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Electronic transport in carbon nanoribbon is studied in a quantum graph model. A numerical method for
current-voltage curve calculation is proposed. Various optimizations of a parallelization scheme are discussed.
A parallel genetic algorithm to solve an inverse transport problem is invented.
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1. Introduction

In last decade, carbon nanoribbons have proven to be one of the most promising
nanosystems for microelectronics [10]. There is a huge number of works devoted to the
construction of diodes, transistors, antennas and other devices based on nanoribbons, see
e.g. recent publications [7–9]. Unfortunately, the theoretical prediction of properties of
non-trivial geometry nanoribbons a is very complicated task, which will probably not be
solved for decades. For that reason, nanoribbons are commonly simulated numerically.
The most precise methods belong to the family of ab-initio methods and are applicable to
the simulation of systems with dozens of atoms. Methods more appropriate for practical
usage are based on density functional theory, which give results quite satisfactorily with
experimental data, and are appropriate for use with systems not larger than few hundreds
of atoms [6]. The only method suitable for the simulation of systems with many thousands
of atoms is based on the tight-binding model [12]. However, even the tight-binding model
requires sophisticated implementation to simulate millions atoms [11,13].

In the present work, we describe a high-performance simulator of carbon nanorib-
bons based on a quantum graph model, which is a more precise model than the tight-binding
approximation. We describe the parallelization of the proposed algorithm, which is capable
of analyzing systems of millions atoms using existing supercomputers. A variant of genetic
algorithm for solution of inverse transport problem is provided. Crossover and mutation
operations are modified to fit the underlying physical problem.

2. Theoretical background

For convenience, we recall the basics of the quantum graph model, see for details
[1–5]. By definition, a quantum graph is a collection of line segments glued at the ends
together with Schrödinger operator on them. Almost everywhere, the quantum graph is
a one dimensional manifold with the exception of gluing points. Hence, the motion of a
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spinless nonrelativistic particle is described by the convenient one-dimensional Schrödinger
operator on every edge:

−φ′′e + qeφe = Eφe, (1)
where φe and qe are restrictions of the wave function φ and the scalar potential q to the edge
e, and E is energy. At the gluing point, the behavior of the wave function φ is determined
by boundary conditions, which are in most cases chosen to be Kirchhoff conditions:

φe1(v) = . . . = φek(v),
k∑

n=1

φ′en(v) = 0,

where e1, . . . , ek are all edges having common end v, φe(v) is the value of the wave function
at the vertex v, and φ′e(v) is the derivative of the wave function φ at the vertex v along
external normal to the edge e.

Due to the existence and uniqueness theorem for the solution of ordinary differential
equations. Equation (1) can be written as system of two algebraic energy dependent
equations:

De(E)

(
φe(0)
φe(l)

)
= Ne(E)

(
−φ′e(0)
φ′e(l)

)
,

where 0 and l denote the ends of the edge e, and the square matrices De and Ne define
Dirichlet-to-Neumann (DN) mapping (also called Weyl function or Krein Q-function). As
proven in the theory of boundary triples, the DN mapping can be chosen satisfying the
following conditions:

(1) De and Ne are entire functions of the variable E;
(2) N−1e De and D−1e Ne are meromorphic functions of E with simple poles at the Neu-

mann and Dirichlet spectra, respectively;
(3) eigenvalues of N−1e De and D−1e Ne are monotonic functions of E on every real inter-

val of continuity.
For a vanishing scalar potential, the DN mapping is known explicitly:

D(E) =
√
−E

(
α − 1

α
− 1
α

α

)
, N(E) =

(
α 1

α
1
α

α

)
, α = exp

(
i

2

√
−E
)
.

We denote by F vector of values of wave function φ at all ends of all segments of
the quantum graph, and denote by F ′ the vector of the external derivatives. Then, in terms
of DN mapping, the Schrödinger equation can be written as

D(E)F = N(E)F ′, (2)

and boundary conditions can be written as

BF = CF ′. (3)

It is worth noting that all matrices B and C satisfying BC∗ = CB∗, such that the ma-
trix (B|C) has maximal rank, define self-adjoint boundary conditions, and all self-adjoint
boundary conditions can be written in the form (3). Moreover, without loss of generality,
B and C can be chosen to be self-adjoint and B can be non-negatively defined. To solve
the Schrödinger equation for the energy E, it is convenient to consider matrix

R(E) = CN−1(E)D(E)−B,
since E is an eigenvalue of the quantum graph, if and only if R(E) is degenerate or E
belongs to the Dirichlet spectrum. The eigenvalues of R are real and monotonous functions
of E on every segment not containing points of Dirichlet spectrum, hence computation
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of zeros of the eigenvalues as functions of E is a relatively simple problem. However,
computation of the eigenvalues of R(E) is a slow operation of complexity O(n3), where n is
the number of edges in the quantum graph. The complexity can be significantly reduced in
some cases, since matrices D(E), N(E) and often B and C are sparse; the corresponding
divide-and-conquer algorithm is outlined below.

Consider a subgraph of the quantum graph. We call a lead every end of a segment
glued to an edge not belonging to the subgraph. Restriction of a solution of the stationary
Schrödinger equation on the quantum graph to the subgraph should satisfy Equations (2)
and (3) for the appropriate matrices B and C, but in this case, the matrices are not of
the maximal rank, since we have no boundary conditions at leads [1]. Solving the system
of equations with respect to the values of the wave function and derivatives of the wave
function at vertices having attached boundary conditions, we obtain smaller system again
of the form (2), but vectors F and F ′ contain in this case only values at leads. The
functions D and N in the newly obtained system define Dirichlet-to-Neumann mapping for
the subgraph and have all mentioned above properties of DN mappings. The complexity
of the DN mapping calculation by Gaussian elimination is O(m2(m − n)), where m is the
number of all ends of all edges in the subgraph, and n is the number of leads.

The proposed divide-and-conquer algorithm for the DN mapping calculation for a
subgraph is based on splitting the large subgraph graph into smaller subgraphs, which
are then divided into even smaller subgraphs and so on; the DN mapping for smallest
subgraphs (edges and vertices) are known exactly, the DN mappings for larger subgraphs
are calculated using the above-mentioned elimination process using the DN mappings for
smaller subgraphs. Clearly, the complexity of the algorithm depends on the way the
splitting is done. We denote by δ the supremum of logarithm of ratio of the number
of ends lying on a sphere in the quantum graph to the number of ends lying in the ball
bounded by the sphere. Assuming that we divide every subgraph into two parts with halved
diameter, the complexity of the algorithm is estimated as O(m3δ) + O(m lnm), where m
is the number of edges in the largest subgraph [1]. For example, a Z-periodic graph with
afinite fundamental domain, the complexity is O(m lnm), for a Z2-periodic graph with finite
fundamental domain, the complexity is O(m3/2).

Now, we consider a transport problem for a quantum graph consisting of a compact
part and attached semi-infinite segments with constant potentials. As is well-known, the
scattering matrix of the system is given by [1]

S(E) = (D(E)− T (E)N(E))−1(D(E) + T (E)N(E)), T (E) = diag
√
V − E, (4)

where V is the vector of scalar potentials on semi-infinite segments, diagV denotes the
diagonal matrix with the diagonal V . Provided D(E) and N(E) are already calculated, the
complexity of the scattering matrix calculation is equal to sum of complexities of matrix
inversion and multiplication, which are less than O(n3), where n is the number of all leads.

3. Quantum graph model of graphene nanoribbon in elecric field

The calculation of transport properties for a quantum mechanical system is generally
a complex theoretical and numerical problem, therefore, simplified models are generally
used. Current state of artdensity functional theory is used to model systems with hundreds
of atoms, while the tight binding approximation is used to model systems with millions of
atoms. In the present work, we use the quantum graph model, which is slightly slower,
but it takes into account the continuous character of electron motion. The tight binding
approximation can be considered as a special case of the quantum graph model.
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a) b)

FIG. 1. (a) Graphene nanoribbon. (b) Typical current-voltage characteristics
of parallelogram shaped nanoribbon.

One of the most challenging transport problems is transport in the presence of an
external electric field, which often breaks the symmetry of the problem. Howeve,r for the
quantum graph model, consideration of the electric field is relatively simple, since:

(1) The electric field is an explicit parameter of the model. Variation of the field does
not imply recalculation of auxiliary parameters, introducing additional assumptions
and so on.

(2) Calculation of the scattering matrix does not require one to solve the spectral
problem. In fact, the transport problem is easier to solve than the spectral problem.
Since all transport properties can be expressed in terms of the scattering matrix,

we focus on the calculation of the scattering matrix, and as an example, we consider
computation of current-voltage characteristics.

Consider a parallelogram shaped graphene nanoribbon with zigzag sides attached to
two electrodes, see Figure 1 (a). We denote by W the number of benzene rings lying on
one electrode, by L the distance between electrodes in benzene rings and by Φ the cutting
angle; let T = tan Φ. In the quantum graph model, the electron moves along segments
representing chemical bonds, and the segments are glued at the carbon atoms. Boundary
conditions are assumed to be Kirchhoff conditions. We model the electrodes by semi-infinite
segments. To avoid unrealistic interface states, we attach separate semi-infinite segments
to every atom lying on an electrode.

Typical behavior of the current-voltage characteristics (IV curve) is shown in Figure
1 (b). In applications, only key features of IV curve are of importance, e.g. in the considered
case the first local maximum (Umax, Imax) and the first local minimum (Umin, Imin) should
be taken into account.

For the quantum graph model we use the convenient Landauer formula to calculate
conductance:

e2

πh̄

∑
s,d

|Sds|2 − |Ssd|2,

where s runs over all indices of the semi-infinite segments corresponding to one electrode,
and d, to another. The crucial part of the computation is calculation of the scattering matrix
by the formula (4), which requires one to compute the Dirichlet-to-Neumann mapping. As
mentioned before, the complexity of the DN mapping computation highly depends on how
the quantum graph is split into subgraphs. Below, we provide explicit splitting which is
best suited for long narrow ribbons.

The considered nanoribbon can be divided into primitive parts as shown in Figures
2 and 3. The nanoribbon is divided to collection of chains, where all the elements of every
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FIG. 2. Splitting of the nanoribbon to primitive pieces.

FIG. 3. List of primitive pieces of graphene nanoribbon.

chain are located a fixed distance from electrodes and therefore, have the same potential.
To calculate the DN mapping for one chain, we first calculate the DN mapping for two
segments having distinct angles with electric field, then compute the DN mappings for all
primitive pieces, compute the DN mappings for the chains containing pieces of one type,
and finally compute the DN mapping for the whole chain. The computation of the DN
mapping for the chain of equal elements has a complexity O(lnm), where m is the length
of the chain, since all subchains of equal length have equal DN mappings. Since the number
of leads of the primitive pieces and the number of the primitive pieces are fixed, the overall
complexity of computing the DN mapping for one chain is O(lnW ). Every chain has more
than W ends, and no more than W ends are leads (more precisely 2(W − [T ])), hence the
complexity of gluing two chains together is less than O(W 3). Since the total number of
chains is L, the complexity of the calculation of the DN mapping for the whole nanoribbon
is O(LW 3). It is worth noting that the proposed splitting gives linear complexity with
respect to length L of the ribbon, which is better than the above-given theoretical estimate
O(L3/2W 3/2). Hence, the provided splitting is best suited for very long ribbons.

For the case of a short and wide nanoribbon, one can split the quantum graph into
narrow chains of length L and then glue them. Such splitting gives us complexity O(WL3).
The worst case is a ribbon with equal W and L, where two provided partitions leads to the
algorithm of complexity O(L4).

The computation time of current for a given voltage for the nanoribbon using the
method described in the previous section is several hours for nanoribbon with W ca. 100
and L ca. 1000. Hence, for the simulation of large graphs and the use of genetic algorithms,
one should speed up computations, which can be done using both sophisticated algorithms
for matrix operations and parallel computations. Optimization of matrix operations is
a well-studied subject, see e.g. [14], documentation on LAPACK and so on. Here, we
discuss opportunities for parallelization. The main observation is the independence of the
Dirichlet-to-Nuemann mapping calculations for distinct subgraphs, hence computations for
such subgraphs can be performed concurrently. But, one should take into account that to
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a) b)

FIG. 4. (a) Flowchart for the I-V curve calculation. (b) Flowchart for the
queue generation

compute the DN mapping for a subgraph, one should preliminarily compute the mappings
for all parts of the subgraph, hence subgraphs form an hierarchy, where computations on
lower levels must be done prior to higher ones. Finally, to perform parallel a computation of
the DN mapping for the whole quantum graph, one should divide the graph into subgraphs,
calculate the dependence of the graphs, collect subgraphs to groups which can be analyzed
simultaneously and execute all groups in correct order. It is worth noting that the memory
requirement should be taken into consideration while forming computation groups, since the
storage of all temporary buffers in memory simultaneously requires much more resources
than available on modern computers. That means that some kind of dynamic memory
allocation should be done. Unfortunately, contemporary parallel memory managers are to
slow for such tasks. To overcome this difficulty, we have implemented a memory manager
that preallocates all the memory by using overlapping regions, which however will never
be accessed simultaneously under the given order of DN mappings calculation. Further
opportunities for parallelization are the parallel matrix operations and parallel calculation
for different energy and electric field values. Flowcharts for the parallel calculation of I-V
curve for the nanoribbon are shown on Figures 4-8.

4. Inverse transport problem

The inverse transport problem is to recover system geometry based on given trans-
port properties. We are going to consider the current-voltage curve, which is one of the
most important transport properties. Solution of the inverse problem is extremely complex



518 I. S. Lobanov, A. I. Trifanov, E. S. Trifanova

FIG. 5. Flowchart for the nanoribbon splitting

FIG. 6. Demonstration of optimal splitting of chain of 42 graphs of type A to subgraphs
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FIG. 7. Flowchart for the execution of enqueued calculations

FIG. 8. Flowchart for the current-voltage characteristics calculation
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and has no general solution at the moment. However, in the present work we propose a
genetic algorithm to construct a nanoribbon with properties close to the given I-V curve.

Due to the high complexity of calculating the fitness function in the problem, only
parallel algorithms deserve consideration. At the moment, there are four main classes of
parallel genetic algorithms: global master-slave, global fine-grained, coarse grained and
hierarchical. The fine-grained algorithm was implemented, since it has good scalability as
we show below. We divide the whole population to subpopulations, which are processed
concurrently on different processing nodes. To avoid degeneracy and to balance the load,
individuals are exchanged between subpopulations. Depending on the timing of when
individuals are exchanged, the algorithm can be synchronous or asynchronous. The island
model was chosen for implementation, since it can be adapted to arbitrary topology.

We use processes of two types: the first type computes mutation, crossover and
selection, while the second type assists ones of the first type by computing the fitness
function (the I-V curve). Clearly, the number of processes in an ideal situation should
coincide with the number of individuals. One ”master” process is selected, which should
send stop signal to other nodes as soon as the desired fitness is achieved.

Every assisting node waits until the ribbon geometry is received. Upon receipt of
the gometry, the I-V curve is computed as described in the previous section, then the
fitness is calculated as the distance between the obtained curve and the desired one. The
fitness and the I-V curve are sent back to the evolution computing nodes. If the stop signal
is received, then the process terminates, otherwise the process again waits for input.

The stop conditions are only checked by the designated node. If desired fitness value
is achieved or the maximum number of iterations is done, the designated node sends a stop
signal to all nodes and prints the individual that has the geometry closest to the desired
current-voltage curve displayed.

The input parameters of the algorithm are positions of the first local maximum
(Vmax, Imax) and the first local minimum (Vmin, Imin) of the I-V curve. The results of the
computation are the width W , the length L and the cutting angle Φ of the nanoribbon. The
set of the parameters can be extended to a wider class of geometries, e.g. one can append
intrusions.

The genetic algorithm starts with the generation of a subpopulation on every island.
Every individual is a nanoribbon geometry, which in our case is described by the values
W , L and Φ. On initialization, the geometric parameters are generated randomly using
a uniform distribution, where the maximum values of W and L are bounded by available
processing power and physical motivations.

Further randomly chosen individuals mutate. The number of mutating individuals
has a constant ratio to the size of subpopulation; the ratio is a parameter of the algo-
rithm. The mutation operation has the following steps: geometric parameters subjected
to mutation are chosen randomly; a value is appended to each of the parameters normally
distributed; the obtained parameters are checked for correctness; if the geometry is invalid,
the individual is eliminated.

In the island model, crossover is done only inside subpopulations. To improve
algorithm convergence, the crossover (inside) population makes use of a simplified model.
Roughly speaking, the nanoribbon can be considered as an electrical circuit. The I-V
curves for parallel and series circuits are well known and can be used for a fast, rough
estimate of the results for gluing nanoribbons together. Hence, during crossover, the
inside subpopulation I-V curves for all individual pairs in the subpopulation are estimated
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using classical methods, and from these, the most promising pairs are chosen to produce
offspring.

As well known genetic algorithms for small populations tend to converge to a local
maximum of the fitness function, which for complex fitness functions, is most likely not
the global maximum. To avoid this trap, the population size must be increased, or in
the island model, individuals must be exchanged between islands. Experiments show that
the best convergence is obtained When the best individuals exchange islands. Since the
fitness computation time varies from several seconds to several hours, depending on the
geometry of the nanoribbon, an iteration of genetic algorithm on one island may be several
times slower than the iteration on another island. Therefore, the individual exchange must
be asynchronous. Every island, after the fitness calculation, sends a fixed number of its
best individuals to a different, randomly chosen island. Before the crossover, every island
checks, if there are migrants waiting, which are appended to the subpopulation.

Finally, if the size of a subpopulation becomes larger than the predefined value, the
worst individuals are eliminated to decrease the subpopulation size. Hence, the size of
every subpopulation varies, but cannot become larger than the fixed value determined by
the available computation power.

5. Parallel genetic logarithm convergence

The inverse transport problem is one of complex optimization, with lots of local
optima. Separation of the population into subpopulations improves the convergence to an
optimum, but the obtained solution may be far from a global optimum. If a subpopulation
comes close to a local optimum, the subpopulation starts to degenerate, which leads to a
waste of computational resources. To eliminate such a situation, we mix the population by
exchanging the best individuals between islands. In the present section, we estimate the
convergence rate of such an algorithm.

Individuals exchanged in a real situation depends on topology, but for simplicity, we
assume that the connection graph is complete.

Let f 0 be the mean value of the fitness function in the initial population. We assume
that after one iteration, the mean value of the fitness function is improved p times, that is

fk+1 = p · fk = pk · f 0.

Hence, to obtain the desired value F for the fitness function, we should make n = logp
F
f0

iterations.
Now, we consider several populations exchanged by individuals. We assume that for

every subpopulation the estimate above is valid, Hence, without exchange, an increase in
the population size gives no speed up in the convergence. We now consider the improve-
ment of the fitness function after the exchange. We denote by fkj the mean value of the
fitness function in a subpopulation j on an iteration k. We estimate the convergence by
a geometric progression, that is, we assume fk+1

j = sjf
k for some parameter sj = p · qj.

Let M be the number of all possible distinct individuals, N be the number of individuals
in every subpopulation. Taking into account the quality of individuals to exchange, we get
the estimate qk = pβ, 0 < β < 1, for non overlapping populations. Taking into account the
existence of identical species in distinct subpopulations, we get estimate

sk = pβ
∑m

j=1 Pj , Pj =
J∏
i=1

N−1∏
j=0

M − i ·N − j
M

.
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FIG. 9. Flowchart of parallel genetic algorithm

Using latter estimate, we obtain the number of steps required to achieve the desired fitness
F using k subpopulations:

nj =
logp

F
f0j

β ·
∑m

k=1 Pk
.

Hence, the parallel algorithm gives the following for rate enhancement:

S(m) =
minnj
n

.

Estimates of the rate enhancement are shown on Figure 10 for parameters N = 1000,
F
f0j

= 103, p = 1.1, β = 0.058.



Genetic algorithm for constructing graphene nanoribbon 523

FIG. 10. Speed up of parallel genetic algorithm as function of number of processors
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