can be rewritten in a simpler form:(

X − µ±2 G
)3 − 3A2

(
X − µ±2 G

)
+ 2A3 = 0. (9)

It should also be noted that equations (8,9) would be an equation on the discrete
spectrum only if the corresponding eigenvalue µ satisfies the condition:∣∣µ−2 ∣∣ < 1 ⇔ X

2G
> 1, (10)∣∣µ+

2

∣∣ < 1 ⇔ X

2G
< −1 (11)

Investigating the solutions of equation (9) and keeping in mind conditions (10,11),
we can obtain the following theorem (we omit the proof in this letter).
Theorem. The basic Y-type chain of weakly coupled ball resonators has at most one
negative eigenvalue if there is condition of δ -coupling in contact points with a coupling

constant α (where α < −9

2

∞∑
k=1,l=0

Nlk

x2
lk

− 3

2πλ0

).
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3. Conclusion

The operator extensions theory model for a base Y-type chain of weakly-coupled
ball resonators was discussed. The main aim was to find negative eigenvalues for such a
system with a certain type of coupling at contact points. For the system with δ -coupling it
was proven that it has at most one negative eigenvalue (under certain conditions imposed
on the coupling constant).
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In this paper we investigate a quantum random number generator based on the splitting of a beam of laser emitted

light. Statistics of random numbers that depend on a parameter characterizing the symmetry of the beam splitter

is theoretically analyzed and simulated. Degree of deviation of the obtained distribution from the uniform random

distribution is investigated on a basis of series of statistical tests.
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1. Introduction

Random numbers are used in many areas of human activity. Historically, two approaches
for their generation have been developed. Pseudorandom number generators are based on
algorithms implemented on a computing device. Physical generators extract randomness out of
a complex physical systems fundamental chaotic behavior, making them suitable for generating
truly random sequences. In particular, quantum random number generators (QRNG) belong
to the second group. There are different ways to implement QRNG using beam separation
[1, 2], entangled photon states [3, 4], processes of photon emission and detection [5, 6, 7],
and quantum noise of lasers [8, 9]. Truly random numbers obtained by using a QRNG find
many applications requiring higher quality random sequences than pseudorandom, including
both classical and quantum cryptography. For example, in quantum cryptography protocols
[10], the initial choice of the basis must be truly random.

Initially, simple QRNG was based on photon passage through a beam splitter, where the
photon randomly follows one of two possible paths after emission [1, 2]. Similar implementa-
tions use several photons and a beam splitter, polarized photons with a polarizing beam splitter,
or photons reflected from a diffraction grating (angular measurements are performed). Another
type of scheme is based on time delay in one of the arms that photons pass [2]. Detecting the
photon’s arrival time, we can thus determine which path it has passed, and denote the short way
as “0”, and the long as “1” to get a sequence of random bits. This approach allows the use of
a single detector, but leads to a loss in bitrate.

Such QRNGs are of great interest in the area of optical computation. Indeed, their
relatively simple structure and the fact that they consist of only the basic optical elements (light
source, detector, waveguide, beamsplitter) make them suitable for implementation as a fully-
functional device or ‘on-chip’ element of a larger setup. However, it is known that imperfectness
of actual optical parts may have a large impact on device functionality. In particular, every
manufacturing technique is characterized by its own technological limits. Therefore, defining
the tolerance of optical element parameters and investigating how they affect random number
statistics remain an important task. In this work, we study angular parameters of the beamsplitter.
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2. Investigation of random distribution statistics obtained directly from a laser

We consider a system consisting only of a laser, which acts as a radiation source, and a
detector. The scheme is shown in fig. 1(a).

FIG. 1. a) Scheme of random distribution generation obtained directly from the
laser, L - Laser, D - detector, PC - computer; b) Scheme of random distribution
generation obtained by using a beam splitter, BS - beam splitter, D1, D2 -
detectors

To obtain a random sequence, data received from the detector must be processed. A ran-
dom variable that determines the binary sequence depends on laser radiation, which can be
represented as a Poisson process:

P (k) =
λke−λ

k!
,

where λ is the parameter of Poisson distribution.
This distribution includes multiphoton states, therefore, additional processing is required

to provide binary generation results. We consider empty samples in a given time interval as
“0”, and samples with any number of photons in it as a “1”. The parameter λ in the Poisson
distribution should be set to λ = ln 2 in order to achieve equal probabilities of zeros and ones in
the final sequence. We simulated random sequence vector corresponding to Poisson distribution
in Mathcad, using the previously calculated λ optimum value. Simulation results are shown in
fig. 2.

FIG. 2. Probability of occurrence of a) several photons (0-5) in the sequence
before processing; b) zeros and ones in the sequence after processing
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3. Investigation of distribution statistics obtained by using a beam splitter

We perform the simulation of a probabilistic process by dividing laser radiation with
a beam splitter and alternating the obtained data from the detectors. The scheme is shown in
fig. 1 b). Taking samples from the two outputs of the beam splitter, we obtain two Poisson
distributions, from which, the final (output) binary distribution is generated.

Encoding of random bits from two sequences obtained after separation of the initial laser
radiation with the beam splitter is performed as follows: if a non-zero number of photons comes
to one of the detectors, and the other detector does not read any photons, such a condition is
considered as a binary value 1. The opposite case is considered to be a binary value 0. Situations
when both sensors detect or do not detect photons are ignored.

Generation of random numbers was modeled in Mathcad using a symmetric beam split-
ter. Angle θ of beam splitter in this case was 45◦. Thus, the beam splitter output generates two
Poisson sequences with the same value λ, which are processed. After modeling and processing,
the final binary sequence was obtained. Its probabilities of zero and one bit values are shown
in fig. 3(b).

FIG. 3. a) Scheme of a beam splitter b) Probability of occurrence of “0” and “1”
in the resulting sequence, depending on the beam splitter angle

4. Investigation of the beam splitter asymmetry influence on the quality of generated
sequences

In case of an asymmetrical beam splitter (in practice it’s very difficult to achieve perfect
symmetry), asymmetry affects the probability of occurrence of ones and zeros in the final
sequence of bits. We considered the effect of beam splitter angle on the quality of the generated
sequence. The beam splitter scheme is shown in fig. 3(a).

Taking samples from two outputs of the beam splitter, we get two Poisson distributions
with parameter values λ1 = λ cos θ, λ2 = λ sin θ. Using these distributions, output binary
distribution is generated. Processing of two sequences is the same as in the previous case.

Beam splitter asymmetry affects the quality of the generated sequence. Statistical pa-
rameters of the binary distribution obtained with an asymmetric beam splitter are shown in fig.
3(b)). By increasing deviation of the beam splitter angle value from θ = 45◦, we increase
the difference in zeros and ones generation probability in the final sequence. It is necessary
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to calculate tolerance of beam splitter angular deviation from 45◦, at which the final binary
sequence can still pass tests of randomness.

5. Investigation of detector influence on the quality of generated sequences

Detector parameters affect the quality of generated sequences of random numbers. Let’s
consider a situation when the percentage of failure of both detectors is equal and detectors do
not operate at some random times. Technically, it means that some random samples in two
sequences produced by the beam splitter will be forced to zero. In this case, if the beam splitter
asymmetry is initially low, the quality of the resulting sequence is not decreased, because the
changes are random and the failure percentage is equal for both detectors. If the asymmetry is
significant, the difference between the probabilities of zeros and ones remains at the same level,
as with perfect detectors.

We also considered a situation when the percentages of failure of the two detectors are
different. In this case, one of the sequences produced by the beam splitter will contain more
zero samples than the other. Thus, the final sequence quality falls, because changes made by
the detectors cause asymmetry in the processing sequences. Fig. 4 illustrates the probability of
“0” or “1” bits occurrence depending on the ratio of detection probability on the first detector
P1 to probability of detection on second detector P2.

FIG. 4. Probability of zero or single bits occurrence in the sequence obtained by
using beam splitters with angles θ = 45◦ and θ = 50◦, probability of detection of
the first detector P1 = 10%

However, asymmetric detectors can compensate the difference in the probabilities of an
asymmetric beam splitter, if their parameters are properly selected. For example, if after the
beam division, in one of two resulting sequences the amount of nonzero samples is greater than
in the other, but it is detected by a device with a larger number of zero counts, an optimal
balance between the probability of occurrence of zeros and ones in the final sequence of bits
can be observed.

6. Analysis of obtained results

A series of tests were used for controlling the quality of simulated sequences. These
tests allowed the determination of all the continuous sequences of identical bits, and comparing
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their distribution with the expected distribution of the series for a truly random sequence. In
particular, we used monobit and twobit tests. During the analysis, we received the following
results: both the sequence obtained directly from the laser, and the sequence obtained using
a symmetric beam splitter, passed all the performed tests of randomness. For an asymmetric
beam splitter, the uniformity of the distribution depended on the angle of the beam splitter. The
generated sequences passed tests for randomness, if the deviation of the angle θ = 45◦ was no
more than two degrees.

The detector parameters also affected the generated sequences; with the difference in the
frequency of detector responses degrading their quality.

7. Conclusion

A theoretical analysis and modeling of a random number distribution obtained directly
from the laser and using the beam splitter, was performed. The influence of beam splitter
parameters and parameters of detector to randomly generated sequence were investigated. The
generated sequences passed tests for randomness if the deviation of the beam splitter angle θ =
from 45◦ was less than two degrees. It was found that asymmetric detectors can compensate
for the difference in the probabilities of an asymmetric beam splitter.
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In this paper we study the tunneling contact of carbon nanotubes with deep impurities and metal. The tunneling

current in contact nanotube-metal was investigated. The dependence of current-voltage characteristic of such contact

on the band gap of the impurity was analyzed. An area with negative differential conductivity was observed.
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1. Introduction

In this paper the tunneling current flowing in contact of carbon nanotubes (CNTs) with
deep impurities and metal. A deep impurity is one which creates a deep energy level [1]. It
should be noted that research related to the study of such impurities, as well as their influence
on the electronic structure and thus the properties of semiconductors is very popular now [2,3].
Such attention to this problem is primarily caused by the trends of modern opto-, micro-
and microwave electronics, and, specifically, more stringent requirements for the quality of
semiconductor materials having content of impurities which give rise to deep levels in the
band gap. The presence of these impurities impart both positive and negative characteristics.
Therefore, to minimize undesirable effects, it is important to study the nature of deep impurities
to make the most effective use of positive effects on the functional characteristics of these
devices.

At the same time, the attention of researchers is attracted to tunneling, as devices based
on the tunneling effect have become a part of the basic elements of modern electronics and are
thus of great practical application.

2. Statement of the problem and basic equations

The matrix form of the Hamiltonian of the problem is:

H =



0 f α1 β1 γ1 ∆1

f ∗ 0 α2 β2 γ2 ∆2

α∗1 α∗2 t1 0 0 0

β∗1 β∗2 0 t2 0 0

γ∗1 γ∗2 0 0 t3 0

∆∗1 ∆∗2 0 0 0 t4


(1)

where |f | determines the energy spectrum of the CNT; ti - the value of the energy level of deep
impurities, α, β, γ, ∆ - hopping integral between the sublattices and impurity levels.

Hamiltonian (1) can be rewritten by using the structure of the block matrices [4]:
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H =



0 f α1 β1 γ1 ∆1

f ∗ 0 α2 β2 γ2 ∆2

α∗1 α∗2 t1 0 0 0

β∗1 β∗2 0 t2 0 0

γ∗1 γ∗2 0 0 t3 0

∆∗1 ∆∗2 0 0 0 t4


=

[
H11 H12

H21 H22

]
.

Considering the electronic system in the long-wave approximation, we can write the
effective Hamiltonian of the problem [4]:

Heff = H11 −H12H
−1
22 H21. (2)

We solve the eigenvalue problem and find:

λ21,2 =
R +Q±

√
(R−Q)2 − 4

(
εD∗ + ε∗D − |ε|2 − |D|2

)
2

,

R = −

(
|α1|2

t1
+
|β1|2

t2
+
|γ1|2

t3
+
|∆1|2

t4

)
,

Q = −

(
|α2|2

t1
+
|β2|2

t2
+
|γ2|2

t3
+
|∆2|2

t4

)
,

D =

(
α1α

∗
2

t1
+
β1β

∗
2

t2
+
γ1γ

∗
2

t3
+

∆1∆
∗
2

t4

)
.

(3)

Parameters R, Q reflect the probability of a jump from the first (second) CNT sublattice
to the impurity, while D reflects the probability of a jump from one CNT‘s sublattice to another.

We note that the dispersion relation, which describes the properties of CNTs, is [5]:

ε (p, s) = |f | = ±γ
√

1 + 4 cos(apx) cos
(πs
m

)
+ 4 cos2

(πs
m

)
, (4)

where s = 1, 2, . . . ,m, the nanotube is of the type (m, 0), γ ≈ 2.7 eV, a = 3b/2h̄, b = 0.142 nm
is the distance between the adjacent carbon atoms.

Typical band structure of carbon nanotube with deep impurities is presented in Fig. 1.
In the framework of the Kubo theory, the expression for the current density of the

contact is the following [6]:

J = 4πe |T |2
+∞∫
−∞

dEνA(E + eV )νB(E)(nf (E)− nf (E + eV )),

νA(E) =
∑
p

δ(E − EA
p ); νB(E) =

∑
q

δ(E − EB
q ),

(5)

where δ(x) is the Dirac delta function, νA(B)(E) is the tunneling density of states, nf (E) is
the equilibrium number of fermions with energy E. Here and below, we use the approach
of “rough” contact T (tunneling matrix element between the two states): (in fact, we impose
restrictions on the geometry of the contact that is, in what follows we consider the case where
the nanotube is perpendicular to the surface of the contact material).
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FIG. 1. The band structure of CNT (7,0) with the deep impurities

The metal dispersion law of free electrons in the effective-mass m is:

EB
q =

p2

2m
. (6)

3. Results

Equation (5) was solved numerically. The current-voltage characteristic (CVC) of the
contact is presented in Fig. 2.

A significant influence of the parameters on the behavior of the current-voltage curve
can be seen. It should be noted that when R increases, both the current and the area with
negative differential conductivity decrease. Also, it should be noted that we have an area with
negative differential conductivity (NDC).

The current-voltage characteristic of the contact in the case of different values of D is
shown in Fig. 3.

The effect of parameter D appears to weaken of the current, which can be attributed to
a stronger bond between the electrons and the impurity levels.

Therefore, we can conclude that the influence of impurities on the tunneling character-
istics of CNT-metal contact was investigated. The effect of hopping integrals, and the width
of the band gap of deep impurities on the dependence of the tunneling current and the voltage
between the contact were also observed. By careful selection of the impurity parameters (D, R,
Q), we can control the CVC and the value of the area with NDC. This effect can be used in
many practical applications (for example in tunneling diodes).
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FIG. 2. The current-voltage characteristics of metal-doped CNTs (Q = 0.03 eV,
D = 0.05 eV - fixed): a) R = 0.02 eV; b) R = 0.04 eV; c) R = 0.1 eV

FIG. 3. The current-voltage characteristics of metal-doped CNTs (R = 0.02 eV,
Q = 0.03 eV - fixed): a) D = 0.01 eV; b) D = 0.04 eV; c) D = 0.06 eV
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The paper deals with the problem of quantum particle storage in a nanolayered structures. The system of a few
electrons interacting via a δ-potential is considered. The particles are placed into a two-dimensional deformed
waveguide. From a mathematical point of view, the bound state of the system means that the corresponding
Hamiltonian will have eigenvalues. To treat a multi-particle problem, the Hartree-Fock approach and the
finite element method are used. Three different types of the perturbation are considered: deformation of the
layer boundary, a small window in a wall between two layers and a bent layer. The systems of 2–10 particles
with various total spins are studied. The dependence of the minimal deformation parameter, which keeps
bound state on the number of particles, is given. Comparison of the storage efficiencies in those cases is
made.
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1. Introduction

The problem of the existence of the bound states of quantum particles is very
important in physics. Its usefulness is demonstrated by the particle storage problem. It is
known that a particle can be stored in curved nanolayers. In the terms of math it means the
existence of the discrete spectrum of the corresponding Hamiltonian. The single particle
system in an undeformed nanolayer has an empty discrete spectrum. But deformation of the
layer causes the appearance of an eigenvalue (see, e.g., [1–7]). Increasing the curvature
leads to increasing eigenvalue numbers. In many applications it’s necessary to store more
than one particle and, consequently, to deal with the multi-particle problem [8, 9]. As an
example of such an application, the storage of hydrogen in nanolayed structures can be
given. This can be used to produce an effective and safe fuel container. In this work, the
equations for multi-particle problem are simplified by the Hartree-Fock approach and the
eigenvalue problem is solved numerically by the finite element method.

2. Theory background

Consider a number of interacting electrons placed into a nanolayer or a waveguide.
Neglecting the spin-orbit interaction, one gets the following form for the Hamiltonian of
the multi-particle system:

Ĥ =
∑
k

(
− h̄2

2m
∇2

k + Uk

)
+

1

2

∑
j,k
j 6=k

Vjk =
∑
k

Ĥk +
1

2

∑
j,k
j 6=k

Ĥjk, (1)



560 I. F. Melikhov, I. Yu. Popov

where m is particle’s mass, Uk is the external field potential, Vjk is potential of the particles’
interaction. Solving the multi-particle problem is a Herculean task, so one needs to simplify
the equation (1). Application of the Hartree method for two particle problem was described
in [10]. In this case, the wavefunction of the system is sought in the form

ψ(x1, x2, . . . , xn) = ψ1(x1)ψ2(x2) . . . ψn(xn), (2)

where ψi is the single particle function, xi represents the set of four coordinates: three
spatial ones and a spin one. Substituting (2) into (1) and using the variational principle,
one can obtain Hartree equations (see [11]):Ĥk +

∑
j

j 6=k

∫
ψ∗j (xj)Ĥjkψj(xj) dxj

ψk(xk) = Ekψk(xk) (k = 1, n). (3)

The Hartree method is easy to implement but this approach has one significant disadvan-
tage; the electronic wavefunction must satisfy the antisymmetry principle, i.e. it must be
antisymmetric with respect to the interchange of all (space and spin) coordinates of one
fermion with those of another. That is,

ψ(x1, x2, . . . , xi, . . . , xj, . . . , xn) = −ψ(x1, x2, . . . , xj, . . . , xi, . . . , xn). (4)

This drawback was avoided by Fock. The idea of the Hartree-Fock method is to replace the
wavefunction representation (2) by the Slater determinant:

ψ(x1, x2, . . . , xn) =
1√
N !

∣∣∣∣∣∣∣∣
ψ1(x1) ψ2(x1) . . . ψn(x1)
ψ1(x2) ψ2(x2) . . . ψn(x2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
ψ1(xn) ψ2(xn) . . . ψn(xn)

∣∣∣∣∣∣∣∣ . (5)

Again, engaging the variational principle, one can obtain (see [11]) the Hartree-Fock
equations:Ĥk +

∑
j

j 6=k

∫
ψ∗j (xj)Ĥjkψj(xj) dxj

ψk(xk)−
∑
j

j 6=k

[∫
ψ∗j (xj)Ĥjkψk(xj) dxj

]
ψj(xk) =

= Ekψk(xk) (k = 1, n). (6)

To find the discrete spectrum, of the system one has to remember that all eigenval-
ues E1, . . . , En must be less than the threshold (the bottom of the continuous spectrum,
Ebot = π2h̄2/(2mL2), where L is the waveguide width at infinity).

3. Numerical model

For the numerical model, we assume zero external field potential Uk and δ-potential
of particles interaction:

Vjk = U0δ(rj − rk), (7)

where U0 is a constant which describes the intensity of the interaction, rj and rk are spatial
coordinates of the particles. We assume every electron has predefined spin s = 1/2 or
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s = −1/2. Applying those assumptions, one rewrites the Hartree-Fock equations (6) in
simpler form:− h̄2

2m
∇2

k +
∑
j

j 6=k

U0 |ψj(rk)|2

ψk(rk)−
∑
j

j 6=k

U0δsj ,sk |ψj(rk)|2 ψk(rk) = Ekψk(rk) (k = 1, n)

or − h̄2

2m
∇2

k +
∑
j

j 6=k

U0(1− δsj ,sk) |ψj(rk)|2

ψk(rk) = Ekψk(rk) (k = 1, n), (8)

where sj, sk are spin values of the corresponding electrons. All problems are solved in 2D.
Three types of geometries are studied: i) a waveguide with deformed boundary (fig. 1);
ii) two layers coupled through window (fig. 2); iii) a bent waveguide (fig. 3). Dirichlet
conditions are valid at the waveguide boundaries and Neumann conditions are assumed
at the ends of the waveguide. For the first configuration, the deformation is described
by an analytical function. Its parameter is H/L (deformation width b is constant). The
parameter of the second configuration is a/L. And for the last one is L/R (the length of
the curved arc is constant). In all cases, larger geometry parameter values correspond to
larger deformations of the waveguide. To find the numerical solution of (8), the FEM is

FIG. 1. Deformed waveguide FIG. 2. Window-coupled waveguides

FIG. 3. Bent waveguide

used. The package FreeFEM++ is engaged. The algorithm of the solution is the same as
in [10]. First, assume all functions ψk to be zero as the first approximation. Then solve the
first equation for ψ1. After that, insert it into the second equation and solve it with respect
to ψ2. The procedure is repeated until the difference between two last approximations
becomes small enough.

4. Results

A number of computations for systems with different number of particles and various
total spin values were made. While the interaction intensity was constant, the critical
value of the geometry parameter was sought. The critical value is the minimal value of
the parameter which maintains the bound state of the system. The results are shown at



562 I. F. Melikhov, I. Yu. Popov

the figures below. As expected, more particles and bigger total spins lead to increasing
deformation which is needed to store the particles. This means that it is more difficult to
store these particles. But, one sees an interesting effect which is valid for all geometries. It
was shown that to store an even number of particles with zero total spin, the deformation
may be the same or even less than that for a system of one less particle. Comparison of
the dependencies slopes in figures 4–6 shows the efficiency of the window-coupled type
deformation. In contrast, the bent waveguide is the least efficient.

FIG. 4. Deformed waveguide: critical value of the geometry parameter

FIG. 5. Window-coupled waveguides: critical value of the geometry parameter
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FIG. 6. Bent waveguide: critical value of the geometry parameter
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Current-voltage characteristics of tunnel contact between semiconducting (and conducting) carbon nanotubes (CNT)

of various diameters and system of periodically located quantum dots (and also in contact to metal) was obtained

using density of states (DOS) investigation. DOS has been calculated by means of the method of attached

cylindrical waves. At certain parameters for quantum dots, the current-voltage characteristics observed testify to

the presence of negative differential conductivity.
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1. Introduction

In the last few years, the interest of many researchers has been focused on the properties
of carbon nanotubes [1]. It is known from classical works that the “Arm-chair” type of nanotube,
in Huckel’s approximation, are conductors at any temperature [2]. However, using the linear
augmented cylindrical wave (LACW) method allows a gap in the band structure of this type of
nanotube. This makes it possible to use them in different applications. The simplest method to
experimentally verify the change in the state density is to study the tunneling current [3, 4], for
example, of the contact with quantum dots. In these papers, the density of states were calculated
by the method of Green’s functions [5], however, not every system has a density of states for
electrons can be determined analytically. For such a system, the more versatile method is based
on ab initio calculations .

Theoretically, investigation was done by tight-binding calculations only, but it is known
from the band structure theory of solids that the linear combination of atomic orbitals (LCAO)
basis is adequate to achieve good results for the valence band, but not for the conduction band.
The reason for this is that this basis does not include the delocalized conducting plane-wave
type functions. As to the π electron band structure models, they are adequate for calculating
the energy curves located in a Fermi level region only. Therefore, we have calculated the
complete band structures of metallic armchair (n, n) CNTs with 4 < n < 100 and zigzag
semiconducting (0, n) CNTs with 10 < n < 49 indivisible by 3 in terms of a LACW method.
The LACW method is just a reformulation of the linear augmented plane wave (LAPW) theory
for cylindrical multiatomic systems. Its basis functions have both localized and delocalized
components. Finally, the main argument for using cylindrical waves is to account for the
cylindrical geometry of the nanotubes in an explicit form that offers obvious advantages [6].
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2. Basic equations

2.1. Cylindrical muffin-tin potential

Similar to the LAPW technique used in the band structure theory of solids, we apply the
muffin-tin (MT) and local density functional approximations for electronic potentials of tubules.
However, the potential of a nanotube differs drastically from that of bulk material. Indeed,
infinite motion of an electron is possible in any direction in a crystal, but it is obviously limited
in the case of nanotubes by their size and cylindrical shape. Therefore, in terms of the LACW
method, the atoms of nanotube are considered to be enclosed between two impenetrable cylinder-
shaped potential barriers Ωa and Ωb, because there are two vacuum regions Ωv on the outside
and on the inside of the tubule. The radii a and b of these barriers are chosen so that the region
confined by barriers accommodates a significant portion of the electron density of the tubule.
Based on our previous calculations of the CNTs, we take a = RNT +2.3 a.u., b = RNT +2.3 a.u.,
where, RNT is radius of the tubule. Finally, the electronic potential is spherically symmetrical
in the regions of MT-spheres of atoms α and constant in the interspherical region. Inside these
spheres, we calculate the electron potential by means of the local density approximation with
Slater exchange. As usually, the radii of the MT spheres were chosen so that the atomic spheres
touch, but do not overlap. Outside the MT spheres up to the impenetrable potential barriers Ωa

and Ωb, the potential is approximated by a constant value taken to be the energy zero point [6,7].

2.2. Solution of the Schrdinger equation

The basis functions called LACWs are solutions of the Schrodinger equation for the
interspherical and MT regions of tubule sewn together so that the resulting LACWs are con-
tinuous and differentiable anywhere in the system. In the interspherical region, the LACWs
are the solutions of the Schrdinger equation for free electron movement in the infinitely long
potential well between two impenetrable cylindrical potential barriers. Here, the solutions are
the superpositions of the cylindrical Bessel functions of the first and second kinds. In any MT
sphere, the solutions are expanded in terms of the spherical harmonic functions and the eigen-
functions of the radial Schrdinger equation. To obtain the basis wave functions, the solutions of
Schrdinger equation in these two regions are matched on the surfaces of the MT spheres so that
both the basis functions and their normal derivatives are continuous across these surfaces. The
eigenfunctions of electrons in the tubule are the linear superpositions of these basis LACWs.
The coefficients of the expansions of any eigenfunction in terms of these basis functions and
the electron dispersion curves are defined by the variational method.

In this work, we apply the symmetry-adapted version of the LACW method developed
previously. In this version, one takes into account that every single-walled CNT can be generated
by first mapping only two nearest-neighbor C atoms onto a surface of a cylinder and then using
the rotational and helical symmetry operators to determine the remainder of the tubule. With
account of these symmetries, the cells contain only two carbon atoms, and the ab initio LACW
theory becomes applicable to any tubule independent of the number of atoms in a translational
unit cell. In the LACW studies, we use only this structural information as input parameters.

The dispersive relation for quantum wells is similar to the band structure of superlat-
tice [8]:

EQD = ε0 −∆ cos(p),

where ε0 is electron energy in quantum well, ∆ is tunnel integral, defining by overlap of electron
wave functions of nearest wells.
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a) b)

FIG. 1. Density of states for CNT arm-chair type: a) Huckel’s approximation;
b) LACW method

The density of states for arm-chair CNTs, calculated under the π-electron approxima-
tion [2], was shown in Fig. 1a. The LACW method allows in the calculation consideration of
more deep-seated σ-orbital electrons at very high temperatures (∼ 25–27 eV) to get a gap in
the energy spectrum (see Fig. 1b). This fact allowed the calculation of the electrical properties
of conductive nanotubes in contact with the quantum dots.

FIG. 2. Current-voltage characterictics for CNT type “zig-zag” of various diam-
eter ((10, 0) – (50, 0)) in contact with quantum dots system
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3. Tunnel characteristics

In order to study tunneling effects, we will set Hamiltonian of our model in a form:

H =
∑
p

εAp a
+
p ap +

∑
q

εBq b
+
q bq +

∑
pq

Tpq(a
+
p bq + b+q aq), (1)

where a+p , ap - production (annihilation) operators of electrons with a momentum p in carbon
nanotubes; εAp - electron energy spectrum of nanotubes (1); Tpq - matrix element of the operator
of tunneling between conditions p and q; b+q , bq - creation (annihilation) operators of electrons
with an momentum q in matter, resulted in contact with carbon nanotubes; εBp - electron energy
spectrum of quantum dots. Note, that in (1) p and q are multi-indices. Also, if we consider the

external electric field ~E which we will investigate using the gauge: ~E = −1

c

∂ ~A

∂t
, it is possible

to take it into account by means of replacement the corresponding momentum components:
p→ p− eA/c.

Defining a tunnel current as [5]:

J = ie
∑
pq

(
a+p bq − b+q ap

)
, (2)

and carrying out calibration transformation [5]:

ap → S−1apS,

S = exp

(
ieV t

∑
p

a+p ap

)
,

where V applied, for definiteness, to CNT voltage, - electron charge, it is possible to reduce
formally a problem about calculation characteristic current-voltage to calculation of the response
of the operator: Jt = ie

∑
pq

(
a+p bqe

ieV t − b+q aqe−ieV t
)

on external action [5]:

Ht =
∑
pq

Tpq
(
a+p bqe

ieV t + b+q aqe
−ieV t

)
.

Within the framework of Kubo theory, the answer is set by the formula:

J = 4πe |T |2
∞∫

−∞

dενA (ε+ eV ) νB (ε) (nf (ε)− nf (ε+ eV )),

νA (ε) =
∑
p

δ
(
ε− εAp

)
, νB (ε) =

∑
q

δ
(
ε− εBq

)
,

(3)

where δ(x) - Dirac delta-function, νA(B) (ε) - tunnel density of states; nf (ε) - equilibrium
number of fermions with energy ε. We used the approach of “rough” contact: Tpq = T (a
nanotube is perpendicular to the quantum dot surface). After integrals calculation entering in
(3) it is easy to obtain current-voltage characteristic of the contact presented in Fig. 2–3.

The existence of a descending section of the current-voltage characteristic of the tun-
neling conductance between the nanotubes and the quantum dots system can be clearly seen in
Fig. 2. This indicates the presence of negative differential conduction. The descending section is
observed at the same parameters of quantum dots: ε0 = 22 eV - energy of electrons a quantum
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FIG. 3. Current-voltage characteristics for CNT type “arm-chair” of various di-
ameter ((4,4) – (9,9)) in contact with quantum dots system

hole, and ∆ = 3 eV - the tunnel integral defined by overlapping of wave electronic functions
of the next holes. The size of the resistance obtained in such a system was R ≈ −24 kOhm.

Similarly, the current-voltage characteristics for semiconducting CNT of various diam-
eters ((10,0)–(50,0)) in contact with systems of quantum dots are represented in Fig. 2. For
semiconducting CNT in contact with a quantum dots system, the descending section in the
current-voltage, characteristic of tunnel conductivity, was also observed. The resistance ob-
tained for such a system was R ≈ −18 kOhm (should be −18 kOhm) for the same parameters
of the quantum dots system.

It should be noted that the descending section in CVC for system CNT-QD is absent in
the case of pi-approximation for CNT DOS.

The obtained dependencies can have the important practical applications for studying
noncontact and the design of tunneling diodes based on carbon nanotubes.

4. The conclusion

In summary we will formulate the basic conclusions from the made work.
(1) Current-voltage characteristics of contacts CNT - a superlattice of quantum dots are

obtained.
(2) The descending section with negative differential conduction is observed for certain

characteristics of quantum dots. This effect can be used to create various frequency
amplifiers.
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We consider Green’s function for layered system. We express it in terms of the well-known scalar s and p ones.

For a single NIM layer in vacuum and with a single dispersive Lorentz form for equal electric and magnetic

permeabilities ε(ω) and µ(ω), we obtain an explicit form for Green’s function. Also we find Green’s function for

multilayered system and obtain recurrence relations for its coefficients.

Keywords: metamaterial, point perturbation, refraction, NIM, Maxwell’s equations.

1. Introduction

Metamaterials are artificial materials engineered to have properties that may not be
found in nature. In particular, they may have negative refractive index. Such materials are
called negative index materials (NIMs). In general, a NIM system is defined by the property
that for certain frequencies ω the electric permeability ε(ω) or the magnetic permeability µ(ω)
becomes negative. The NIM situation is the case where both at the same frequency ω̂ become
negative and are equal –1. Recently, NIMs have come under increased scrutiny (see [1], [2]).

The existence of NIMs has been debated in previous theoretical literature (see [3–8]). In
particular, the sign of the index of refraction, which involves taking a square root n = ±√εµ,
has been the subject of discussion. Naively it equals +1, in both vacuum and a NIM system
but this result is challenged for the NIM situation. The use of the phenomenological Maxwell’s
equations should solve possible ambiguities.

2. Model

As in [9], where the following model is fully described, the starting point is the set
of phenomenological Maxwell’s equations for the case where the permanent polarization and
magnetization are absent (ε0 = µ0 = 1),

∂tD (x, t) = ∂x ×H (x, t) , ∂tB (x, t) = −∂x × E (x, t) ,

∂x ·D (x, t) = 0, ∂x ·B (x, t) = 0,
(1)

with the constitutive equations

D (x, t) = E (x, t) + P (x, t) , P (x, t) =

∫ t

t0

dsχe (x, t− s) · E (x, t) ,

H (x, t) = B (x, t)−M (x, t) , M (x, t) =

∫ t

t0

dsχm (x, t− s) ·H (x, t) ,

where χe (x, t) and χm (x, t) are the electric and magnetic susceptibility tensors. We assume that
the system is dispersive, nonabsorptive and use causality and passivity conditions. Causality
requires that the susceptibilities χe (x, t) = χm (x, t) = 0 for t ≤ t0 (t0 = 0). Passivity means
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that the electromagnetic energy εem(t) =
1

2

∫
dx
{
E (x, t)2 +H (x, t)2} cannot increase as a

function of time. We use the Fourier transform,

f̂(z) =

∫ ∞
0

dt exp [izt] f(t), f(t) =
1

2π

∫
Γ

dz exp [−izt] f̂(t),

where Γ is a path running from −∞ to +∞ at some distance δ > 0 parallel to the real axis,
z = ω + iδ, δ → 0 (=z > 0). We consider the isotropic system, χ̂(x, z) = χ̂(x, z)U where U is
the unit matrix 3× 3, and we are dealing with a single dispersive Lorentz contribution ε(ω) =

µ(ω) = 1− Ω2

ω2 − ω2
0

. Then ω̂ =

√
ω2

0 +
Ω2

2
is the NIM frequency as ε(±ω̂) = µ(±ω̂) = −1.

Maxwell’s equations (1) can be expressed in terms of Fourier transforms,

Le(z) · Ê(x, z) = ge(x, z), Lm(z) · Ĥ(x, z) = gm(x, z),

where

Le(z) = z2ε(x, z) + (∈ ·p) · µ(x, z)−1 · (∈ ·p),
Lm(z) = z2µ(x, z) + (∈ ·p) · ε(x, z)−1 · (∈ ·p),

ge(x, z) = izE(x, 0) + i(∈ ·p) ·
{
µ(x, z)−1 ·H(x, 0)

}
,

gm(x, z) = izH(x, 0)− i(∈ ·p) ·
{
ε(x, z)−1 · E(x, 0)

}
.

Here Le(z) and Lm(z) are the electric and magnetic Helmholtz operators, ∈ is the
Levi-Civita symbol, and p = −i∂x so (∈ ·p) · f = i∂x × f . Let now

Re(z) = Le(z)−1, Rm(z) = Lm(z)−1.

Then
Ê(x, z) = Re(z) · ge(x, z), Ĥ(x, z) = Rm(z) · gm(x, z).

Next we introduce Green’s functions
Ge,m(x, y, z) = 〈x|Re,m|y〉 ,

Le,m(z) ·Ge,m(x, y, z) = δ(x− y)U.

Then E(x, t) is given by the inverse Fourier transform of

Ê(x, z) =

∫
dyG(x, y, z) · g(y, z),

where g(y, z) is some integrable initial field configuration or an external current density.
We only consider the electric Green’s function and drop the superscript e. We also

assume that the system is layered, and layers are parallel to the X1X2-plane and there is the
translation invariance in the X1 and X2 directions (the three Cartesian axes are denoted by X1,
X2 and X3 with corresponding unit vectors e1, e2 and e3). Then the permeabilities only depend
on x3,

ε(x, z) = ε(x3, z) = εj(z), µ(x, z) = µ(x3, z) = µj(z).

We denote x = x3, y = y3 and let k = (k1, k2, k3), κ = (k1, k2, 0) = κeκ = k⊥⊥e3,

ζ2(x, κ, z) = z2ε(x, z)µ(x, z)− κ2.

We obtain

G(x, y, z) =
1

2π

∫
dκ exp[−iκ · (x⊥ − y⊥)]Gκ(x, y, z),

Gκ(x, y, z) = Gs(x, y, z, κ) +Gp(x, y, z, κ),
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where
Gs(x, y, z, κ) = Gs(x, y, z, κ) e3 × eκe3 × eκ,

Gp(x, y, z, κ) =

(
eκ +

iκ

ζ(x)2
∂xe3

)(
eκ −

iκ

ζ(y)2
∂xe3

)
Gp(x, y, z, κ),

s-polarization part Gs and p-polarization part Gp of Green’s function are scalar and satisfy{
z2ε(x, z)− p z

2ε(x, z)

ζ(x, κ, z)2
p

}
Gp(x, y, z, κ) = δ(x− y),{

ζ(x, κ, z)2

µ(x, z)
− p 1

µ(x, z)
p

}
Gs(x, y, z, κ) = δ(x− y).

3. Results

3.1. Single NIM layer

In [9] the simplest layered system, i.e., two half spaces filled with NIM and vacuum
was considered and the expressions for Green’s function were found. In our investigation we
considered the single NIM layer in a vacuum,

ε(x, z) =

{
ε(z), x ∈ (a, b)

1, x /∈ (a, b)
, µ(x, z) =

{
µ(z), x ∈ (a, b)

1, x /∈ (a, b)

with point perturbation located in a vacuum (y < a). For Gs, Gp with frequencies z = ±ω̂ we
find explicit expressions for case ω̂ > κ (radiative regime) and expressions in asymptotic form
for case ω̂ < κ (evanescent regime) the same way [9]. We denote

ρ(ω̂) =

√∣∣∣ω2 (1− Ω2/ (ω2 − ω2
0))

2 − κ2

∣∣∣.
In the reflection case (x, y < a < b), the receiver located in x and the point perturbation

located in y are on the one side of the layer (see Fig. 1), and for ω̂ > κ,

Gp(x, y,±ω̂) = ±ρ(ω̂)

2iω̂2
exp[±iρ(ω̂)|x− y|],

Gs(x, y,±ω̂) = ± 1

2iρ(ω̂)
exp[±iρ(ω̂)|x− y|],

where the term responsible for reflection is absent, i.e., there is no reflection at the frequencies
±ω̂ for which ε(±ω̂) = µ(±ω̂) = −1.

FIG. 1. Reflection case (x > y)
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For ω̂ < κ,

Gp(x, y, z)
z→±ω̂∼

ρ(ω̂)

2ω̂2
exp [−ρ(ω̂)|x− y|] +

Ω2

4ω̂2κ2

ρ(ω̂)3 (1− 4ρ(ω̂)2)

(z − ω̂) (z + ω̂)
exp [−ρ(ω̂)(a− x+ a− y)] ,

Gs(x, y, z)
z→±ω̂∼

− 1

2ρ(ω̂)
exp [−ρ(ω̂)|x− y|] +

Ω2

4κ2

ρ(ω̂) (1− 4ρ(ω̂)2)

(z − ω̂) (z + ω̂)
exp [−ρ(ω̂)(a− x+ a− y)] ,

where the reflection term is still present, but we encounter dampening behavior, typical for the
evanescent situation.

In the refraction case (y < a < x < b), the receiver is in the NIM layer (see Fig. 2),
and for ω̂ > κ,

Gp(x, y,±ω̂) = ±ρ(ω̂)

2iω̂2
exp [±iρ(ω̂)(a− x+ a− y)] ,

Gs(x, y,±ω̂) = ± 1

2iρ(ω̂)
exp [±iρ(ω̂)(a− x+ a− y)] ,

for ω̂ < κ,

Gp(x, y, z)
z→±ω̂∼

Ω2

4ω̂2κ2

ρ(ω̂)3 (1 + 4ρ(ω̂)2)

(z − ω̂) (z + ω̂)
exp [−ρ(ω̂)(x− y)]− 2ρ(ω̂)3

ω̂2
exp [−ρ(ω̂)(a− x+ a− y)] ,

Gs(x, y, z)
z→±ω̂∼

− Ω2

4κ2

ρ(ω̂) (1 + 4ρ(ω̂)2)

(z − ω̂) (z + ω̂)
exp [−ρ(ω̂)(y − x)]− 2ρ(ω̂) exp [−ρ(ω̂)(a− x+ a− y)] .

FIG. 2. Refraction case

In the transmission case (y < a < b < x), the receiver and point field source are located
on different sides the NIM (see Fig. 3), for ω̂ > κ,

Gp(x, y,±ω̂) = ±ρ(ω̂)

2iω̂2
exp [±iρ(ω̂) (x− y − 2(b− a))] ,

Gs(x, y,±ω̂) = ± 1

2iρ(ω̂)
exp [±iρ(ω̂) (x− y − 2(b− a))] ,
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for ω̂ < κ,

Gp(x, y, z)
z→±ω̂∼ −2ρ(ω̂)3

ω̂2
exp [−ρ(ω̂) (x− y − 2(b− a))] ,

Gs(x, y, z)
z→±ω̂∼ 2ρ(ω̂) exp [−ρ(ω̂) (x− y − 2(b− a))] .

FIG. 3. Transmission case

In retrieving E(x, t), the pole contributions in Green’s function give rise to terms that
oscillate in time according to exp[±iω̂t], so no dampening occurs in a time dependent fashion,
a property observed earlier in [2] for the single layer case.

3.2. Multilayered system

Also, we find Green’s function for the multilayered system. The point perturbation is
located in layer number 0. There are n layers in the positive direction of the x-axis and m
layers in the negative, m+ n+ 1 layers in total (see Fig. 4).

FIG. 4. Multilayered system

Let ε(x, z) = εk(z) and µ(x, z) = µk(z) if x ∈ (xk, xk+1), where k = −m, . . . , n,
x−m = −∞, xn+1 = +∞. We consider below only the p-polarized part Green’s function,
omitting subscript p,

G(x, y, z) =
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=



D−me
−iζ−mx, x ∈ (−∞, x−(m−1));

B−(m−1)e
−iζ−(m−1)x + C−(m−1)e

−iζ−(m−1)x +D−(m−1)e
−iζ−(m−1)x, x ∈ (x−(m−1), x−(m−2));

A−(m−2)e
−iζ−(m−2)x +B−(m−2)e

−iζ−(m−2)x + C−(m−2)e
−iζ−(m−2)x+

+D−(m−2)e
−iζ−(m−2)x, x ∈ (x−(m−2), x−(m−3));

. . . . . .

A−1e
−iζ−1x +B−1e

−iζ−1x + C−1e
−iζ−1x +D−1e

−iζ−1x, x ∈ (x−1, x0);

A0e
−iζ0x +B0e

−iζ0x + C0e
−iζ0x +D0e

−iζ0x + E−e
−iζ0x, x ∈ (x0, y);

A0e
−iζ0x +B0e

−iζ0x + C0e
−iζ0x +D0e

−iζ0x + E+e
iζ0x, x ∈ (y, x1);

A1e
−iζ1x +B1e

−iζ1x + C1e
−iζ1x +D1e

−iζ1x, x ∈ (x1, x2);

. . . . . .

An−2e
−iζn−2x +Bn−2e

−iζn−2x + Cn−2e
−iζn−2x +Dn−2e

−iζn−2x, x ∈ (xn−2, xn−1);

An−1e
−iζn−1x +Bn−1e

−iζn−1x + Cn−1e
−iζn−1x, x ∈ (xn−1, xn);

Ane
−iζnx, x ∈ (xn, +∞).

Here coefficients A• are for waves that come from left outside of current layer, coeffi-
cients B• are for waves reflected from the nearest left interface, coefficients C• are for waves
reflected from the nearest right interface and coefficients D• are for waves that come from right
outside of current layer. Coefficients E± are for waves that come direct from point perturbation
located in y. We denote

ζ2
i (κ, z) = z2εi(z)µi(z)− κ2,

K0 =
ζ0

2iz2ε0

, λ±i,j =
εiζj ± εjζi

εiζj

and introduce the Fresnel reflection coefficients

ri,j = −εiζj − εjζi
εiζj + εjζi

or ri,j = −
λ−i,j
λ+
i,j

.

As is easy to see rj,i = −ri,j . After some calculations, we obtain E± = K0e
∓iζ0y that

means E±e
±iζ0x = K0e

iζ0|x−y| and Green’s function is the same for x ∈ (x0, x1). Denoting

ak = 2e−iζkxk , bk = λ+
k,k−1e

−iζk−1xk , ck = 2eiζkxk , dk = λ−k,k−1e
−iζk−1xk ,

ek = 2eiζkxk+1 , fk = λ+
k,k+1e

iζk+1xk+1 , gk = 2e−iζkxk+1 , hk = λ−k,k+1e
iζk+1xk+1

we obtain for k = 1, . . . , (n− 1),

Ak = αkAn, Bk =
dk
ck
γkAn, Ck =

hk
gk
αk+1An, Dk−1 = αkAn,

for k = −(m− 1), . . . , 0,

Ak = αkAn + βk, Bk =
dk
ck

(γkAn + δk) , Ck =
hk
gk

(αk+1An + δk+1) , Dk−1 = αkAn + δk,

but C0 =
h0

g0

α1An and A−(m−1) = 0, where αk, βk, γk, δk satisfy the following recurrence

relations
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αk = α̃kαk+1 −
(
a d

b c

)
k

γk+1 and αn−1 = α̃n−1,

where

α̃k =
fk
ek

(
1−

(
a d e h

b c f g

)
k

)
,

γk =
ak
bk

(
hk
gk
αk+1 + γk+1

)
and γn−1 =

(
a h

b g

)
n−1

,

βk = α̃kβk+1 −
(
a d

b c

)
k

δk+1 and β0 = K0

(
e−iζ0y −

(
a d

b c

)
0

eiζ0y
)
,

δk =
ak
bk

(
hk
gk
βk+1 + δk+1

)
and δ0 = K0

a0

b0

eiζ0y.

Here we use the notation

(
a d

b c

)
k

=
akdk
bkck

. Hence coefficients A•, B•, C•, and D• depend on

An. In our investigation we obtain

An = −
β−(m−1)

α−(m−1)

.

Solving these recurrence relations and finding the explicit expressions for Green’s func-
tion is the actual problem.
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