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Current-voltage characteristics of tunnel contact between semiconducting (and conducting) carbon nanotubes (CNT)

of various diameters and system of periodically located quantum dots (and also in contact to metal) was obtained

using density of states (DOS) investigation. DOS has been calculated by means of the method of attached

cylindrical waves. At certain parameters for quantum dots, the current-voltage characteristics observed testify to

the presence of negative differential conductivity.
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1. Introduction

In the last few years, the interest of many researchers has been focused on the properties
of carbon nanotubes [1]. It is known from classical works that the “Arm-chair” type of nanotube,
in Huckel’s approximation, are conductors at any temperature [2]. However, using the linear
augmented cylindrical wave (LACW) method allows a gap in the band structure of this type of
nanotube. This makes it possible to use them in different applications. The simplest method to
experimentally verify the change in the state density is to study the tunneling current [3, 4], for
example, of the contact with quantum dots. In these papers, the density of states were calculated
by the method of Green’s functions [5], however, not every system has a density of states for
electrons can be determined analytically. For such a system, the more versatile method is based
on ab initio calculations .

Theoretically, investigation was done by tight-binding calculations only, but it is known
from the band structure theory of solids that the linear combination of atomic orbitals (LCAO)
basis is adequate to achieve good results for the valence band, but not for the conduction band.
The reason for this is that this basis does not include the delocalized conducting plane-wave
type functions. As to the π electron band structure models, they are adequate for calculating
the energy curves located in a Fermi level region only. Therefore, we have calculated the
complete band structures of metallic armchair (n, n) CNTs with 4 < n < 100 and zigzag
semiconducting (0, n) CNTs with 10 < n < 49 indivisible by 3 in terms of a LACW method.
The LACW method is just a reformulation of the linear augmented plane wave (LAPW) theory
for cylindrical multiatomic systems. Its basis functions have both localized and delocalized
components. Finally, the main argument for using cylindrical waves is to account for the
cylindrical geometry of the nanotubes in an explicit form that offers obvious advantages [6].



Electrophysical properties of CNT. The augmented cylindrical wave method 565

2. Basic equations

2.1. Cylindrical muffin-tin potential

Similar to the LAPW technique used in the band structure theory of solids, we apply the
muffin-tin (MT) and local density functional approximations for electronic potentials of tubules.
However, the potential of a nanotube differs drastically from that of bulk material. Indeed,
infinite motion of an electron is possible in any direction in a crystal, but it is obviously limited
in the case of nanotubes by their size and cylindrical shape. Therefore, in terms of the LACW
method, the atoms of nanotube are considered to be enclosed between two impenetrable cylinder-
shaped potential barriers Ωa and Ωb, because there are two vacuum regions Ωv on the outside
and on the inside of the tubule. The radii a and b of these barriers are chosen so that the region
confined by barriers accommodates a significant portion of the electron density of the tubule.
Based on our previous calculations of the CNTs, we take a = RNT +2.3 a.u., b = RNT +2.3 a.u.,
where, RNT is radius of the tubule. Finally, the electronic potential is spherically symmetrical
in the regions of MT-spheres of atoms α and constant in the interspherical region. Inside these
spheres, we calculate the electron potential by means of the local density approximation with
Slater exchange. As usually, the radii of the MT spheres were chosen so that the atomic spheres
touch, but do not overlap. Outside the MT spheres up to the impenetrable potential barriers Ωa

and Ωb, the potential is approximated by a constant value taken to be the energy zero point [6,7].

2.2. Solution of the Schrdinger equation

The basis functions called LACWs are solutions of the Schrodinger equation for the
interspherical and MT regions of tubule sewn together so that the resulting LACWs are con-
tinuous and differentiable anywhere in the system. In the interspherical region, the LACWs
are the solutions of the Schrdinger equation for free electron movement in the infinitely long
potential well between two impenetrable cylindrical potential barriers. Here, the solutions are
the superpositions of the cylindrical Bessel functions of the first and second kinds. In any MT
sphere, the solutions are expanded in terms of the spherical harmonic functions and the eigen-
functions of the radial Schrdinger equation. To obtain the basis wave functions, the solutions of
Schrdinger equation in these two regions are matched on the surfaces of the MT spheres so that
both the basis functions and their normal derivatives are continuous across these surfaces. The
eigenfunctions of electrons in the tubule are the linear superpositions of these basis LACWs.
The coefficients of the expansions of any eigenfunction in terms of these basis functions and
the electron dispersion curves are defined by the variational method.

In this work, we apply the symmetry-adapted version of the LACW method developed
previously. In this version, one takes into account that every single-walled CNT can be generated
by first mapping only two nearest-neighbor C atoms onto a surface of a cylinder and then using
the rotational and helical symmetry operators to determine the remainder of the tubule. With
account of these symmetries, the cells contain only two carbon atoms, and the ab initio LACW
theory becomes applicable to any tubule independent of the number of atoms in a translational
unit cell. In the LACW studies, we use only this structural information as input parameters.

The dispersive relation for quantum wells is similar to the band structure of superlat-
tice [8]:

EQD = ε0 −∆ cos(p),

where ε0 is electron energy in quantum well, ∆ is tunnel integral, defining by overlap of electron
wave functions of nearest wells.
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a) b)

FIG. 1. Density of states for CNT arm-chair type: a) Huckel’s approximation;
b) LACW method

The density of states for arm-chair CNTs, calculated under the π-electron approxima-
tion [2], was shown in Fig. 1a. The LACW method allows in the calculation consideration of
more deep-seated σ-orbital electrons at very high temperatures (∼ 25–27 eV) to get a gap in
the energy spectrum (see Fig. 1b). This fact allowed the calculation of the electrical properties
of conductive nanotubes in contact with the quantum dots.

FIG. 2. Current-voltage characterictics for CNT type “zig-zag” of various diam-
eter ((10, 0) – (50, 0)) in contact with quantum dots system
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3. Tunnel characteristics

In order to study tunneling effects, we will set Hamiltonian of our model in a form:

H =
∑
p

εAp a
+
p ap +

∑
q

εBq b
+
q bq +

∑
pq

Tpq(a
+
p bq + b+q aq), (1)

where a+p , ap - production (annihilation) operators of electrons with a momentum p in carbon
nanotubes; εAp - electron energy spectrum of nanotubes (1); Tpq - matrix element of the operator
of tunneling between conditions p and q; b+q , bq - creation (annihilation) operators of electrons
with an momentum q in matter, resulted in contact with carbon nanotubes; εBp - electron energy
spectrum of quantum dots. Note, that in (1) p and q are multi-indices. Also, if we consider the

external electric field ~E which we will investigate using the gauge: ~E = −1

c

∂ ~A

∂t
, it is possible

to take it into account by means of replacement the corresponding momentum components:
p→ p− eA/c.

Defining a tunnel current as [5]:

J = ie
∑
pq

(
a+p bq − b+q ap

)
, (2)

and carrying out calibration transformation [5]:

ap → S−1apS,

S = exp

(
ieV t

∑
p

a+p ap

)
,

where V applied, for definiteness, to CNT voltage, - electron charge, it is possible to reduce
formally a problem about calculation characteristic current-voltage to calculation of the response
of the operator: Jt = ie

∑
pq

(
a+p bqe

ieV t − b+q aqe−ieV t
)

on external action [5]:

Ht =
∑
pq

Tpq
(
a+p bqe

ieV t + b+q aqe
−ieV t

)
.

Within the framework of Kubo theory, the answer is set by the formula:

J = 4πe |T |2
∞∫

−∞

dενA (ε+ eV ) νB (ε) (nf (ε)− nf (ε+ eV )),

νA (ε) =
∑
p

δ
(
ε− εAp

)
, νB (ε) =

∑
q

δ
(
ε− εBq

)
,

(3)

where δ(x) - Dirac delta-function, νA(B) (ε) - tunnel density of states; nf (ε) - equilibrium
number of fermions with energy ε. We used the approach of “rough” contact: Tpq = T (a
nanotube is perpendicular to the quantum dot surface). After integrals calculation entering in
(3) it is easy to obtain current-voltage characteristic of the contact presented in Fig. 2–3.

The existence of a descending section of the current-voltage characteristic of the tun-
neling conductance between the nanotubes and the quantum dots system can be clearly seen in
Fig. 2. This indicates the presence of negative differential conduction. The descending section is
observed at the same parameters of quantum dots: ε0 = 22 eV - energy of electrons a quantum
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FIG. 3. Current-voltage characteristics for CNT type “arm-chair” of various di-
ameter ((4,4) – (9,9)) in contact with quantum dots system

hole, and ∆ = 3 eV - the tunnel integral defined by overlapping of wave electronic functions
of the next holes. The size of the resistance obtained in such a system was R ≈ −24 kOhm.

Similarly, the current-voltage characteristics for semiconducting CNT of various diam-
eters ((10,0)–(50,0)) in contact with systems of quantum dots are represented in Fig. 2. For
semiconducting CNT in contact with a quantum dots system, the descending section in the
current-voltage, characteristic of tunnel conductivity, was also observed. The resistance ob-
tained for such a system was R ≈ −18 kOhm (should be −18 kOhm) for the same parameters
of the quantum dots system.

It should be noted that the descending section in CVC for system CNT-QD is absent in
the case of pi-approximation for CNT DOS.

The obtained dependencies can have the important practical applications for studying
noncontact and the design of tunneling diodes based on carbon nanotubes.

4. The conclusion

In summary we will formulate the basic conclusions from the made work.
(1) Current-voltage characteristics of contacts CNT - a superlattice of quantum dots are

obtained.
(2) The descending section with negative differential conduction is observed for certain

characteristics of quantum dots. This effect can be used to create various frequency
amplifiers.
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