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The flow of a highly viscous liquid in a half-space due to the deformation of the free surface is investigated.
The viscosity of the layer adjoining to the free surface is different from the viscosity of the remaining
half-space. In the framework of small perturbation theory, the relationship between the deformation of the
free surface and the deformation of the layer/half-space interface is obtained. It was demonstrated that the
volume and geometrical center of the perturbation on the interface and on the free surface are the same.
The dependence of the perturbation’s amplitude and width on layer thickness was investigated. The results
of numerical and analytical calculations are close, even for moderate free surface perturbations.
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bation.

1. Introduction

In this paper, we consider an infinite viscous half-space covered by a fluid layer
with a different viscosity. Using a Fourier transform-based approach, we calculated the
deformation of the layer/half-space interface due to the perturbation of the free surface.

A Newtonian viscous incompressible fluid was considered. Viscosities of the layer
and the half-space may not necessarily be the same, but they are assumed to be constant
within each domain. We considered the localized perturbation of the fluid near the free
surface, assuming it decays to zero infinitely far from the origin. Two formulations were
developed: i) 2D axisymmetric to describe flow perturbation caused by a small particle
(fig. 1-a) and ii) 2D planar to represent perturbation due to a long groove (fig. 1-b). In both
cases, the shape of the initial perturbation of the free-surface is described by a smooth
analytical function.

In section 2, we analytically derive the relation between the shape and amplitude
of the free surface perturbation and the corresponding deformation of the layer/half-space
interface.

In section 3, the analytical solution is compared to the numerical solution obtained
with COMSOL Multiphysics finite element package.

2. Analytical model

The analytical model was developed under the following assumptions:
• Planar or axisymmetric viscous flow
• The fluid dynamics can be described by the Stokes equations ( [6], [1], [7], [3], [4],
[9], [2])

• Perturbation amplitude is small compared to the layer thickness ( [5], [8], [10], [11])



Response of a stratified viscous half-space 593

a) b)

Fig. 1. Perturbation geometry: a) axisymmetric b) planar

• Fluid viscosity is constant within each domain (layer and half-space)

2.1. The problem statement

In the analytical model, a fluid layer of the thickness H covering an infinite half-
space is considered. The layer has viscosity μ and the half-space has viscosity μ1. Consider
the Cartesian coordinate system as shown on the figure 2 below. The axes x1 and x2 form
a non-deformed planar boundary and the axis z is oriented through thickness having origin
on the free surface of the layer.

Fig. 2. Coordinate system used in the analysis
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The Stokes equations for the surface layer take the form:

∂2
zzVz + ∂2

ββVz =
1

μ
∂zP

∂2
zzVα + ∂2

ββVα =
1

μ
∂αP

∂zVz + ∂βVβ = 0,

(1)

where Vα, Vz are the velocity components, P is the pressure, μ is the viscosity of the fluid
in the layer. The summation over the repeated indexes is assumed. From (1), it can be
seen that pressure is a harmonic function:

∂2
zzP + ∂2

ββP = 0. (2)

Zero tangential stress and a given normal velocity are assumed on the external free
boundary. Corresponding boundary conditions are:

Vz|z=0 = Vz0 , μ(∂αVz + ∂zVα)|z=0 = 0. (3)

Similarly to (1), the Stokes equations for the half-space domain become:

∂2
zzVz + ∂2

ββVz =
1

μ1

∂zP

∂2
zzVα + ∂2

ββVα =
1

μ1

∂αP

∂zVz + ∂βVβ = 0

∂2
zzP + ∂2

ββP = 0.

(4)

Zero perturbation infinitely far from the free surface is required:⎛
⎝Vz

Vα

P

⎞
⎠
∣∣∣∣∣∣
z→∞

= 0. (5)

The velocity field must be continuous through the interface:

Vz|z=H−0 = Vz|z=H+0 , Vα|z=H−0 = Vα|z=H+0 . (6)

Also, both the normal and tangential stresses must be continuous:

(−P + 2μ∂zVz)|z=H−0 = (−P + 2μ1∂zVz)|z=H+0 ,

μ(∂αVz + ∂zVα)|z=H−0 = μ1(∂αVz + ∂zVα)|z=H+0 .
(7)

The equations of the evolution of the free boundary and the interface are the following:

∂th0 = Vz|z=0 , ∂th = Vz|z=H , (8)

where h0(x1, x2, t) and h(x1, x2, t) are the z-displacements of the free boundary and interface
respectively.

2.2. Calculation of the perturbation decay

Applying the Fourier transform, defined as (9) over the x1 and x2 coordinates to
the equations (1)-(8):

fk =

∫
f(x)e−ikx d2x (9)
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one can get the following equations:

∂2
zzVzk − k2Vzk =

1

μ
∂zPk

∂2
zzVαk − k2Vαk =

ikα
μ

Pk

∂zVzk + ikβVβk = 0

∂2
zzPk − k2Pk = 0

0 < z < H, (10)

Vzk|z=0 = Vz0k, μ(ikαVzk + ∂zVαk)|z=0 = 0, (11)

∂2
zzVzk − k2Vzk =

1

μ1

∂zPk

∂2
zzVαk − k2Vαk =

ikα
μ1

Pk

∂zVzk + ikβVβk = 0

∂2
zzPk − k2Pk = 0

z > H, (12)

⎛
⎝Vzk

Vαk

Pk

⎞
⎠
∣∣∣∣∣∣
z→∞

= 0, (13)

Vzk|z=H−0 = Vzk|z=H+0 , Vαk|z=H−0 = Vαk|z=H+0 , (14)

(−Pk + 2μ∂zVzk)|z=H−0 = (−Pk + 2μ1∂zVzk)|z=H+0

μ(ikαVzk + ∂zVαk)|z=H−0 = μ1(ikαVzk + ∂zVαk)|z=H+0 .
(15)

∂th0k = Vzk|z=0 , ∂thk = Vzk|z=H . (16)

It is convenient to separate the longitudinal V
‖
k and transversal V ⊥

k components of the
velocity Vαk in Fourier space:

Vαk =
kα
k
V

‖
αk + V ⊥

αk, V
‖
αk =

kβ
k
Vβk, V

‖
αk =

(
δαβ − kαkβ

k2

)
Vβk.

The equations (10)-(16) can be rewritten in terms of V ‖
k and V ⊥

k :

∂2
zzVzk − k2Vzk =

1

μ
∂zPk

∂2
zzV

‖
k − k2V

‖
k =

ik

μ
Pk

∂2
zzV

⊥
αk − k2V ⊥

αk = 0

∂zVzk + ikV
‖
βk = 0

∂2
zzPk − k2Pk = 0

0 < z < H, (17)

Vzk|z=0 = Vz0k, μ(ikVzk + ∂zV
‖
k )
∣∣∣
z=0

= 0, (18)

(−Pk + 2μ∂zVzk)|z=H−0 = fzHk

μ(ikVzk + ∂zV
‖
k )
∣∣∣
z=H−0

= f
‖
Hk

μ∂zV
⊥
αk

∣∣
z=H−0

= f⊥
αHk,

(19)

∂th0k = Vzk|z=0 , ∂thk = Vzk|z=H , (20)
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∂2
zzVzk − k2Vzk =

1

μ1

∂zPk

∂2
zzV

‖
k − k2V

‖
k =

ik

μ1

Pk

∂2
zzV

⊥
αk − k2V ⊥

αk = 0

∂zVzk + ikV
‖
k = 0

∂2
zzPk − k2Pk = 0

0 < z < H, (21)

(−Pk + 2μ1∂zVzk)|z=H+0 = fzHk

μ1(ikVzk + ∂zV
‖
k )
∣∣∣
z=H+0

= f
‖
Hk

μ1∂zV
⊥
αk

∣∣
z=H+0

= f⊥
αHk

(22)

⎛
⎜⎜⎝
Vzk

V
‖
k

V ⊥
αk

Pk

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
z→∞

= 0. (23)

From the continuation equation (the third one in (17) and (21)) one can obtain:

V
‖
k =

i

k
∂zVzk. (24)

Taking into account the equation for Vzk, we get the following boundary conditions for the
tangential stress:

(2μk2Vzk + ∂zPk)
∣∣
z=0

= 0,

(2μk2Vzk + ∂zPk)
∣∣
z=H−0

= (2μ1k
2Vzk + ∂zPk)

∣∣
z=H+0

.
(25)

The requirement of normal stress continuity on the interface becomes:

(−Pk + 2μ∂zVzk)|z=H−0 = (−Pk + 2μ1∂zVzk)|z=H+0 . (26)

The equations of the evolution of the free boundary and the interface (20) involve only the
Vzk term. To obtain it in the layer and half-space domains, we write out the equations and
boundary conditions using (17), (21), (23), (25) and (26):

∂2
zzVzk − k2Vzk =

1

μ
∂zPk ∂2

zzPk − k2Pk = 0 0 < z < H, (27)

∂2
zzVzk − k2Vzk =

1

μ1

∂zPk ∂2
zzPk − k2Pk = 0 z > H, (28)

Vzk|z=0 = Vz0k, (2μik2Vzk + ∂zPk)
∣∣
z=0

= 0, (29)

Vzk|z=H−0 = Vzk|z=H+0 , ∂zVzk|z=H−0 = ∂zVzk|z=H+0 , (30)

(−Pk + 2μ∂zVzk)|z=H−0 = (−Pk + 2μ1∂zVzk)|z=H+0 , (31)

(2μk2Vzk + ∂zPk)
∣∣
z=H−0

= (2μ1k
2Vzk + ∂zPk)

∣∣
z=H+0

, (32)(
Vzk

Pk

)∣∣∣∣
z→∞

= 0. (33)

First, consider the half-space domain z > H. To simplify the system, we assume Vzk to be
represented in the form:

Vzk = Ṽzk +
z −H

2μ1

Pk. (34)
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In that case:
∂2
zzṼzk − k2Ṽzk = 0 ∂2

zzPk − k2Pk = 0 z > H, (35)

Ṽzk = VzHke
−k(z−H), Pk = P+

Hke
−k(z−H),

Vzk =

(
VzHk +

z −H

2μ1

P+
Hk

)
e−k(z−H).

(36)

In the layer domain 0 < z < H, we assume the velocity Vzk is represented as:

Vzk = Ṽzk +
z −H

2μ
Pk. (37)

Therefore,
∂2
zzṼzk − k2Ṽzk = 0 ∂2

zzPk − k2Pk = 0 0 < z < H. (38)
The solution of these equations is:

Pk = P−
Hk

sinh(kz)

sinh(kH)
+ P0k

sinh(k(H − z))

sinh(kH)
,

Vzk =

(
VzHk +

z −H

2μ
P−
Hk

)
sinh(kz)

sinh(kH)
+

(
Vz0k +

z

2μ
P−
Hk

)
sinh(k(H − z))

sinh(kH)
.

(39)

Using (36), (39) and the corresponding boundary conditions, the equations connecting
VzHk, Vz0k, P0k, P−

Hk, P
+
Hk may be summarized as:

(μ cosh(kH) + μ1 sinh(kH))VzHk − μVz0k =
H

2
P0k

2(μ− μ1)k sinh(kH)VzHk + cosh(kH)P−
Hk + sinh(kH)P+

Hk = P0k

ke−kHVzHk − k

(
Vz0k +

H

2μ

)
P0k +

1

2μ
sinh(kH)P−

Hk =
1

2μ1

sinh(kH)P+
Hk

2μk sinh(kH)Vz0k + P−
Hk − cosh(kH)P0k = 0.

(40)

This system of equations allows one to find the relation between the VzHk and Vz0k:

VzHk = γVz0k (41)

or
hk = γh0k. (42)

The attenuation coefficient γ is the ratio of the amplitudes of the displacement of the
interface to the displacement of the external free boundary:

γ =
kH(sinh(kH) +m cosh(kH)) + cosh(kH) +m sinh(kH)

kH
(
m− 1

m

)
+ (cosh(kH) +m sinh(kH))

(
cosh(kH) + 1

m
sinh(kH)

) , (43)

here H is the layer thickness, k is the length of the Fourier coordinate vector, m = μ/μ1,
μ is the layer fluid viscosity, μ1 is the half-space fluid viscosity. Applying the inverse
Fourier transform to (41) and integrating the result over time, the interface deformation
can be obtained:

h(x, y) =
1

(2π)2

∫∫ +∞

−∞

[
γ
(√

k2
x + k2

y

)
h0k(kx, ky)e

i(kxx+kyy)
]
dkxdky (44)

With a given deformation shape h0, one can evaluate the normalized interface deformation
amplitude using the explicit expressions:

δ =
1

(2π)2A0

∫∫ +∞

−∞

[
γ
(√

k2
x + k2

y

)∫∫ +∞

−∞
h0(x, y)e

−i(kxx+kyy) dxdy

]
dkxdky
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in the axisymmetric case, and:

δ =
1

2πA0

∫ +∞

−∞

[
γ (|k|)

∫ +∞

−∞
h0(x)e

−ikx dx

]
dk

in the planar case.

2.3. Subsequent analytical results

Using the approach described above, a number of conclusions correlating the pa-
rameters of the free-surface perturbation and interface deformation can be made.

(1) Asserting k = 0 in (41) and applying γ|k=0 = 1, one can get:∫
VzH d2x =

∫
Vz0 d

2x (45)

or ∫
∂th0 d

2x =

∫
∂th d

2x. (46)

Integrating (46) over the time and asserting zero initial deformations of the free
surface and interface, one can obtain the equality of the interface deformation
volume and the free surface deformation volume:∫

h0 d
2x =

∫
h d2x = V. (47)

(2) Differentiate (42) by kα and apply k = 0. Taking into account:

∂γ

∂kα

∣∣∣∣
k=0

= 0,
∂hk

∂kα

∣∣∣∣
k=0

= −i

∫
xαh(x) d

2x,
∂h0k

∂kα

∣∣∣∣
k=0

= −i

∫
xαh0(x) d

2x

one can obtain: ∫
xαh(x) d

2x =

∫
xαh0(x) d

2x

or
〈xα〉 = 〈xα〉0, (48)

where:

〈xα〉 = 1

V

∫
xαh(x) d

2x, 〈xα〉0 = 1

V

∫
xαh0(x) d

2x

are the coordinates of the geometrical centers of the interface and free surface
respectively.

(3) Differentiate (42) by kα and kβ and apply k = 0. Taking into account

∂2γ

∂kα∂kβ

∣∣∣∣
k=0

= −H2δαβ,
∂2hk

∂kα∂kβ

∣∣∣∣
k=0

= −
∫

xαxβh(x) d
2x,

∂2h0k

∂kα∂kβ

∣∣∣∣
k=0

= −
∫

xαxβh0(x) d
2x

one can obtain the following:∫
xαxβh(x) d

2x =

∫
xαxβh0(x) d

2x+ V H2δαβ

or
〈xαxβh〉 = 〈xαxβh〉0 +H2δαβ, (49)
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where

〈xαxβh〉 = 1

V

∫
xαxβh(x) d

2x, 〈xαxβh〉0 =
∫

xαxβh0(x) d
2x.

Asserting α = β = 1 leads to relation of the mean-square width of the deformations
on the interface and free surface:

〈x2
1〉 = 〈x2

1〉0 +H2 〈x2
2〉 = 〈x2

2〉0 +H2 (50)

Consider the squared cross sectional dimensions R2 = x2
1 + x2

2. Using (50) one can
get the following expression for the dimensional change of the perturbation:

〈R2〉 = 〈R2〉0 + 2H2. (51)

(4) Integrate (42) over the two-dimensional k-space:∫
hk d

2k =

∫
γ(k)h0k d

2k.

Taking into account
∫
hk d

2k = (2π)2 h|x=0, the next relation can be obtained:

h|x=0 =
1

(2π)2

∫
γ(k)h0k d

2k. (52)

Consider a free space deformation of the small cross sectional dimensions comparing
to the layer thickness H. In this case, the Fourier image of such deformation is
localized in a domain of bigger scale than H−1. On the other hand, γ(k) attenuates
rapidly with k � H−1. Therefore, (52) can be represented as:

h|x=0 =
1

(2π)2

∫
γ(k) [h0k]k=0 d2k =

V

(2π)2

∫
γ(k) d2k. (53)

Since k and H enters in γ(k) as product kH, (53) can be rewritten in the form:

h|x=0 =
V

H2
φ(m), (54)

where

φ(m) =
1

(2π)2

∫
γ

(
ξ

H

)
d2ξ, m =

μ

μ1

. (55)

(5) Using the expressions γ|k=0 = 1, ∂γ
∂kα

∣∣∣
k=0

= 0, ∂2γ
∂kα∂kβ

∣∣∣
k=0

= −H2δαβ obtained above

we can expand γ in Taylor series:

γ = 1− 1

2
k2H2 + . . .

Equation (42) can be expressed in the form:

hk =

(
1− 1

2
k2H2 + . . .

)
h0k. (56)

Applying the inverse Fourier transform to (56) and truncating the series after the
second term one can obtain:

h(x) =

(
1 +

1

2
H2Δ

)
h0(x), (57)

where Δ = ∂2
1 + ∂2

2 is the Laplace operator by the plane coordinates. Formula (57)
is valid when the perturbation width is much larger than the layer thickness H.
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As an example of (57), consider the deformation of the free surface described by
h0(x) = A exp(−α1x

2
1 − α2x

2
2), α1H

2 � 1, α2H
2 � 1. In this case, the interface

deformation becomes:

h(x) =
(
1 +H2[α1(2α1x

2
1 − 1) + α2(2α2x

2
2 − 1)]

)
A exp(−α1x

2
1 − α2x

2
2).

It can be shown that the interface deformation amplitude is smaller than the one
for the free surface:

h|x=0 =
[
1−H2(α2

1 + α2
2)
]
h0|x=0 .

On the other hand, with |x1| > 1√
2α1

and |x2| > 1√
2α2

, the interface deformation is
larger than the one for the free surface.

3. Numerical model

To obtain a numerical solution, COMSOL Multiphysics was used. Two-dimensional
planar and axisymmetric models were implemented. These models have only minor differ-
ences in their setups. Both use Laminar Flow and Moving Mesh interfaces.

A domain of layer and half-space is described by two rectangles with different Fluid
Properties. Symmetry boundary conditions on the side faces are set (Axial Symmetry and
Symmetry in axisymmetric case). The slip boundary condition is applied along other
boundaries.

The deformation of the bottom boundary is prescribed by an analytical expression
which is linear with respect to time (Prescribed Mesh Displacements is used). The side
faces are free for vertical deformation and locked for horizontal. Displacement of the
interface is described by Prescribed Mesh Velocity: velocity of the mesh is equal to the
local fluid velocity.

Since we model incompressible flow in a small finite domain, we have to keep the
volume to satisfy mass conservation. In the case of the two-dimensional problem, it can
be said that we have to keep the area of the domain. There are three ways to solve this
problem. The first one is to choose deformation function which satisfies the conditions
described above. For example, it can be a sinusoidal function. The second option is to add
negative deformation far enough from the area of interest. Since the phenomenon under
study is local, its effect should be negligible. The third option is to allow the top border
deformation, i.e. assume the free boundary condition on the top border. Again, since the
perturbation is local, the effect of the free boundary shouldn’t be significant.

The parameters of the model are layer thickness, layer/half-space viscosity ratio
and the boundary deformation shape. The primary result of the model is the shape of the
interface after the deformation.

Parametric Sweep was used to compute the model for different layer thicknesses
and viscosities. The half-space thickness was kept constant at 15m. The layer thickness
was varied from 0.5m to 2m in 0.1m increments. Viscosity ratios of 0.1, 1 and 10 were

considered. The free surface perturbation was described by functions h0(x) =
A0

2
cos

(
2πx
λ0

)

(only for planar case) and h0(x) = A0e
−x2

λ0 .

Linearity with respect to perturbation amplitude The analytical model asserts that for
small perturbations, the normalized interface deformation doesn’t depend on the surface
defect amplitude. Numerical computation shows that this is correct, even for quite large
amplitudes compared to the layer thickness (fig. 4).
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Fig. 3. Velocity magnitude and the deformations of the free surface and the interface

Fig. 4. Normalized interface deformation due to different amplitudes of the
free surface perturbation (axisymmetric model)

3.1. Result comparision

A number of numerical experiments were made for different parameters of the free
surface perturbation, layer thickness and viscosity ratio. As a result, the dependences of
the interface perturbation amplitude on the layer thickness was obtained. First, consider

planar harmonic free surface perturbation described by h0(x) = A0

2
cos

(
2πx
λ0

)
. Since the

Fourier transform of this function is:

h0k =
A0

2
π [δ(k − 2π/λ0) + δ(k + 2π/λ0)] ,
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it’s easy to find analytical expression for the interface displacement h(x):

h(x) = h0(x)γ

(
2πH

λ0

)
.

Comparison with the numerical results gave very good agreement (fig.5). On all figures
below, dashed lines correspond to the analytical approach and dots correspond to the
numerical solution.

Fig. 5. Interface perturbation due to harmonic deformation of the free surface
(planar case)

In the case of Gaussian deformation h0(x) = A0e
−x2

λ0 , the analytical approach re-
mains accurate even for large deformation amplitudes A0 (figures 6–7).

4. Conclusion

Numerical and analytical models were developed to analyze the propagation of
the free surface perturbation in the layered viscous half-space. Analytical formulas for
perturbation amplitude and width on the interface between the half-space and the layer
were obtained. The results may be summarized as follows:

Fig. 6. Interface perturbation due to Gaussian deformation of the free surface
(axisymmetric case)
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Fig. 7. Interface perturbation due to Gaussian deformation of the free surface
(planar case)

• Perturbation of the interface between the layer and the remaining half-space de-
creases rapidly with the layer thickness increase

• Propagation depends on the ratio of the viscosities: higher viscosity of the half-
space fluid helps to reduce perturbation on the interface

• Propagation depth increases with the wavelength of the initial perturabtion on the
free surface

• For the same wavelength, a smaller amplitude of the the initial perturbation causes
a smaller deformation of the interface. Normalized perturbation remains almost the
same.
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