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In this report, we study the reduced conditional dynamics of a quantum system in the case of indirect quantum

measurement. The detector’s microscopic part (pointer) interacts with the measured system (target) and the

environment, which results in a nonunitary interaction between target and pointer. The quantum state evolution

conditioned by the measurement result is under investigation. Particularly, we are interested in explicit analytical

expressions for the conditional evolution superoperators and basic information characteristics of this measurement

process, which is applied to the cavity mode photodetection problem.
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1. Introduction

An interaction between a quantum system and the environment is one of the fundamental
problems in Quantum Physics. In light of quantum communication and computation [1, 2]
development, the evolution of monitored quantum systems becomes very important, though the
guidelines are difficult at present. Particularly, quantum measurement [3], decoherentization
and superselection [4] problems, which are significant, are closely related to the theory of open
quantum system dynamics [5].

There are several approaches, which deal with quantum system evolution in the pres-
ence of the environment, e.g. the optical master equation [6], the model of quantum Brownian
motion [7] and their generalizations for the cases of non Markovian dynamics [8]. In this con-
text, different measurement models were proposed: indirect measurements, weak measurements,
nondemolition measurements, etc. [3]. From a formal point of view, one can assign at least
three formulations which reflect the detector’s role in the quantum measurement process [9,10]:
the model of projection measurement based on the von Neumann postulate [11]; the language
of “effects” and “operations” [12] and formalism based on the Feynman path integral [13, 14].

The technique of direct projective measurement is the first proposed and the simplest
way to estimate the state of a quantum system. Unfortunately, during this process, we often
have to cancel the system of interest. The idea of indirect measurement is to organize an
interaction between the measured system and the detector’s microscopic part (pointer) followed
by pointer state detection. This gives a wide opportunity for quantum state preparation, unsharp
and weak measurements, realization of quantum logical operations [15, 16], quantum state [17]
and quantum process [18, 19] tomography.

Formally, the indirect measurement process may be described by parameterization
(ρP , Uτ , {Πx}) of the initial projective measurement. Here, ρP is initial pointer state, Uτ is
unitary operator and {Πx} - set of projector valued measures. This may be completed by the
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canonical Naimark extension [20]. This technique was successfully applied in [21] to describe
the Stern-Gerlach experiment with unsharp measurement. Another way is to start from an ar-
bitrarily suitable pointer and comparatively simple interaction and construct Positive Operator
Valued Measures (POVM) corresponding to this kind of generalized detection. This method
was used for the description of indirect measurement on trapped ions [22], obtaining quantum
control and quantum gate realization in the QED cavity [16].

In fact, the efficiency of a measurement device is usually not exactly equal to iden-
tity [23] (not to speak of the photodetection and particularly IR region, where this quantity is
quite different than unity). One can define at least two factors which are participating in this
process. The first one is a classical and quantum stochastic process, which governs the behav-
ior of the measurement apparatus. This factor may be taken into account by introducing the
corresponding phenomenological probability distributions for detection events and errors [24].

The second one is a nonunitary interaction between the measured system and the mi-
croscopic part of detector (pointer), which may take place due to the interaction with the envi-
ronment. This process may change detection statistics significantly. To consider it, one should
construct the parameterization scheme using nonunitary evolution. Namely, instead of triple
(ρP , Uτ , {Πx}), one should use (ρP ,Uτ , {Πx}), where Uτ= exp (−iLτ) and L is the evolution
generator.

Here, we examine the situation of nonunitary evolution considering the intracavity in-
teraction between two level atom and cavity quantum mode during the process of indirect
electromagnetic field measurement. We model the process, when two level atom passes through
the cavity and “collects” information about the state of quantum mode. Just after the interaction,
the atomic state is determined in a selective detector, which gives one of two possible alterna-
tives: atom is found in its ground state |g〉A or in an exited state |e〉A. From these results, the
state of cavity quantum mode may be calculated.

The structure of this paper is organized as follows: in section 2 we give a brief review
about the conception of quantum measurement process. Section 3 consists of the description
for the model problem of intracavity quantum mode photodetection and presents the master
equation in superoperator form. In section 4 the system of differential equations for conditional
superoperators is obtained and solved in two extreme cases: strong and weak relaxation limits.
The basic information characteristics are presented in section 5. Here we show them us a
function of interaction time and discuss the basic results. Section 6 concludes the paper.

2. Parametrization of the Quantum Measurement Process

The goal of this section is to briefly give a review about the conception of the quantum
measurement process. We will start from the ordinary case of projection measurement and
define the set of projection valued measures. Then, the concept of indirect measurement will be
presented and the corresponding generalization of detectors measures (POVM) will be described.
At the end of this section we will introduce a parametrization scheme for indirect measurement
followed by interaction between the pointer and the environment.

2.1. Von Neumann Measurement

For complete specification of the measurement apparatus, a full set of projector valued
measures {Πx} should be known. Let BS be the outcome space of this device, then for every
detection result r ∈ BS the probability distribution:

pr = TrS (ρS · Πr) , (1)
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may be obtained. Here, ρS is the quantum state of a measured system and TrS is the trace over
its state space HS . The completeness condition gives us:∑

r

Πr = IS, (2)

where IS is the operator identity.
Following the von Neumann postulate, we can determine the state of the system just

after the detection process with certain outcome r:

ρS → ρrS =
ΠrρSΠr

Tr [ρS · Πr]
=

ΛrρS
Tr [ΛrρS]

. (3)

Here, Λr is state transformer. It should be emphasized that there is an ambiguity in the
definition of transformers Λr, which reflects the fact that different detectors may have identical
measurement statistics. So, we have to mention the equivalence class of measurement devices.

2.2. Indirect Measurement. Unitary Evolution

Now, we can assume that the projection measurement described above is used for state
detection of some auxiliary system (pointer), which had interacted with our system just before
the measurement. Let us denote the state space of ancilla by HA and the outcome space of
ancilla state detector by BA. The triplet of parameters (ρP , Uτ , {Πx}A) describes the change of
the system state in the presence of detector which outcome is ignored:

ρS → ρ̃S = TrA
[
Uτ (ρS ⊗ ρP )U †τ

]
. (4)

Here, TrA is a trace operation in HA.
Additional information, obtained by using the measurement result r ∈ BA of pointer

state, allows one to determine the conditional state of monitored system. Let Πr = |ϕr〉〈ϕr|,
|ϕr〉 ∈ HA, then the following mapping describes the conditional evolution of quantum system:

ρS → ρrS = 〈ϕr|
[
Uτ (ρS ⊗ ρP )U †τ

]
|ϕr〉 = ΞrρS. (5)

Due to the first Kraus representation theorem, the action of transformer Ξr on arbitrary
state ρS may be written as follows:

ΞrρS =
∑
j

M r
j ρSM

r†
j , (6)

where M r
j is bounded (Kraus) operators. If ρP = |in〉〈in|, we can write for them:

M r
j = a (j |r ) 〈ϕj|Uτ |in〉, (7)

where a (j |r ) is the amplitude of conditional probability to find pointer in state ϕj if detection
result ϕr is obtained (for an imperfect measurement apparatus).

There is a direct but nontrivial way to calculate the Kraus operators in the case of unitary
evolution between system and pointer. Let Hint be their interaction Hamiltonian. Substituting
the evolution operator decomposition:

U (t) =
∑
i,r∈BA

|ϕi〉〈ϕr|Mi,r (t) , (8)

into the Schrdinger equation:
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i
d

dt
U (t) = HintU (t) , U (0) = I, (9)

we can obtain the following system of differential equations, which determine the time evolution
of Kraus operators Mi,r (t) (index i corresponds to the initial atomic state whereas r corresponds
to detected state):

i
d

dt
Mi,r (t) =

∑
k∈BA

〈ϕi|Hint|ϕk〉 ·Mk,r (t) .

Its complexity depends on the algebra structure which obey the operators 〈ϕi|Hint|ϕr〉.
For some cases, we can find exact analytical solution for them, but in general, it is quite a
nontrivial problem.

2.3. Indirect Measurement. Nonunitary Evolution

Interaction between the pointer and the environment leads to a nonunitary common
reduced evolution of both target and pointer. To take it into account, the triplet (ρP ,Uτ , {Πx})
is introduced. For convenience, in future discussion, the superoperator representation for density
matrix is used:

ρP = |in〉〈in| = |in〉〉. (10)

In the following, we will assume that a secular approximation is established. Namely,
the typical time scale of the intrinsic evolution of the pointer is large compared to the time
over which it’s state varies appreciably due to interaction with the environment. Under this
approximation, description of the measurement process formally is the same as in the previous
subsection. Namely, secular approximation allows the following decomposition of superoperator
Uτ :

Uτ =
∑
i,r∈B

|ϕi〉〉〈〈ϕr |Mi,r (τ) , (11)

where we write Mi,r instead of Mi,r underlining that Mi,r is superoperator (transformer) and
Mi,r = Ξr for initial conditions, indexed by i ∈ BA. Substitution of equation (11) into the
master equation for the diagonal density matrix (rotating wave approximation):

iρ̇d (t) = Lρd (t)

gives the following system of differential equations for superoperators Ms,r:

iṀi,r (t) =
∑
k∈BA

〈〈ϕi |L|ϕk〉〉Mk,r (t) . (12)

For every fixed i we obtain the closed system for Ṁi,r. In the next section, this
formalism will be applied to the indirect photodetection problem.
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3. Master Equation

Here, we will apply the indirect measurement model, followed by nonunitary interaction,
to the problem of intracavity mode photodetection. The master equation in this case has the
Lindblad form:

iρ̇ = Lρ = [Hint, ρ] + iDAρ, (13)

where Hint is the Jaynes-Cummings Hamiltonian:

Hint = Ωσ+a exp (i∆t) +mΩ∗σ−a
† exp (−i∆t) , (14)

DA is the atomic “dissipater”

DAρ = γge/2 (2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) + γeg/2 (c.c.) , (15)

and the following notations are used: Ω is a coupling between atom and mode, σ+ = |e〉〈g| and
σ− = |g〉〈e| are atomic operators, a is an annihilation operator of cavity mode, ∆ is detuning,
γge and γeg are atomic population relaxation rates. Also it is more convenient to write the
dissipater in superoperator form:

(DAρ)j,k =

{
−ρjkΓjk, Γjk = Γkj = Γ, j 6= k;∑

q∈{g,e} (γqkρqq − γkqρkk) , j = k,
(16)

where we introduce nonzero phase relaxation rate Γ.
Let BA = {g, e} be a set of results of atomic state detection. Here, we will assume the

ideal (projective) measurement of pointer state. Using density operator decomposition:

ρAF (t) =
∑

µ,ν∈BA

|µ〉〈ν| ⊗ ρµν (t) , (17)

in (13), one can obtain a system of differential equations for matrix elements of the density
operator ρAF in atomic basis:

ρ̇gg = −i
(
Ω∗a†ρege

−i∆t − Ωρgeae
i∆t
)

+ γegρee − γgeρgg,
ρ̇ge = −i

(
Ω∗a†ρeee

−i∆t − Ω∗ρgga
†e−i∆t

)
− Γgeρge,

ρ̇eg = −i
(
Ωaρgge

i∆t − Ωρeeae
i∆t
)
− Γegρeg,

ρ̇ee = −i
(
Ωaρgee

i∆t − Ω∗ρega
†e−i∆t

)
+ γgeρgg − γegρee.

(18)

The transformation ρge = ρ̃gee
−i∆t, ρeg = ρ̃ege

i∆t (in the following, the tilde will be
dropped) and secular approximation (rotating wave approximation) Γ � Ω (ρ̇ge = ρ̇eg = 0),
gives the following closed system of differential equations for diagonal elements ρgg (t) and
ρee (t) of density matrix:

ρ̇gg = κΓ
(
2a†ρeea− ρgga†a− a†aρgg

)
− iκ∆

[
a†a, ρgg

]
+ γegρee − γgeρgg,

ρ̇ee = κΓ
(
2aρeea

† − ρggaa† − aa†ρgg
)
− iκ∆

[
a†a, ρee

]
+ γgeρgg − γegρee.

(19)

which may be written as:

ρ̇d (t) = L′ρd (t) , (20)

where ρd (t) = diag {ρgg (t) , ρee (t)} and κ = |Ω|2
/

(Γ2 + ∆2).
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To obtain the analytical expression for L′ in superoperator form, let us introduce the
following superoperators, which act on the density matrix of cavity field:

K0ρF =
1

2

(
a†aρF + ρFaa

†) , K+ρF = a†ρFa, K−ρF = aρFa
†, NρF =

[
a†a, ρF

]
, (21)

and obey the commutation relations of SU (1, 1) algebra:

[K−, K+] = 2K0, [K0, K+] = K+, [K0, K−] = −K−,
[K0, N ] = [K+, N ] = [K−, N ] = 0.

(22)

Also, for the following, it is convenient to introduce atomic superoperators θjk:

θjkρ = |j〉〉 〈〈k| ρ = |j〉〈k|ρ|k〉〈j|. (23)

With these notations, we can write evolution equation in Lowville form (20) with

L′= L0 + Lr, (24)

where

L0 = −κΓ

[
K0 (θgg + θee) +

1

2
(θee − θgg)−K+θge −K−θeg

]
− iκ∆N (θgg − θee) ,

Lr =
∑
j,k

γjk (θkj − θjj) .
(25)

4. Superoperators of Conditional Evolution

To solve Eq. (20) with the evolution generator taken from (25), we will use evolution
superoperator decomposition (11) in the following form:

ρ (t) = A (t) ρ (0) =
∑
i,j∈BA

Mij (t)⊗ |ϕi〉〉 〈〈ϕj |ρ (0) . (26)

Substituting the first part of this equality into (20) gives the differential equation for
superoperator A (t):

Ȧ (t) = (L0 + Lr)A (t) ,A (0) = =. (27)

Here, = is the identical superoperator. Then, using the second part of equality (26)
in (27), we can write two separate systems of differential equations. One of these determines
superoperators Mgg and Meg, which describe the conditional evolution when atom was prepared
in its ground state |g〉 and detected in states |g〉 and |e〉 correspondingly. Other superoperators
Meg and Mee describe the measurement process with an atom prepared in the excited state |e〉.
We will solve only the first of these systems, because the method for solving the second one is
identical. For the first one, we can write (dependence of t is dropped):{

Ṁgg = − (αK0 + β + γge)Mgg + (αK+ + γeg)Meg,

Ṁeg = (αK− + γge)Mgg − (αK0 − β + γeg)Meg.
(28)

Here, α = κΓ and β = κ (i∆N − Γ/2). This system may also be represented in a more
symmetrical way with substitution:
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Mgg = exp [− (αK0 + β + γge)]M
′
gg,

Meg = exp [− (αK0 − β + γeg)]M
′
eg,

(29)

in use. In this case it may be written as follows:{
Ṁ′

gg = (eαtK+ + γeg) e
(2β+γge−γeg)tM′

eg,

Ṁ′
eg = (e−αtK− + γge) e

−(2β+γge−γeg)tM′
gg.

(30)

It is a nontrivial problem to get the exact analytical solutions for systems (28) or (30).
Here, we use two extreme cases of strong and weak relaxation to obtain approximate expressions
for the superoperators Mgg and Meg from perturbation theory up to the first order:

Mgg = M(0)
gg + M(1)

gg ,

Meg = M(0)
eg + M(1)

eg ,
(31)

leaving the exact analytical solutions for subsequent research.

4.1. Perturbation Theory. Strong Relaxation

In the secular approximation which we used to obtain (28), we assumed that |Ω| � Γ,
which leads to κ � 1. Let us assume now that γge < κΓ ≈ κ∆ � γeg, which means that
the low temperature approximation is used. It gives the following system for the zero order
approximation: {

Ṁ
(0)
gg = γegM

(0)
eg ,

Ṁ
(0)
eg = −γegM(0)

eg .
(32)

It has a simple analytical solution:

M(0)
gg = =,M(0)

eg = 0, (33)

for the first order, the system has the form:{
Ṁ

(1)
gg = γegM

(1)
eg − (αK0 + β + γge) ,

Ṁ
(1)
eg = −γegM(1)

eg + (αK− + γge) ,
(34)

and solution:

M(1)
gg (t) = (αK− + γge)

(
e−γegt − 1

) /
γeg − [α (K0 −K−) + β] t,

M(1)
eg (t) = (αK− + γge)

(
1− e−γegt

) /
γeg.

(35)

4.2. Perturbation Theory. Weak Relaxation

Here we examine another extreme case, assuming that γge < γeg � κΓ ≈ κ∆, so that
in the zero order of perturbation theory, we get the following system:{

Ṁ
(0)
gg = − (αK0 + β)M

(0)
gg + αK+M

(0)
eg ,

Ṁ
(0)
eg = αK−M

(0)
gg − (αK0 − β)M

(0)
eg .

(36)

From straightforward calculations, one can obtain:

M̈(0)
eg + α (2K0 + 1) Ṁ(0)

eg +
(
α2C − β (α + β)

)
M(0)

eg = 0, (37)
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where C = K2
0 −K0 −K+K− is the Casimir operator. Notice, that all coefficients in (37) are

commute, so we can solve it as an ordinary second order differential equation. The characteristic
roots are:

µ1,2 =
1

2

(
±
√
D − α (2K0 + 1)

)
, (38)

where D = 2α2 (K+K− +K−K+) + (α + 2β)2 + 4α2K0, and the solution may be written as:

M(0)
eg (t) = α

(
eµ1t − eµ2t

) (√
D
)−1

K−. (39)

To obtain expression for Mgg (t), we use the following substitution:

Ṁ′(0)

gg = αK+e
(α−a)tM(0)

eg ,

which leads to

M(0)
gg = e−(αK0+β)t

{
1 + α2K+

[
λ−1

1

(
eλ1t − 1

)
+ λ−1

2

(
eλ2t − 1

)]√
D−1K−

}
,

where λ1,2 = µ1,2 + α− a =
α±
√
D

2
+ β.

In the first order of perturbation theory, we get the following system:{
Ṁ

(1)
gg = − (αK0 + β)M

(1)
gg + αK+M

(1)
eg + γegM

(0)
eg ,

Ṁ
(1)
eg = αK−M

(1)
gg − (αK0 − β)M

(1)
eg − γegM(0)

eg .
(40)

Repeating the same procedure as in the zero order solution and using method of variation
of parameters, one can obtain the following first order solution:

M(1)
eg (t) = γegD

−1
{

(λ1 + λ2)M(0)
eg (t)− αt

(
λ1e

µ1t − λ2e
µ2t
)
K−
}

+γeg

∫ t

0

M(0)
eg (t− τ)M(0)

eg (τ) dτ, (41)

M(1)
gg (t) = α2γegK+D

−3/2
[
(λ1 + λ2)

(
eµ1t
/
λ1 − eµ2t

/
λ2

)
+ (λ1 + λ2) (µ1 − µ2) e−(αK0+α+β)t

/
λ1λ2 − (µ1 − µ2)

(
eµ1t + eµ2t

)
t
]
K−

+αγegK+

∫ t

0

∫ τ

0

e−(αK0+α+β)(t−τ)M(0)
eg (τ − θ)M(0)

eg (θ) dθdτ. (42)

5. Information Characteristics of Photodetection Process

Here, the basic information characteristics of the photodetection process will be investi-
gated in the bounds of the model discussed above. The following quantities are of most interest:
probability of certain detection result r ∈ {g, e}:

Pr (t) = TrF [Mrg (t) ρF ] , (43)
information gain Ir = −∆H as a measure of entropy change resulting from photodetection:

∆H = ρrF log ρrF − ρF log ρF (44)

and fidelity:
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Fr =
√√

ρFρrF
√
ρF , (45)

which characterizes the state change caused by the measurement process.
These quantities are shown on Fig.1 – Fig.4 as functions of time interaction τ for

different dimensions of cavity mode state space. Fig. 1 and Fig. 2 show the results obtained
from the strong relaxation approximation, while Fig 3 and Fig 4 show these dependences for the
case of weak relaxation limit. For each approximation, two initial states are tested: completely
mixed state ρF = 1/d and Fock state ρF = |n〉〈n|. Here, d is the dimension of the cavity mode
state space and n ≤ d is the number of photons in cavity mode (cases d = 2, 4, 6 and n = 1, 3, 5
are depicted). We investigate the case of conditional reduced density matrix evolution, which
corresponds to the detection result, r = g. The top rows of the graphs in each figure represent
information characteristics in different approximations, while the bottom rows in Fig.1 and Fig.
2 show the field density matrix elements in certain moment (Ωτ = 0, 10, 50) in the case d = 4
(or n = 3).

FIG. 1. Ground state detection: probability, information gain and fidelity as a
functions of interaction time for mixed state ρF = 1/d (top); density matrix
elements (d = 4) at the moments Ωτ = 0, 10, 50 (bottom). Strong relaxation
approximation.

The first graph in each of the top rows shows the probability 1−Pg = Pe to detect atom
in its non-ground state. In strong relaxation, the limit (Fig. 1 and Fig. 2) curves corresponding to
interaction with several photons (blue dotted and green chain lines) tend to approach a constant
nonzero value due to the nonzero atomic spontaneous excitation. In the case of interaction with
only one photon in the cavity mode (red solid line) the probability to detect an atom in its
excited state increases with time because of the comparatively weak atom-field interaction. For
the weak relaxation limit, all curves tends to some constant value.

The second graph in each of top rows shows the information gain as a function of
time. The behavior of this dependence for the cases of initially mixed (Fig. 1 and Fig. 3) and
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FIG. 2. Ground state detection: probability, information gain and fidelity as a
functions of interaction time: for Fock state ρF = |n〉〈n| (top); density matrix
elements (n = 3) at the moments Ωτ = 0, 10, 50 (bottom). Strong relaxation
approximation.

Fock states (Fig. 2 and Fig. 4) are completely different. For the initial mixed state in strong
relaxation limit, all curves increase monotonically because this state has maximum entropy and
tend to some constant value, which corresponds to the final vacuum state (with zero entropy).
For the mode prepared in the Fock state and in the same limit, initial entropy is zero and rises
due to common evolution with the atom. Finally, all curves tend to the vacuum value, which
surely has zero entropy, but due to the nonzero spontaneous atomic excitation, the resulting
state has a constant non-vanishing value of entropy. These dependences for the weak relaxation
limit may be explained in the same way.

Finally, the third graph in each of the top rows shows the detection fidelity as a func-
tion of time. It is interesting to investigate the stationary limit of these dependences in strong
relaxation approximation. In this approximation, all curves decay monotonically, which corre-
sponds to an irreversible state change. For the field prepared in the completely mixed state,
the stationary value is nonzero for all cases because the mixed state and the final vacuum state
are nonorthogonal. For the case of Fock state initially prepared, the curves tends to approach
zero with the increased photon numbers. This may be explained by the orthogonality of the
initial and final states. But, due to spontaneous excitation, the probability to detect an atom in
its excited state is nonzero and superoperators of conditional evolution transform the density
matrix to its final state, which is not orthogonal to its initial state. That is why all curves tend
to approach small but nonzero value.

In the weak relaxation limit for the considered interaction times, stationary limits are not
obtained. In this approximation (see bottom rows in Fig.3 and Fig.4), we compare the numerical
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FIG. 3. Ground state detection: probability, information gain and fidelity as
a functions of interaction time: for mixed state ρF = 1/d (top); numerical
simulations (solid line) and analytical solution (dashed line) for the case d = 4.
Weak relaxation approximation.

simulation and the analytical solution (42) results for the case d = 4 (n = 3). Here, we used
the quadrature method to calculate the integral in (42).

For numerical modeling, the following values of parameters are used (in unit γeg = 1):
γge = 0.1, γeg = 1, Γ = 2, ∆ = 0.5 and Ω = 0.7 (for strong relaxation limit); γge = 0,γeg = 0.01,
Γ = 2, ∆ = 0.5 and Ω = 0.7 (for weak relaxation limit).

6. Conclusion

The parametrization of the measurement process in the presence of a nonunitary evolu-
tion was investigated. Interaction between the pointer and the environment was discussed and
applied to the quantum photodetection problem. Basic characteristics of measurement process
as a function of interaction time for two approximations were obtained. Properties of superop-
erators corresponded to different measurement results may be used for finding special regimes
of detection: measurement without state or entropy change from one side and detection with
best information gain from another. The generalization of previous description beyond secular
approximation (quantum Brownian motion) will be considered in the future. It is attractive to
obtain detector superoperators from evolution generator, though it requires deep analysis of their
algebraic properties.
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FIG. 4. Ground state detection: probability, information gain and fidelity as
functions of interaction time: for mixed state for Fock state ρF = |n〉〈n| (top);
numerical simulations (solid line) and analytical solution (dashed line) for the
case n = 3. Weak relaxation approximation.
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