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In molecular dynamics, Hamiltonian systems of differential equations are numerically integrated using some sym-

plectic method. Symplectic integrators are simple algorithms that appear to be well-suited for large scale sim-

ulations. One feature of these simulations is that there is an unphysical drift in the energy of the system over

long integration periods. A drift in the energy is more obvious when a relatively long time step is used. In this

article, a special approach, based on symplectic discretization and momenta corrections, is presented. The proposed

method conserves the total energy of the system over the interval of simulation for any acceptable time step.

A new approach to perform a constant-temperature molecular dynamics simulation is also presented. Numerical

experiments illustrating these approaches are described.
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1. Introduction

In the field of molecular dynamics (MD), simulations of systems modeling materials
or molecules at the microscopic scale are performed. There is a particular interest in large
scale MD simulations, involving perhaps as many as several million atoms, over very long time
scales. Such large simulations are of interest not only in standard macromolecular modeling
but also in the modeling of various nanotechnology ideas. Molecular dynamics simulation first
involves setting up the initial positions and velocities of the particles, and then the numerical
integration of the classical equations of motion.

In a classical mechanics model, each atom is a particle with position rn, momentum pn

and mass mn. Positions and momenta are determined by the equations of motion:

dpn

dt
= fn(t),

drn
dt

=
pn

mn

,

rn(0), pn(0) are given,
n = 1, . . . ,N,

where fn(t) is the force acting on the particle at time t and N is number of particles. Let us
denote r = (r1, . . . , rN) and p = (p1, . . . ,pN). Forces are determined from the system potential
energy U(r):

fn(t) = −∂U (r)

∂rn
= −∇rnU (r) .

These equations are a special case of a Hamiltonian system of differential equations:

dpn

dt
= −∂H (r,p)

∂rn
,

drn
dt

=
∂H (r,p)

∂pn

,

with Hamiltonian H = K + U where K is the kinetic energy:
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H (r,p) =
N∑

n=1

p2
n

2mn

+ U (r) . (1)

Hamiltonian (1) is not explicitly time-dependent and its value is the total energy:
H (r,p) = E. Classical dynamics is time reversible and the total energy of an isolated system
is conserved. If the external forces on the individual particles sum to zero, the total momentum,

P =
N∑

n=1

pn,

is conserved. If the external force acting on a system is zero, then the total angular momentum
of the system,

L =
N∑

n=1

rn × pn,

is constant.
Numerical integration is the most computationally-intensive part of an MD simulation.

The desirable qualities for a simulation algorithm might be as follows:

(a) It should be fast, and require little memory. Numerical integration algorithms require a
number of force evaluations in order to advance a trajectory by a given time step. The
computational time is proportional to the number of force evaluations taken. Therefore,
algorithms with one force evaluations per time step are preferable;

(b) It should allow the use of a long time step;
(c) It should reproduce the classical trajectory as closely as possible;
(d) It should satisfy the known conservation laws for energy, total momentum and angular

momentum, and be time-reversible.

Symplectic schemes have been found to be effective for MD simulations with classical
dynamics, especially for long time integration (see, for example, [1–3] and references therein).
The most commonly used symplectic algorithm is the Verlet algorithm [4] which appears in
many different formulations. In what follows, we will use a second order method, first disclosed
by Rowlands [5]:

rk+1/2
n = rkn + τk

pk
n

2mn

,

pk+1
n = pk

n − τk (∇rnU(r))
∣∣∣
rn=r

k+1/2
n

,

rk+1
n = rk+1/2

n + τk
pk+1
n

2mn

,

n = 1, . . . , N ; k = 0, 1, . . . .

(2)

For symplectic algorithms, there exists a modified Hamiltonian Hm, which can be
obtained from an asymptotic expansion of the original analytic Hamiltonian H . In the case of
second order scheme, the general expression for the modified Hamiltonian is given in [6] and
has the form:

Hm (r,p) = H (r,p) + τ 2g (r,p) +O
(
τ 4
)
.
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Symplectic integrators do not in fact conserve the value of true Hamiltonian H; instead, they
reproduce more closely the value of modified Hamiltonian Hm. The accuracy of the energy
conservation for the true Hamiltonian is dependent on the time step.

In numerical solutions of classical dynamics, all variables are discretized, and this could
destroy the energy conservation. In MD simulations, interactions beyond a cutoff distance rc
are usually ignored. This means that the forces are not exactly correct. This also affects the
energy conservation in MD simulations [7].

2. Constant energy simulation

Let us consider a system of N particles and U(r) is the potential energy of the system.
Let E0 be the initial total energy of the system. Given coordinates and momenta at some time
tk−1,

(
rk−1,pk−1

)
, the one step given by equation (2) generates

(
rk,pk

)
. Then, the total energy

of the system E
(
rk,pk

)
= K

(
pk
)

+ U
(
rk
)

= E (tk) and because the total energy is not
conserved: E (tk) 6= E0. To achieve the energy conservation, we introduce corrections ∆pk to
momenta pk with the proviso that

1

2

N∑
n=1

(
∆pk

n

)2

mn

−min .

Using the method of Lagrange multipliers, we introduce functional

W
(
∆pk, λ

)
=

1

2

N∑
n=1

(
∆pk

n

)2

mn

+ λ

(
1

2

N∑
n=1

(
pk
n + ∆pk

n

)2

mn

+ U
(
rk
)
− E0

)
.

When variation δW = 0 for any arbitrary variations δ
(
∆pk

)
and δλ, the functional W reaches

its minimal value. Then, the condition δW = 0 leads to the following system of equations:

1

mn

∆pk
n + λ

1

mn

(
pk
n + ∆pk

n

)
= 0,

1

2

N∑
n=1

(
pk
n + ∆pk

n

)2

mn

+ U
(
rk
)

= E0.

(3)

Solving the first of equations (3) we obtain:

∆pk
n = − λ

1 + λ
pk
n ⇒ pk

n + ∆pk
n =

1

1 + λ
pk
n = αpk

n.

The second equation (3) gives us the value of coefficient α:

1

2

N∑
n=1

(
pk
n + ∆pk

n

)2

mn

+ U
(
rk
)

= α2K
(
pk
)

+ U
(
rk
)

= E0 ⇒ α =

√
E0 − U (rk)

K (pk)
.
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In summary, the above results lead to the following algorithm (ECI1 – energy conserving
integrator 1):

rk+1/2
n = rkn + τk

pk
n

2mn

,

p∗n = pk
n − τk (∇rnU (r))

∣∣∣
rn=r

k+1/2
n

,

rk+1
n = rk+1/2

n + τk
p∗n

2mn

,

pk+1
n = αkp

∗
n, αk =

√
E0 − U (rk+1)

K (p∗)
,

n = 1, . . . , N ; k = 0, 1, . . . .

(4)

In algorithm (4) the difference of two terms E0 − U ≈ K. In the case of a few body
problems one can meet with the loss of numerical accuracy when kinetic energy K is small.
Then we introduce corrections ∆pk to momenta pk and corrections ∆rk to positions rk with
the proviso that

1

2

N∑
n=1

(
∆pk

n

)2

mn

+
ks
2

N∑
n=1

(
∆rkn

)2 −min .

It is assumed that every particle n is connected to position rn through the mediation of
virtual spring with the stiffness ks. A particle may not be easily displaced from the position rn,
which means that one should choose:

ks ∼ max
n

∣∣∣∣∂2U

∂r2
n

∣∣∣∣ .
Using the method of Lagrange multipliers, we introduce functional

W =
1

2

N∑
n=1

(
∆pk

n

)2

mn

+
ks
2

N∑
n=1

(
∆rkn

)2
+ λ

(
1

2

N∑
n=1

(
pk
n + ∆pk

n

)2

mn

+ U
(
rk + ∆rk

)
− E0

)
.

The condition δW = 0, for any arbitrary variations δ
(
∆pk

)
, δ
(
∆rk

)
and δλ, leads to

the following system of equations:

1

mn

∆pk
n + λ

1

mn

(
pk
n + ∆pk

n

)
= 0,

ks∆rkn + λ (∇rnU(r))
∣∣∣
rn=rkn+∆rkn

= 0,

1

2

N∑
n=1

(
pk
n + ∆pk

n

)2

mn

+ U
(
rk + ∆rk

)
= E0.

(5)

Let us use the following approximations:

(∇rnU(r))|rn=rkn+∆rkn
≈ (∇rnU(r))

∣∣∣
rn=rkn

,

U
(
rk + ∆rk

)
≈ U

(
rk
)

+
N∑

n=1

(∇rnU(r))
∣∣∣
rn=rkn

·∆rkn.
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Then, the second and third equations in (5) give us the cubic equation in one unknown
parameter λ: (

1

1 + λ

)2

K
(
pk
)
− λ

ks

N∑
n=1

[
(∇rnU(r))

∣∣
rn=rkn

]2

= E0 − U
(
rk
)
.

We are looking for approximate solution of this equation assuming that λ is close to
zero because corrections should be relatively small. Then, we arrive at the following solution:

λ =
U
(
rk
)

+K
(
pk
)
− E0

2K (pk) + 1
ks

∑N
n=1

[
(∇rnU(r))

∣∣
rn=rkn

]2 .

Taking into account first and second equations in (5), we arrive at the following algo-
rithm (ECI2 – energy conserving integrator 2):

rk+1/2
n = rkn + τk

pk
n

2mn

,

p∗n = pk
n − τk (∇rnU(r))

∣∣∣
rn=r

k+1/2
n

,

r∗n = rk+1/2
n + τk

p∗n
2mn

,

rk+1
n = r∗n − βk (∇rnU(r))

∣∣
rn=r∗n

, βk =
U (r∗) +K (p∗)− E0

2ksK (p∗) +
∑N

n=1

[
(∇rnU(r))

∣∣
rn=r∗n

]2 ,

pk+1
n =

1

1 + ksβk
p∗n,

n = 1, . . . , N ; k = 0, 1, . . . .

(6)

2.1. Harmonic oscillator

Consider the motion of a harmonic oscillator. The Hamiltonian equations in that case
can be written as:

dp

dt
= −ω2q,

dq

dt
= p, (7)

q(0), p(0) are given,

where p is the momentum, q = mx is the canonical coordinate, ω = (k/m)1/2, m is the mass
and k is the stiffness. The total energy of the harmonic oscillator is E = K(p) + U(q) =
0.5(p2 + q2)/m. The exact solution of the problem (7) is:[

q (t)

p (t)

]
=

[
cos (ωt) ω−1 sin (ωt)

−ω sin (ωt) cos (ωt)

][
q (0)

p (0)

]
.

Application of symplectic method (2) to the harmonic oscillator problem gives the following
scheme:

qk+1/2 = qk + 0.5τpk, pk+1 = pk − τω2qk+1/2,

qk+1 = qk+1/2 + 0.5τpk+1,

k = 0, 1, . . . .

(8)

This scheme is stable if τω < 2.
Figures 1–3 show the phase trajectory and time dependence of the position of the

harmonic oscillator, as calculated with the use of methods (4), (6) and (8). Initial conditions
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are q (0) = 0 and p (0) = 1. The oscillator parameters are m = 1 and k = 1. A relatively long
time step was chosen with τω = 0.25π (eight time steps per oscillation period). To estimate the
energy conservation, we introduced the relative energy error as:

〈∆E〉 =
1

E (0)M

M∑
k=1

|E (tk)− E (0)| , (9)

where E(0) is the initial total energy and M is the number of time steps. Fig. 1(a) indicates
that the total energy is conserved, the relative energy error 〈∆E〉 = 3.7 · 10−17, while Fig. 1(b)
indicates that the position of harmonic oscillator slightly deviates from the exact solution.

a) b)

FIG. 1. Phase trajectory and time dependence of the position of harmonic oscilla-
tor, method (4); a) Phase trajectory in the phase space q−p, solid line is the exact
trajectory, dots indicate approximate solution; b) position of harmonic oscillator
versus time, solid line is the exact solution, dashed line indicates approximate
solution.

a) b)

FIG. 2. Phase trajectory and time dependence of the position of harmonic os-
cillator, method (6) with ks = 5; a) Phase trajectory in the phase space q − p,
solid line is the exact trajectory, dots indicate approximate solution; b) position
of harmonic oscillator versus time, solid line is the exact solution, dashed line
indicates approximate solution.



Accurate energy conservation in molecular dynamics simulation 663

a) b)

FIG. 3. Phase trajectory and time dependence of the position of harmonic os-
cillator, symplectic method (8); a) Phase trajectory in the phase space q − p,
solid line is the exact trajectory, dots indicate approximate solution; b) position
of harmonic oscillator versus time, solid line is the exact solution, dashed line
indicates approximate solution.

As is seen from Fig. 2(a), the approximate phase trajectory slightly deviates from the
exact one. Method (6) conserves the total energy much worse than method (4), the relative
energy error being 〈∆E〉 = 7.9 · 10−3, but provides similar results to method (4) for the time
dependence of the harmonic oscillator’s position, as shown in Fig. 2(b). Symlectic method (8)
does not conserve the total energy, but rather the value of the modified Hamiltonian, as can be
seen from Fig. 3(a). In this example, the relative energy error was 〈∆E〉 = 7.7 · 10−2. The
discrepancy between the calculated and exact position of the harmonic oscillator grows more
quickly with time in comparison to methods (4) and (6).

The presented results demonstrated the accuracy and efficiency of the proposed method
for a simple, analytically solvable, test case. However, actual MD simulations involve consid-
erably more complicated dynamics, and it is therefore worthwhile to examine a more complex
example.

2.2. MD simulation of the Lennard-Jones fluid

Let us analyze the time dependence of the energy for a fluid of N particles interacting
via the well-known Lennard-Jones (LJ) pair potential:

ϕ (r) = 4ε

[(
d

r

)12

−
(
d

r

)6
]
,

where r is the distance between particles, ε and d are potential parameters. Particles are
contained in a box with rigid walls and V is the volume of the box. The potential energy of the
system is given by:

U (r) =
1

2

N∑
n=1

N∑
m=1
m 6=n

ϕ (rnm) , rnm = |rn − rm| .

In order to choose the time step of the simulation, it is necessary to determine the
highest oscillating frequency ωmax in the physical system and satisfy the condition for stability,
τωmax < 2. The second condition to be satisfied is that the integration of the trajectories for
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most particles should be sufficiently accurate. Most particles will have an oscillation frequency
ωa associated with the average separation ra = (V/N)1/3. The oscillation frequency estimate can
be obtained with a simple one-dimensional argument considering the case when two neighboring
particles move towards each other to a position of closest approach [8]. Then, we propose the
following estimates that are sufficient for the choice of a reasonable time step:

ωk
max =

(
1

mp

∂2ϕ

∂r2

(
rkmin

))
, ωk

a =

(
1

mp

∂2ϕ

∂r2
(ra)

)
,

where mp is the minimal reduced mass and rkmin is the closest approach at some time tk. They
are:

mp = min
i,j

(
mimj

mi +mj

)
, rkmin = min

i,j

(
rkij
)
.

Another constraint on the time step arises from the requirement that a particle should not
move more than the minimal distance between particles. Hence, the condition 2τkv

k
max < rkmin

should be satisfied, where vkmax is maximal particle velocity at some time tk defined as:

vkmax = max
n

(
1

mn

(
pk
n · pk

n

)1/2
)
.

The condition on the time step may be summarized as follows:

τk = min

(
a1

ωk
max

,
a2

ωk
a

,
a3r

k
min

vkmax

)
, τ =

1

M

M∑
k=1

τk.

Parameters a1, a2 and a3 define the accuracy of the integration of particle motion, τ is the
average time step and M is the number of time steps. Because the probability of small
separations occurring between particles is small, it is not necessary to accurately integrate the
motion of such particles. The trajectories for most particles should be integrated more accurately.
Then, we have 2 > a1 > a2 and parameter a3 ≤ 0.1.

We considered a fictitious fluid with potential parameters ε = 0.015 eV and d = 3 A. All
particles have equal mass m = 20 u. Then, an atomic time unit tau = (u · A2/eV)

1/2 corresponds
to 1.019·10−14 s. We simulated N = 100 LJ particles at reduced density ρ∗ = 0.728 and reduced
temperature T ∗ = 1.376, a moderate-pressure liquid state. In MD simulations, interactions
beyond a certain distance rc are usually ignored. In what follows, rc is taken to be equal to
2.5d. To obtain initial conditions, we used simplectic method (2), with τ ≈ 0.001, and integrated
the equations of motion for 105 time steps, saving the resulting coordinates and momenta. These
coordinates and momenta were then used as initial conditions for all simulations. The resulting
value of the total energy of the system was taken as the initial value of energy E(0) that must
be conserved. The dynamics were simulated in double-precision arithmetic.

The parameters of three simulations are presented in Table 1.

TABLE 1. Parameters of simulations

Method a1 a2 a3
τ ,

atomic units
M

1 Symplectic (2) 0.025π 6.25·10−3π 0.1 0.0081 4·105

2 Symplectic (2) 0.5π 0.125π 0.1 0.161 2·104

3 ECI1 (4) 0.5π 0.125π 0.1 0.162 2·104
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In all simulations, we considered the relative energy error (9) and some basic thermo-
dynamic quantities, such as, temperature T , pressure P and constant-volume heat capacity CV .
These thermodynamic quantities can be calculated as averages in a microcanonical ensemble as
follows [9]:

T =
2

3NkB
〈K〉 , P =

NkBT

V
+

1

3V

〈
N∑

n=1

N∑
m>n

rnm
dϕ

dr
(rnm)

〉
,

CV =
3

2
NkB

(
1− 3

2
N

〈
(δK)2〉
〈K〉2

)−1

,

where angle brackets 〈·〉 mean the time average, δK (tk) = K (tk) − 〈K〉 is the fluctuation
of kinetic energy at time tk and kB is the Boltzmann constant. Calculated thermodynamic
quantities are presented in Table 2.

TABLE 2. Calculated properties for a LJ fluid

〈∆E〉 T , K P , eV/A3 CV , eV/K

1 9.6·10−3 240.3 9.3·10−4 0.0174

2 0.12 249.2 10−3 0.0173

3 1.1·10−15 239.2 9.5·10−4 0.0175

The dependence of the energy of the system of LJ particles on time for three simulations
presented in Table 1 is shown in Figs. 4-6. Symplectic methods do not conserve energy exactly
along trajectories. However, although they do not conserve energy, symplectic methods have
been observed to maintain system energy in a narrow band near the true energy for long periods
of time (see Fig. 4). That is, the energy of the system fluctuates about some value with very
little apparent long-term drift. However, over longer time periods there is a slow drift in the
energy away from this range. If relatively long time step is used then a drift in the energy
becomes even more apparent (see Fig. 5). We considered the system of particles contained in
a box with rigid walls. In this case, the integration of the motion of the system with the use
of symplectic method (2) resulted in an increase of the system’s kinetic energy. The proposed
method (4) conserved the total energy of the system over the interval of simulation (see Fig.
6); the relative energy error is close to round-off errors.

The average deviation 〈|1− αk|〉 is equal to 4.8 ·10−5 for simulation 3 (αk is momentum
correction parameter from (4)), so very small correction of momenta is needed to conserve the
total energy.

3. Constant temperature simulation

The definition of thermodynamic temperature can be obtained through the fundamental
equation of state [10], from which we get:

1

T
=

dS

dE
,

where S is the entropy and T is the thermodynamic temperature recorded by a thermometer in
thermal equilibrium with the system. The kinetic temperature of the system is related to system
kinetic energy through the standard relationship:
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FIG. 4. The evolution of the energy for a LJ fluid, simulation 1.

FIG. 5. The evolution of the energy for a LJ fluid, simulation 2. Dashed line
indicates the initial total energy.

3

2
NkBTk = 〈K〉 . (10)

For a system in equilibrium, it is well known that the kinetic temperature is identical to
the thermodynamic temperature, i.e. T = Tk. With the use of the maximum entropy formalism,
it was found that even though a system is far enough from equilibrium for nonlinear effects,
Tk/T − 1 < 0.01 [11]. In what follows, we assume that T ' Tk.

Simulations at constant temperature are important for studying the behavior of systems at
different temperatures. Several different methods of prescribing the temperature in a molecular
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FIG. 6. The evolution of the energy for a LJ fluid, simulation 3.

dynamics simulation exist [9]. We propose a new approach to adapt MD so as to sample a
constant-temperature ensemble.

Let us consider a system of N particles and T0 is the prescribed temperature that
corresponds to the kinetic energy K0 through relation (10). Given coordinates and momenta at
some time tk−1,

(
rk−1,pk−1

)
, the one step given by equation (2) generates

(
rk,pk

)
. Then, the

kinetic energy of the system K
(
pk
)

and particle kinetic energy Kn

(
pk
n

)
at time tk are defined

as:

K
(
pk
)

=
N∑

n=1

pk
n · pk

n

2mn

, Kn

(
pk
n

)
=

pk
n · pk

n

2mn

.

The kinetic energy (temperature) is not conserved: K
(
pk
)
6= K0. Let us introduce

kinetic energy difference per particle as:

∆K
(
pk
)

=
1

N

(
K0 −K

(
pk
))
.

To achieve the conservation of kinetic energy, we introduce corrections ∆pk to momenta pk

with the proviso that K
(
pk + ∆pk

)
= K0. We assume that:

pk
n + ∆pk

n = pk
n + γknp

k
n =

(
1 + γkn

)
pk
n.

Then, we have:

Kn

(
pk
n + ∆pk

n

)
−Kn

(
pk
n

)
= ∆K

(
pk
)

=
(
1 + γkn

)2
Kn

(
pk
n

)
−Kn

(
pk
n

)
.

Solving the last equation and assuming that γ is a real and positive parameter, we obtain:

1 + γkn
(
pk
n

)
=

{(
1 + ∆K

(
pk
) /
Kn

(
pk
n

))1/2
, if ∆K

(
pk
) /
Kn

(
pk
n

)
> −1;

1, otherwise.
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In summary, the above results lead to the following algorithm (KECI – kinetic energy conserving
integrator):

rk+1/2
n = rkn + τk

pk
n

2mn

,

p∗n = pk
n − τk (∇rnU(r))

∣∣∣
rn=r

k+1/2
n

,

rk+1
n = rk+1/2

n + τk
p∗n

2mn

,

pk+1
n =

(
1 + γkn (p∗n)

)
p∗n,

n = 1, . . . , N ; k = 0, 1, . . . .

(11)

Let us consider a system of N particles interacting via the Lennard-Jones pair potential
defined in section 2.2. The target temperature T0 is set to 300 K. The system was integrated
with the use of method (11) for 2·104 time steps with the average time step τ = 0.152. Fig. 7
shows the evolution of the instantaneous temperature deviation (T0 − T ) /T0 over the interval
of the simulation. During the simulation, the speed distribution histogram was constructed. As
can be seen from Fig. 8, the obtained speed distribution of the particles is close to the Maxwell
distribution. Pearson’s chi-squared test confirms this observation.

FIG. 7. The evolution of relative temperature deviation for a LJ fluid.

4. Conclusions

Approximate solutions for the equations of motion in MD simulations are typically
computed by some symplectic method, however any known symplectic numerical method does
not conserve energy exactly along trajectories. This is because the various types of errors have
an effect on the accuracy of the computation. Our investigation showed that the energy can
be accurately conserved by introducing relatively small corrections to the particle momenta.
These corrections bring the system back to a statistically-admissible state on the constant energy
surface in a phase space.
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FIG. 8. Speed distribution. Histogram is obtained from simulation; dashed line
corresponds to the Maxwell distribution.

The proposed kinetic energy conserving integrator is simple to implement and is very
efficient for maintaining the desired temperature. It also does not depend upon any additional
parameters. This method produces a statistical ensemble that is close to canonical ensemble.
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