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We deal with two dynamical systems associated with a Riemannian manifold with boundary. The first one is a

system governed by the scalar wave equation, the second is governed by Maxwells equations. Both of the systems

are controlled from the boundary. The inverse problems are to recover the manifold via the relevant measurements

at the boundary (inverse data). We show that that the inverse data determine a C*-algebras, whose (topologized)

spectra are identical to the manifold. By this, to recover the manifold is to determine a proper algebra from the

inverse data, find its spectrum, and provide the spectrum with a Riemannian structure. This paper develops an

algebraic version of the boundary control method (M.I.Belishev’1986), which is an approach to inverse problems

based on their relations to control theory.

Keywords: inverse problems on manifolds, C*-algebras, boundary control method.

1. Setup

1.1. Acoustics

We deal with a compact C∞-smooth Riemannian manifold Ω with the boundary Γ,
dim Ω = n > 2; ∆ is the (scalar) Beltrami-Laplace operator on Ω; H := L2(Ω).
Forward problem of acoustics is to find a solution u = uf (x, t) of the system

utt −∆u = 0 in (Ω\Γ)× (0, T ) (1.1)

u|t=0 = ut|t=0 = 0 in Ω (1.2)

u = f on Γ× [0, T ] , (1.3)

where f ∈ FT := L2 (Γ× [0, T ]) is a (given) boundary control.
With the system one associates a response operator RT : FT → FT ,

RTf :=
∂uf

∂ν

∣∣∣∣
Γ×[0,T ]

(for smooth enough f ), ν is the outward normal to Γ.
Inverse problem is: given for a fixed T > diam Ω the operator R2T , to recover Ω.

1.2. Electrodynamics

Let Ω be oriented, dim Ω = 3. The definitions of the vector analysis operations
∧, curl , div on a manifold see, e.g., in [9].
Forward problem Find a solution e = ef (x, t), h = hf (x, t) of the Maxwell system

et = curlh, ht = −curl e in Ω× (0, T ) (1.4)

e|t=0 = 0, h|t=0 = 0 in Ω (1.5)

ν ∧ e = f in Γ× [0, T ] , (1.6)
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f ∈ FT := L2 ([0, T ];TΓ) is a boundary control (time-dependent tangent field on Γ).
With the system, one associates a response operator RT : FT → FT ,

RTf := ν ∧ hf
∣∣∣∣
Γ×[0,T ]

(for smooth enough f ).
Inverse problem is: given for a fixed T > diam Ω the operator R2T , to recover Ω.

1.3. Nonuiqueness

Let Ω′ be such that ∂Ω′ = ∂Ω = Γ and there is an isometry i : Ω → Ω′ provided
i|Γ = id. Then, for the response operators of the systems (1.1)–(1.3) and (1.4)–(1.6) one has
R′T = RT for all T > 0.

Hence, the map ”manifold 7→ its response operator” in not injective. By this, to de-
termine Ω uniquely is impossible, and we have to clarify the setup of the inverse problems as
follows [3]. The only reasonable setup is: given R2T for a fixed T > diam Ω, to construct a
Riemannian manifold Ω̃ such that ∂Ω̃ = ∂Ω = Γ and R̃′ 2T = R2T .
Philosophical question: From what ”material” can such an Ω̃ be constructed?
Answer in advance: Ω̃ is a spectrum of a relevant C*-algebra determined by R2T .

2. Eikonal algebra in Acoustics

2.1. Reachable sets

Return to the system (1.1)–(1.3).
Controllability For an open σ ⊂ Γ, define a reachable set

U sσ :=
{
uf ( · , T ) | supp f ⊂ σ × [T − s, T ]

}
⊂ H (0 < s 6 T )

of delayed controls acting from σ. Denote

• Ωs[σ] := {x ∈ Ω | dist (x, σ) < s} (the metric neighborhood of σ)
• H〈Ωs[σ]〉 := {y ∈ H | supp y ⊂ Ωs[σ]} (the subspace of functions supported in Ωs[σ]).

A finiteness of the wave propagation speed in Ω implies U sσ ⊂ H〈Ωs[σ]〉. The Holngren-
John-Tataru uniqueness theorem leads to the relation

U sσ = H〈Ωs[σ]〉 (2.1)

(closure in H), which is referred to as a local approximate boundary controllability of the
system (1.1)–(1.3) [1]. For T > diam Ω, one has UTσ = H.
Eikonals Let P s

σ be the projection in H onto U sσ. By (2.1) one has

P s
σy =

{
y in Ωs[σ]

0 in Ω\Ωs[σ]
, (2.2)

i.e., P s
σ cuts off functions on Ωs[σ]. An operator

τσ :=

∫ T

0

s dP T
σ

is called an eikonal. If T > diam Ω, then (2.2) implies

(τσy) (x) = dist (x, σ) y(x), x ∈ Ω ,

i.e., τσ is a multiplication by the distant function. It is a bounded self-adjoint operator in H.
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2.2. Algebra T

Recall that a spectrum Â of a commutative Banach algebra A is the set of its maximal
ideals endowed with the Gelfand topology [7], [8]. If A and B are two isometrically isomorphic

algebras (we write A isom
= B), then their spectra are homeomorphic (as topological spaces; we

write Â hom
= B̂). For the algebra of real continuous functions C(Ω), one has Ĉ(Ω)

hom
= Ω [7], [8].

For a set S ⊂ A, by ∨S we denote the minimal norm-closed subalgebra of A,
which contains S. Let B(H) be the (normed) algebra of bounded operators in H. By
T := ∨{τσ | σ ⊂ Γ} ⊂ B(H) we denote the (sub)algebra generated by eikonals.

Theorem 1. If T > diam Ω then T
isom
= C(Ω) and hence T̂

hom
= Ĉ(Ω)

hom
= Ω.

2.3. Solving IP

Connecting operator With the system (1.1)–(1.3) one associates a connecting operator
CT : FT → FT defined by the relation(

CTf, g
)
FT =

(
uf ( · , T ), ug( · , T )

)
H , f, g ∈ FT .

It is a positive bounded operator. The following is a key fact of our approach (the Boundary
Control method).

Proposition 1. The operator CT is determined by the response operator R2T via a simple and
explicit formula [1], [3].

Isometry UT By the definitions, the map

UT : UTΓ 3 uf ( · , T ) 7→ (CT )
1
2f ∈ FT

is an isometry. For T > diam Ω, one has UTΓ = H, and UT is a unitary operator from H onto

(CT )
1
2FT .

Let P̃ s
σ := UTP s

σ(UT )∗ be the projection in FT onto the subspace{
(CT )

1
2f | supp f ⊂ σ × [T − s, T ]

}
= UTU sσ .

By Proposition 1, P̃ s
σ is determined by the response operator R2T .

By the latter, the operators

τ̃σ := UT τσ(UT )∗ =

∫ T

0

s d
[
UTP s

σ(UT )∗
]

=

∫ T

0

s d P̃ s
σ (2.3)

are also determined by R2T . We define an algebra T̃ := UTT(UT )∗ ⊂ B
(

(CT )
1
2FT

)
. By

the definition, we have

T̃ = UT [∨{τσ | σ ⊂ Γ}] (UT )∗ = ∨{τ̃σ | σ ⊂ Γ} . (2.4)

By the aforesaid, this algebra and its spectrum ̂̃T =: Ω̃ are determined by the response operator

R2T . Since T̃
isom
= T, with regards to Theorem 1 one has

Ω
hom
= T̂

hom
= ̂̃T =: Ω̃ (2.5)

as T > diam Ω.
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Reconstruction The response operator R2T (provided T > diam Ω) determines the manifold Ω
up to a homeomorphism by the following scheme:

R2T Prop 1⇒ CT ⇒
{

(CT )
1
2f | supp f ⊂ σ × [T − s, T ]

}
σ⊂Γ
⇒

⇒ {P̃ s
σ | σ ⊂ Γ} (2.3)⇒ {τ̃σ | σ ⊂ Γ} (2.4)⇒ T̃⇒

⇒ ̂̃T (2.5)
= Ω̃

hom
= Ω .

Then, one can endow Ω̃ with a proper Riemannian metric and identify ∂Ω̃ with Γ (see, e.g., [5]).
As a result, we get a Riemannian manifold Ω̃, which is isometric to the original (un-

known) Ω by construction, and R̃2T = R2T does hold. The inverse problem for the system
(1.1)–(1.3) is solved.

3. Eikonal algebra in Electrodynamics

3.1. Maxwell system

Turn to the system (1.4)–(1.6). The Hilbert space ~L2(Ω) of the square-summable vector
fields (sections of the tangent bundle TΩ) contains the subspace of curls

C :=
{

curlh
∣∣ h, curlh ∈ ~L2(Ω)

}
.

Electric reachable sets For an open σ ⊂ Γ, define

Esσ :=
{
ef ( · , T ) | supp f ⊂ σ × [T − s, T ]

}
⊂ C (0 < s 6 T ) .

We denote C〈Ωs[σ]〉 := {y ∈ C | supp y ⊂ Ωs[σ]}. The finiteness of the electromagnetic wave
propagation speed in Ω implies Esσ ⊂ C〈Ωs[σ]〉.
Controllability The Eller-Isakov-Nakamura-Tataru uniqueness theorem leads to

Esσ = C〈Ωs[σ]〉 (3.1)

(the local boundary controllability). For T > diam Ω, one has ETσ = C.
Projections Let Es

σ be the projection in C onto Esσ. This projection acts in more complicated
way than its acoustic analog: its action is not reduced to cutting off fields. Moreover, in the
general case, for the different σ and σ′ the projections Es

σ and Es′

σ′ do not commute.
Eikonals An operator

εσ :=

∫ T

0

s dEs
σ

acts in the space C and is called an eikonal. Since diam Ω < ∞, εσ is a bounded positive
self-adjoint operator. In the general case, for σ 6= σ′ the eikonals ET

σ and ET
σ′ do not commute.

The following fact plays a key role.

Lemma 1. (M.N.Demchenko [6]) The representation

(εσy) (x) = dist (x, σ) y(x) +
(
KTy

)
(x), x ∈ Ω

holds with a compact operator KT : C → ~L2 (Ω).
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3.2. Algebra E

Let B(C) be the (normed) algebra of bounded operators in C. It contains the two-side
ideal K(C) of compact operators.

We denote by
E := ∨{εσ | σ ⊂ Γ}

the algebra generated by (electric) eikonals. Also, we denote K[E] := E ∩ K(C) and introduce
the factor-algebra

Ė := E/K[E]

Theorem 2. (M.N.Demchenko [6]) The factor-algebra Ė is a commutative Banach algebra.

The relation Ė
isom
= C(Ω) holds and implies ̂̇E hom

= Ω.

3.3. Solving IP

Connecting operator A Maxwell connecting operator CT : FT → FT is introduced
by the relation (

CTf, g
)
FT =

(
ef ( · , T ), eg( · , T )

)
C

for smooth controls f, g ∈ FT vanishing near t = 0 [3]. In contrast to the scalar (acoustic) case,
this CT is an unbounded operator. However, the following principal fact of the BC-method
remains valid.

Proposition 2. The operator CT is determined by the response operator R2T via a simple and
explicit formula [3], [5].

Isometry UT By the definitions, the map

UT : ETΓ 3 ef ( · , T ) 7→ (CT )
1
2f ∈ FT

is an isometry. For T > diam Ω, by (3.1) one has ETΓ = C, and UT is a unitary operator from

C onto (CT )
1
2FT ⊂ FT .

By Proposition 2, the projection Ẽs
σ := UTEs

σ(UT )∗ in (CT )
1
2FT onto the subspace{

(CT )
1
2f
∣∣ supp f ⊂ σ × [T − s, T ]

}
= UTEsσ

is determined by the response operator R2T .
An operator

ε̃Tσ := UT εTσ (UT )∗ =

∫ T

0

s d
[
UTEs

σ(UT )∗
]

=

∫ T

0

s d Ẽs
σ

acts in (CT )
1
2FT and is determined by the response operator R2T .

An algebra

Ẽ := UTE(UT )∗ = UT [∨{εσ | σ ⊂ Γ}] (UT )∗ = ∨{ε̃σ | σ ⊂ Γ}

is a subalgebra of B
(

(CT )
1
2FT

)
. By the aforesaid, this algebra, the factor-algebra ˙̃E := Ẽ/K[Ẽ]

and its spectrum ̂̃̇
E =: Ω̃

are determined by the response operator R2T .
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The isometry Ẽ
isom
= E implies the isometry of the factors ˙̃E

isom
= Ė. Theorem 2 leads to

Ω
hom
= ̂̇E hom

=
̂̃̇
E =: Ω̃ .

Reconstruction The response operator R2T (provided T > diam Ω) determines the manifold Ω
up to a homeomorphism by the following scheme:

R2T ⇒ CT ⇒
{

(CT )
1
2f
∣∣ supp f ⊂ σ × [T − s, T ]

}
σ⊂Γ
⇒

⇒ {Ẽs
σ | σ ⊂ Γ} ⇒ {ε̃σ | σ ⊂ Γ} ⇒ Ẽ⇒ ˙̃E

⇒
̂̃̇
E =: Ω̃

hom
= Ω .

Then, one can endow Ω̃ with a proper Riemannian metric and identify ∂Ω̃ with Γ (see, e.g., [5]).
As a result, we get a Riemannian manifold Ω̃, which is isometric to the original (un-

known) Ω by construction, and R̃2T = R2T does hold. The inverse problem for the Maxwell
system (1.4)–(1.6) is thus solved.

Acknowledgments

The work is supported by grants RFBR 11-01-00407A and SPbGU 11.38.63.2012,
6.38.670.2013.

References

[1] M.I.Belishev. Boundary control in reconstruction of manifolds and metrics (the BC method). Inverse Problems,
13 (5), P. 1–45 (1997).

[2] M.I.Belishev. The Calderon problem for two-dimensional manifolds by the BC-method. SIAM J.Math.Anal.,
35 (1), P. 172–182 (2003).

[3] M.I.Belishev. Recent progress in the boundary control method. Inverse Problems, 23 (5), R1–R67 (2007).
[4] M.I.Belishev. Geometrization of Rings as a Method for Solving Inverse Problems. Sobolev Spaces in Mathe-

matics III. Applications in Mathematical Physics, Ed. V.Isakov, Springer, P. 5–24 (2008).
[5] M.I.Belishev and M.N.Demchenko. Time-optimal reconstruction of Riemannian manifold via boundary elec-

tromagnetic measurements. Journal of Inverse and Ill-Posed Problems, 19 (2), P. 167–188 (2011).
[6] M.I.Belishev, M.N.Demchenko. C*-algebras and inverse problem of electrodynamics.

http://arXiv:1205.7090.
[7] G.J.Murphy. C∗-Algebras and Operator Theory. Academic Press, San Diego (1990).
[8] M.A.Naimark. Normed Rings. WN Publishing, Gronnongen, The Netherlands (1970).
[9] G.Schwarz. Hodge decomposition - a method for solving boundary value problems. Lecture notes in Math.,

1607. Springer–Verlag, Berlin (1995).


