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We present a semiclassical analysis of Dirac electron tunnelling in a graphene monolayer with mass gap
through a smooth potential barrier in the ballistic regime. This 1D scattering problem is formulated in
terms of a transfer matrix and treated in the WKB approximation. For a skew electron incidence this WKB
approximation deals, in general, with four turning points. Between the first and the second, and the third
and the fourth, turning points two tunnelling domains are observed. Scattering through a smooth barrier in
graphene resembles scattering through a double barrier for the 1D Schrödinger operator, i.e. a Fabry-Perot
resonator. The main results of the paper are WKB formulas for the entries of the barrier transfer matrix
which explain the mechanism of total transmission through the barrier in a graphene monolayer with mass
gap for some resonance values of energy of a skew incident electron. Moreover, we show the existence of
modes localized within the barrier and exponentially decaying away from it and its behaviour depending on
mass gap. There are two sets of energy eigenlevels, complex with small imaginary part and real, determined
by a Bohr-Sommerfeld quantization condition, above and below the cut-off energy. It is shown that total
transmission through the barrier takes place when the energy of the incident electron coincides with the
real part of one of the complex energy eigenlevels. These facts were confirmed by numerical simulations
performed using the finite element method (COMSOL).
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1. Introduction

In this paper we study 2D electron transport in a graphene monolayer with mass
gap with a smooth potential barrier. The general description of graphene electron transport
may be found in the following reviews and publications [1-9]. Theory and experiments
on electron transport in graphene and the related phenomenon of Klein tunnelling were
described in many reviews and papers, for example, in [3], [10], [11], [12], [13], [14], [15].
It is worth mentioning the papers [16], [17], where analysis of electron-holes conductance
oscillation in transport through barriers in graphene nano-ribbons was presented similar to
2D electron gas transport in semiconductors ( [18], [19], [20]).

Graphene, a sheet of single carbon atom honeycomb lattice, is well-known for its
unique electron ballistic transport properties. It is regarded as an ideal medium for many
applications such as graphene-based electronic devices [1]. However, graphene is a zero-
bandgap semiconductor and exhibits semimetallic behaviour. Without bandgap opening it
cannot be applied directly to semiconductors devices such as field-effect transistors which
cannot operate in the absence of a bandgap in the material [21]. Thus, creating tunable
bandgap gives an opportunity of enormous applications of graphene in digital electronics. In
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the quest of creating the tunable bandgap, several physical and chemical approaches have
been proposed and implemented successfully. This privides the motivation to study electron
ballistic transport in graphene in the presence of a tunable bandgap. Generating the tunable
bandgap for graphene in studies of electron ballistic transport means an appearance of a mass
term in the Dirac system describing electron-hole quasi particle transport dynamics.

In the paper we present a semiclassical analysis of Dirac electron-hole tunnelling
in a graphene monolayer with mass gap through a smooth barrier representing electrostatic
potential in the ballistic regime. This 1D scattering problem is formulated in terms of transfer
matrix and treated in the WKB (adiabatic) approximation for the Dirac system. For a skew
electron incidence this WKB approximation deals with four turning points xi, i = 1, 2, 3, 4.
For this scattering problem we assume that incident electron energy belongs to the middle
part of the segment [0, U0], where U0 is the height of the barrier. Thus, between x1 and
x2, and x3 and x4 we observe two tunnelling strips of total internal reflection similar to the
well-known case in electromagnetic optics where the solution exponentially decay and grow.
Between the asymptotically small neighbourhoods of xi, i = 1, 2, 3, 4 (boundary layers),
we have five domains with WKB type asymptotic solutions, three domains with oscillatory
behaviour and two with exponentially decaying and growing asymptotics. A gluing procedure
between these five solutions is based on the matched asymptotic techniques (see [22], [23])
applied to so-called effective Schrödinger equation that is equivalent to the initial Dirac
system (see [24], [25]). This gluing procedure leads to WKB formulas for the entries of
the barrier transfer matrix that give all the transmission and reflection coefficients in this
scattering problems.

It is worth mentioning that the scattering through a smooth barrier in graphene
resembles scattering through a double barrier for 1D Schrödinger operator, i.e. a 1D Fabry-
Perot resonator. From the point of view of physics of graphene, for positive energies close
to one-half of the potential height U0 > 0 we observe incident, reflected and transmitted
electronic states outside the barrier, whereas under the barrier we have a hole state (n-
p-n junction). For negative energies close to one-half of the potential height U0 < 0 we
observe incident, reflected and transmitted hole states outside the barrier, whereas under
the barrier we have electronic states (p-n-p junction). It was Silvestrov and Efetov [17] who
first demonstrated that in graphene a single parabolic barrier is similar to the double barrier
potential well in GaAs/AlGaAs. They have shown that for the Dirac chiral relativistic
electrons or holes there exist quasibound states. Parts of the left and right slopes of the
parabolic potential barrier are acting like tunnelling barriers.

It is important to note that there is a strong difference between rectangular and
smooth potential barriers. The presence of stable bound states for a rectangular barrier was
first demonstrated by Pereira et al [26]. However in this case the double barrier structure
does not arise and therefore the bound states are associated with a trapping into a potential
well. Here we show that similar bound states can exist in a more generic situation when there
is a single 1D smooth potential barrier formed in a graphene monolayer by some external
electrostatic potential.

The main results of the paper are WKB formulas for the entries of the barrier transfer
matrix which explain the mechanism of total transmission through an arbitrary smooth
barrier in a graphene monolayer with mass gap for some resonance values of the energy of
a skew incident electron. Crucially we show the existence of modes localized within the
barrier and exponentially decaying away from it. There are two sets of energy eigenlevels,
complex (quasibound states with small imaginary part i.e. long lifetime) and real (bound
states), determined by a Bohr-Sommerfeld quantization condition, above and below the
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cut-off energy, respectively. This differs from previous results. It is shown that the total
transmission through the barrier takes place when the energy of an incident electron, which
is above the cut-off energy, coincides with the real part of a complex energy eigenlevel of
the first set of modes localized within the barrier. These facts were confirmed by numerical
simulations for the reflection and transmission coefficients performed using the finite element
method (COMSOL).

It is worth noting that the Dirac electron scattering by an arbitrary smooth barrier
in a graphene monolayer but with zero mass gap in semiclassical approximation was briefly
described in [27] stating only the main results. Here we present a more detailed general
semiclassical analysis of Dirac electron tunnelling in a graphene monolayer with mass gap
through a smooth potential barrier in the ballistic regime.

The paper is organized as follows. First, in section 2, we give a general details of the
WKB description of tunnelling through a smooth barrier in a graphene monolayer with mass
gap. In the next section we discuss WKB asymptotic solutions for the Dirac system with
mass gap. In section, a 4 WKB asymptotic solution uniform with respect to pγ for tunnelling
through a smooth steps, left and right, is constructed. Building the total barrier transfer
matrix is described in section 5. Analysis of quasi-bound and real bound states localized
within the barrier is given in section 6. The results of numerical analysis are presented in
section 7.

2. Tunnelling through a smooth barrier in graphene monolayer with mass gap

The procedure for deriving a theory describing elementary electronic properties of
single layer graphene (see, for example, [9] and [4], section 2) works for electrons whose
energy is close to Fermi level when their momenta are close to the Dirac points K and K’
of the Brillouin zone. It uses the representation in the tight-binding 2D lattice Hamilton-
ian and expanding the operators up to a linear order with respect to momentum within a
neighbourhood of the Dirac points, and thus, leading to the effective Hamiltonian with Dirac
operator in the first approximation.

Consider a scattering problem for the Dirac operator describing an electron-hole in
the presence of a scalar potential representing a smooth localized barrier with the height
U0 > 0 (see Fig.1) The problem can be described by the following 2D Dirac system (see, for
example, [4])

[vF (σ̄ · �
i
∇) +mv2Fσ3 + U(x)]ψ(x) = Eψ(x), ψ(x) =

(
u
v

)
, (1)

where x = (x, y). Here u, v are the components of the spinor wave function describing
electron density distribution localized on sites of sublattice A or B of the honeycomb graphene
structure (see [9]), vF is the Fermi velocity, m = const is the electron effective mass, � is the
Planck constant, and σ̄ = (σx, σy) with Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

If we assume that the potential representing the smooth barrier does not depend on
y, i.e. U = U(x), then we can look for a solution in the form

ψ(x) = ei
py
�
y

(
u(x)
v(x)

)
,
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Fig. 1. The three energy zones, shown in green - 1, pink - 2 and yellow - 3
colours are associated with the diverse character of scattering and localization
for potential behaviour. The schematic shape of the two barrier potential
for 1D Schrödinger, which is equivalent to the smooth potential barrier in
graphene presented in the Fig.1(a) when the energy of quasi-particles belongs
to 1 and 2 zones, i.e. −pγ < E < U0 − pγ.

where py means value of the transverse momentum component describing the angle of inci-
dence. Then, we obtain the Dirac system of two first order ODEs(

U(x)− E +mv2F vF [−i�∂x − ipy]
vF [−i�∂x + ipy] U(x)− E −mv2F

)(
u
v

)
=

(
0
0

)
. (2)

We assume that the potential U(x) has just one maximum and vanishes exponentially as
x→ ±∞. Thus, U(x) is being localized within a strip directed along Y axis.

It is more convenient to use the dimensionless system(
U(x)− E + γ −ih∂x − ipy
−ih∂x + ipy U(x)− E − γ

)(
u
v

)
=

(
0
0

)
, (3)

with the dimensionless rescaled variables that we shall be using below, that is, x/D → x
with D being a characteristic length scale for the external potential, E/E0 → E with E0

being a characteristic energy scale. Then, we have vFpy/E0 → py, and U(x/D)/E0 → U(x).
Then the mass term is given by

γ =
mv2F
E0

= const � 0. (4)

The WKB solution may be constructed if the dimensionless parameter

h =
�vF
E0D

is small (h � 1). Typical values of E0 and D are in the ranges 10-100 meV and 100-500
nm. For example, for E0 = 100meV , D = 66nm, we have h = 0.1.

Let pγ =
√
p2y + γ2 � 0. In Fig. 1(a), 3 zones are shown that illustrate different

scattering regimes for the smooth barrier scattering problem. These zones are exactly the
same as for the rectangular barrier with the height U0. Below zone 1, E < −pγ , we have
total transmission and exponentially small reflection, asymptotic solutions are of oscillatory
type everywhere. In zone 1 (green), −pγ < E < pγ (E = ±pγ are the cut-off energy values),
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there is no propagation outside the barrier, however there are oscillatory solutions within the
barrier. In the zone 2 (pink), pγ < E < U0 − pγ, there are oscillatory solutions outside and
within the barrier (zone of resonance tunnelling). In zone 3 (yellow), U0−pγ < E < U0+pγ,
there is no propagation through the barrier, we have total reflection and exponentially small
transmission. Above zone 3 E > U0+pγ, we have total transmission and exponentially small
reflection, asymptotic solutions are of oscillatory type everywhere.

In the paper, we study the scattering problem for zone 2 and localized states in zone 1.
In the first case, there are 5 domains with different WKB asymptotic solutions:

Ω1 = {x : −∞ < x < x1},

Ω2 = {x : x1 < x < x2},

Ω3 = {x : x2 < x < x3},

Ω4 = {x : x3 < x < x4},

Ω5 = {x : x4 < x < +∞},
where the turning points xi with i = 1, 2, 3, 4, are the roots of the equation

(E − U(x))2 − p2γ = 0.

The regions Ω1, Ω3 and Ω5, in which

(E − U(x))2 − p2γ > 0,

will be referred to as classically allowed domains, whereas Ω2 and Ω4, in which

(E − U(x))2 − p2γ < 0

are classically forbidden domains. Note that as pγ → 0 for fixed value of E, the turning
points coalesce.

These three energy zones are associated with diverse character of scattering through
this potential barrier. The Dirac electron and hole bound states arise in a process of reso-
nance tunnelling through this smooth potential. The quasi-bound states are to be found in
the pink zone 2, confined by two tunnelling strips between the turning points x1, x2 and x3,
x4, whereas the real bound states are located in zone 1 between x2 and x3. The schematic
shape of the two barrier potential for 1D Schrödinger shown in Fig. 1(b) is equivalent to the
smooth potential in graphene presented in the Fig.1(a) when the energy of quasi particles
belongs to zones 1 and 2, i.e. −pγ < E < U0 − pγ. Quasi-bound states shown in Fig. 1(a)
by dashed lines are confined by two tunnelling strips between x1, x2 and x3, x4.

It is worth remarking that when pγ is fixed, and if E moves down from zone 2 to
zone 1, the turning points x1 and x4 disappear (x1 → −∞, x4 → +∞) such that inside zone
1 we have only x2 and x3. When we move down within zone 1, the turning points x2 and
x3 get more separated. When E moves up from zone 2 to zone 3, the turning points x2 and
x3 coalesce and disappear such that inside zone 3 we have only x1 and x4. When we move
up from zone 3, the turning points x1 and x4 coalesce and disappear, and we obtain total
transmission. In the paper we assume that U0 > 2pγ. Thus, zone 2 should not disappear
from the diagram in Fig.1(a).
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3. WKB asymptotic solutions for Dirac system

It is convenient to introduce

W =
u+ v

2
, V =

u− v

2
. (5)

Then, the system (3) reads

(U − E)W + (γ + ipy)V − ihW ′ = 0,

(U − E)V + (γ − ipy)W + ihV ′ = 0. (6)

Eliminating V ,

V =
ihW ′ + (E − U)W

γ + ipy
, (7)

we obtain the so-called effective Schrödinger equation with complex coefficient

h2W ′′ + (ξ2 − p2γ + ihU ′)W = 0, (8)

where ξ = U(x) − E. The WKB oscillatory asymptotic solution to (8) in the classically
allowed domains is to be sought in the form (see [23]) with real S(x)

W = e
i
h
S(x)

+∞∑
j=0

(−ih)jWj(x). (9)

To the leading order we obtain

S = ±Sp(x, xn) = ±
x∫

xn

pxdx, px =
√
ξ2 − p2γ > 0, n = 1, 2, 3, 4, (10)

and up to a constant multiplier w0, for a wave traveling to the right we have

W = w0
e

i
h
Sp(x,xn)

√
px

√ ∓pγ
ξ + px

(1 +O(h)), (11)

while for a wave traveling to the left we have

W = w0
e−

i
h
Sp(x,xn)

√
px

√
ξ + px
∓pγ (1 +O(h)). (12)

Here −pγ corresponds to solutions referred to x1,4 as U(x1,4) − E = −pγ, whereas +pγ
corresponds to x2,3 as U(x2,3)− E = pγ.

We seek the WKB exponentially decaying or growing asymptotic solution to (8) in
the classically forbidden domains in the form (see [23]) with real S(x)

W = e
1
h
S(x)

+∞∑
j=0

hjWj(x). (13)

To leading order we obtain

S = ±Sq(x, xn) = ±
x∫

xn

qxdx, qx =
√
p2γ − ξ2 > 0, (14)

and up to a constant multiplier w0, we have

W = w0
e

1
h
Sq(x,xn)

√
qx

e
− i

2
(arcsin ξ

pγ
±π

2
)
(1 +O(h)), (15)
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or

W = w0
e−

1
h
Sq(x,xn)

√
qx

e
i
2
(arcsin ξ

pγ
±π

2
)
(1 +O(h)), (16)

and again +π/2 corresponds to solutions referred to x1,4, whereas −π/2 corresponds to x2,3.
All these asymptotic solutions break down at the turning points ξ = −pγ for x1 and x4, and
ξ = pγ for x2 and x3.

4. WKB asymptotic solution for tunnelling through a smooth step (uniform
asymptotics w.r.t. pγ)

Consider the scattering problem for the smooth barrier under the assumption that
pγ < E < U0 − pγ, U0 > 0 and all four turning points are present. From the point of view
of scattering through the barrier we observe incident, reflected and transmitted electronic
states at x < −a and x > a, whereas under the barrier −a < x < a we have a hole state
(n-p-n junction, see Fig. 1). The transfer matrix for the left slope is defined as follows

d = Ta, TL =

(
TL
11 TL

12

TL
21 TL

22

)
, d =

(
d1
d2

)
, a =

(
a1
a2

)
, (17)

where we assume that U(−∞) = 0, and U(+∞) = U0 = const. This means that the
potential U(x) behaves like a smooth monotone step. The connection coefficients a and d
are defined in the asymptotic expansion of the solution at ∓∞. Namely, as x → −∞, we
have

ψ =
1√

2ρ− cos θ−

(
a1e

i
h
p−x x+iΦ0

(
e−iθ−/2

ρ−eiθ
−/2

)
+ a2e

− i
h
p−x x−iΦ0

(
eiθ

−/2

−ρ−e−iθ−/2

))
=

= a1e
i
h
p−x xe−1 + a2e

− i
h
p−x xe−2 , (18)

p−x =
√
E2 − p2γ, ρ

− =

√
(p−x )2 + p2y

E + γ
,

and Φ0 is a constant phase factor. As x→ +∞, then

ψ =
1√

2ρ+ cos θ+

(
d1e

i
h
p+x x+iΦ0

(
e−i θ

+

2

−ρ+ei θ+2

)
+ d2e

− i
h
p+x x−iΦ0

(
ei

θ+

2

ρ+e−i θ
+

2

))

= d1e
i
h
p+x xe+1 + a2e

− i
h
p+x xe+2 , (19)

and

p+x =
√
(E − U0)2 − p2γ, ρ

+ =

√
(p+x )

2 + p2y

U0 − E − γ
,

and θ± = arg (p±x + ipy). This asymptotic behaviour at ∓∞ is very important as the cor-
responding transfer matrix satisfies canonical properties presented in Appendix A. This
normalization leads to the conservation of the probability current (see (74)) written as

|a1|2 − |a2|2 = |d2|2 − |d1|2. (20)

Then, the WKB asymptotic solution valid for x < x1 that matches (18) has to be
written as follows

ψ =
1√
px

(
a1e

i
h
Sp(x,x1)−iΦ1

√ −pγ
px + ξ

(
1− px+ξ

ipy+γ

1 + px+ξ
ipy+γ

)
+
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ia2e
− i

h
Sp(x,x1)−iΦ2

√
px + ξ

−pγ

(
1 + px−ξ

ipy+γ

1 + ξ−px
ipy+γ

))
, (21)

where

Φ1 = arg
{
ei

θ−
2 (1− p−x − E

ipy + γ
)

√ −pγ
p−x (p−x − E)

}
,

Φ2 = arg
{
ie−i θ

−
2 (1 +

p−x + E

ipy + γ
)

√
p−x − E

−pγp−x
}
. (22)

The WKB asymptotic solution valid for x > x2 which corresponds to (19) has to be written
as follows

ψ =
1√
px

(
− id1e

i
h
Sp(x,x2)−iΦ2

√
pγ

px + ξ

(
1− px+ξ

ipy+γ

1 + px+ξ
ipy+γ

)
+

d2e
− i

h
Sp(x,x2)−iΦ1

√
px + ξ

pγ

(
1 + px−ξ

ipy+γ

1 + ξ−px
ipy+γ

))
. (23)

Thus, taking into account (5), for the WKB solution to the effective Schrödinger
equation (8) we obtain

W =
1√
px

(
a1e

i
h
Sp(x,x1)−iΦ1

√ −pγ
ξ + px

+ ia2e
−i
h
Sp(x,x1)−iΦ2

√
ξ + px
−pγ

)
(1 +O(h)), (24)

for x < x1 (ξ < −pγ), then,

W =
1√
px

(− id1e
i
h
Sp(x,x2)−iΦ2

√
pγ

ξ + px
+ d2e

−i
h
Sp(x,x2)−iΦ1

√
ξ + px
pγ

)
(1 +O(h)), (25)

for x > x2 (ξ > pγ). All these asymptotic expansions break down at the turning points x1,2.
According to [22], [23], we construct an asymptotic solution to (8), uniform with

respect to pγ by means of the comparison equation

h2yzz + (h(ν +
1

2
)− z2

4
)y = 0. (26)

By gluing this solution with (24) and (25), we derive the slope transfer matrix connecting
a1,2 and d1,2. Thus, we seek a uniform asymptotic solution to (8) in the form

W =
√
2hν/2

( z2

4
− a2)

q(x)

)1/4(
b1Dν(h

−1/2z) + b2D−ν−1(ih
−1/2z)

)
(1 +O(h)), (27)

where solutions to (26)

y1,2(z) = Dν(h
−1/2z), D−ν−1(ih

−1/2z)

are parabolic cylinder functions. According to the comparison equation method, after substi-
tution of (27) into (8), we find that the function z(x) is to be determined from the equation

z′2(a2 − z2

4
) = q(x), (28)

where

a2 = h(ν +
1

2
), q(x) = ξ2 − p2γ + ihU ′ = q0(x) + ihU ′, (29)
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and a or ν are to be determined later. From (28) for x > x2 (ξ > pγ) we have

i

x∫
x̄2

√
q(t)dt =

z∫
2a

√
z2

4
− a2dz,

whereas for x < x1 (ξ < −pγ),

i

x̄1∫
x

√
q(t)dt =

−2a∫
z

√
z2

4
− a2dz,

where x̄1,2 are complex roots of q(x) = 0. The branches of the complex functions
√
q(x) and√

z are fixed by the following asymptotic expansions for x >> x2 (|z| → ∞)

i

h

x∫
x̄2

√
q(t)dt ∼ z2

4h
− a2

h
log z − a2

2h
(1− log a2), (30)

and x << x1

i

h

x̄1∫
x

√
q(t)dt ∼ z2

4h
− a2

h
log (−z)− a2

2h
(1− log a2). (31)

From (28) we obtain

i

x̄2∫
x̄1

√
−q(x)dx =

2a∫
−2a

√
a2 − z2

4
dz = πa2. (32)

On the other side, using the estimate

1

h

x̄2∫
x̄1

√
−q(t)dt = 1

h

x2∫
x1

√
−q0(t)dt− iπ

2
+O(h),

we have

πa2 = πh(
1

2
+ ν) = i

x2∫
x1

√
−q0(x)dx+ πh

2
. (33)

Hence, ν is given by

ν =
iQ1

πh
, (34)

where

Q1 =

x2∫
x1

√
−q0(x)dx. (35)

The following estimates are very important when we glue the solution (27) with
asymptotics (24) and (25). For x >> x2 we have

i

h

x∫
x̄2

√
q(t)dt ∼ i

h

x∫
x2

√
q0(t)dt− 1

2
log

2ξ

pγ
− 1

4
+

1

2
(1 + ν) log

ν + 1

ν
, (36)



734 V.V. Zalipaev, C.M. Linton

and for x << x1

i

h

x̄1∫
x

√
q(t)dt ∼ i

h

x1∫
x

√
q0(t)dt− 1

2
log

2ξ

−pγ − 1

4
+

1

2
(1 + ν) log

ν + 1

ν
. (37)

Then, after taking into account (30) and (31), it follows that for x >> x2 (|z| >> |a|)
z2

4h
− a2

h
log z ∼ i

h

x∫
x2

√
q0(t)dt− 1

2
log

2ξ

pγ
+ ζ, (38)

and for x << x1

z2

4h
− a2

h
log (−z) ∼ i

h

x1∫
x

√
q0(t)dt− 1

2
log

2ξ

−pγ + ζ. (39)

where

ζ =
a2

2h
(1− log a2) +

1

2
(ν +

1

2
) log

ν + 1
2

ν
− 1

4
=

1

2
(ν +

1

2
)(1− log (hν))− 1

4
.

In a case of linear potential with constant U ′ we may use the substitute

z =
√
2U ′eiπ/4(x− a), (40)

(see [25]). In this case equation (8) transforms exactly into (26). For a more general case of
U(x), considered as a perturbation of the case of linear potential, our z belongs to a finite
neighbourhood of the complex plane based on the line (40), where U ′ = U ′(a) (E = U(a)).
Thus, we assume that for large |z| the asymptotic expansions of the parabolic cylinder
functions in (27) is applied in a way similar to the case of the linear potential.

Using the asymptotic expansions of the parabolic cylinder functions for large argu-
ment (see the appendix C), we obtain for x >> x2

W ∼ z1/2

(ξ2 − p2y)
1/4

(
b1e

−z2/4hzνh−ν/2+ (41)

b2[e
z2/4h−iπ

2
(ν+1)z−ν−1hν/2+1/2 + e−z2/4h−iπν/2zνh−ν/2

√
2π

Γ(ν + 1)
]

)
.

for x << x1

W ∼ (−z)1/2
(ξ2 − p2y)

1/4

(
b1[e

−z2/4hzνh−ν/2 − ez
2/4h−iπνz−ν−1hν/2+1/2

√
2π

Γ(−ν) ]+ (42)

b2e
z2/4h−iπ

2
(ν+1)z−ν−1hν/2+1/2

)
,

where Γ(z) is the Gamma function. Matching these two asymptotic expansions with the
WKB asymptotics (24), (25), correspondingly, and using (38) and (39), leads to the following
system ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
a1e

−iΦ1 = b1(−1)νe−ζ ,

ia2e
−iΦ2 = (−b1e−iπν

√
2π

Γ(−ν)
+ b2e

−iπ
2
(ν+1))hν+1/2(−1)−ν−1eζ ,

−id1e−iΦ2 = b2e
ζ−iπ

2
(ν+1)hν+1/2,

d2e
−iΦ1 = (b1 + b2e

−iπ
2
ν

√
2π

Γ(ν+1)
)e−ζ .

(43)
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Let us introduce new notation:

μ0 = −(−1)−ν = −eiπν = −e−Q1
h , (44)

μ1 = ieiπν+2ζ

√
2π

Γ(−ν)h
ν+1/2, μ2 = −e−2ζ

√
2π

Γ(1 + ν)
h−ν−1/2. (45)

Then, the system (43) reads⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1e
−iΦ1 = −b1 e−ζ

μ0
,

ia2e
−iΦ2 = b1

iμ1

μ0
e−ζ − ib2e

ζ−iπ
2
νhν+1/2μ0,

−id1e−iΦ2 = −ib2eζ−iπ
2
νhν+1/2,

d2e
−iΦ1 = b1e

−ζ + b2e
ζ+iπ

2
νhν+1/2 μ2

μ0
.

(46)

Now eliminating b1 and b2 from the system (46), we obtain the relations determining
the transfer matrix TL {

d1 = −a1eiα μ1

μ0
− a2

1
μ0
,

d2 = −a1(μ0 − μ1μ2

μ0
) + e−iαa2

μ2

μ0
,

(47)

that is

TL
11 = −eiαμ1

μ0

, TL
12 = − 1

μ0

, TL
21 = −μ0 +

μ1μ2

μ0

= − 1

μ0

, TL
22 = e−iαμ2

μ0

, (48)

where α = Φ2 − Φ1. The expressions for μ1 can be simplified as follows

μ1 = −iν exp (iπν + (ν +
1

2
)(1− log (hν))− 1

2

) √
2π

Γ(1− ν)
hν+1/2

= −iν exp (− Q1

2h
+ i

Q1

πh
(1− log (

Q1

πh
))− 1

2
log ν

) √
2π

Γ(1− ν)
.

Using the properties of the Gamma function (see [29])

|Γ(1∓ ν)| =
√

πν

sin (πν)
=

√
2Q1

h(eQ1/h − e−Q1/h)
,

we derive

μ1 = eiθ1
√

1− e−2Q1/h, (49)

where

θ1 = θ(Q1) =
Q1

πh
(1− log (

Q1

πh
))− π

4
− arg Γ(1− i

Q1

πh
). (50)

Similarly, taking into account that

arg Γ(1 + ν) = − arg Γ(1− ν),

we obtain

μ2 = −e−iθ1
√
1− e−2Q1/h. (51)

Hence, the left slope transfer matrix reads

TL(α,Q1) =

(− r1
t

1
t

1
t

r2
t

)
=

(
ei(θ1+α)+Q1/h

√
1− e−2Q1/h e

Q1
h

e
Q1
h e−i(θ1+α)+Q1/h

√
1− e−2Q1/h

)
. (52)
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It is clear that the transfer matrix for the left slope satisfies all the properties in
Appendix A, namely

TL
22 = (TL

11)
∗, TL

12 = (TL
21)

∗, detTL = −1.

One can easily understand that the quantities r1,2 mean the corresponding reflection coeffi-
cients, and t is the transmission coefficient.

It is worth remarking that due to the asymptotics as x→ +∞
Im log (Γ(−ix)) = π

4
+ x(1− log x) +O(

1

x
),

if Q1

h
→ +∞ (the turning points ξ = ±pγ do not coalesce), we observe that

arg Γ(1− i
Q1

hπ
) = arg (−iQ1

hπ
) + arg Γ(−iQ1

hπ
) = −π

4
+
Q1

hπ
(1− log

Q1

hπ
),

and, consequently from (50), we obtain that θ1 → 0. Thus, up to small exponential errors
the transfer matrix (52) coincides with the corresponding non-uniform (wrt pγ) asymptotic
representation (121) obtained in the Appendix D.

For the right slope, uniform asymptotics for the entries of the transfer matrix may
be obtained similarly to the derivation of the non-uniform asymptotic result (124) in the
Appendix D, namely,

TR(α,Q2) =

(
ei(θ2−α)+Q2/h

√
1− e−2Q2/h e

Q2
h

e
Q2
h e−i(θ2−α)+Q2/h

√
1− e−2Q2/h

)
. (53)

5. WKB asymptotic solution for scattering through a smooth barrier

Consider a problem of scattering through the smooth barrier (see Fig. 1(a)) under
assumption that pγ < E < U0−pγ and all four turning points xi, i = 1, 2, 3, 4 are separated.
In this case we have again 5 domains Ωi, i = 1, 2, ..., 5 to describe 5 WKB forms of solution to
leading order. From the point of view of physics of graphene, we observe incident, reflected
and transmitted electronic states at x < a and x > b, whereas under the barrier a < x < b
we have a hole state (n-p-n junction, see Fig. 1(a)).

We formulate the problem for scattering through the barrier for the transfer matrix
T , connecting the coefficients a1,2 of the asymptotics

ψ = e
i
h
Sp(x,x1)a1e1 + e−

i
h
Sp(x,x1)a2e2, (54)

for x < x1, and d1,2 of the asymptotics

ψ = e
i
h
Sp(x,x4)d1e1 + e−

i
h
Sp(x,x4)d2e2, (55)

for x > x4, such that d = Ta, where e1,2 are corresponding eigenvectors (see (21)). Taking
into account the transfer matrices obtained for scattering through the left and right slopes
of the barrier (TL and TR in (52), (53)), the total transfer matrix T may be obtained as the
product

T = TR

(
e

i
h
P 0

0 e−
i
h
P

)
TL, (56)

where

P =

x3∫
x2

√(
U(x)− E

)2 − p2γdx.
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Then, the entries of the matrix T read

T11 = e
Q1
h

+
Q2
h [s1s2e

i(θ1+θ2+
P
h
) + e−iP

h ], (57)

T22 = e
Q1
h

+
Q2
h [s1s2e

−i(θ1+θ2+
P
h
) + ei

P
h ], (58)

T12 = e−iα+
Q1
h

+
Q2
h [s2e

i(θ2+
P
h
) + s1e

−i(θ1+
P
h
)], (59)

T21 = eiα+
Q1
h

+
Q2
h [s2e

−i(θ2+
P
h
) + s1e

i(θ1+
P
h
)], (60)

where

si =
√

1− e−2Qi/h, i = 1, 2.

They satisfy the classical properties of a transfer matrix (see Appendix B)

T22 = T ∗
11, T21 = T ∗

12, detT = 1.

If a1 = 1, a2 = r1, d1 = t1, d2 = 0, then

t1 =
1

T22
, r1 = −T21

T22
, |t1|2 + |r1|2 = 1.

If a1 = 0, a2 = t2, d1 = r2, d2 = 1, then

t2 = t1 = t, r2 =
T12
T22

, |t2|2 + |r2|2 = 1.

Correspondingly, the unitary scattering matrix, defined as(
a2
d1

)
= Ŝ

(
a1
d2

)
,

may be written as follows

Ŝ =

(
r1 t
t r2

)
.

The transmission coefficient is given by

t =
1

T22
.

Total transmission takes place only for symmetric barrier when Q2 = Q1 = Q (θ2 = θ1 = θ).
Then, we have

t = eiθ
(
cos (

P

h
+ θ)(2e

2Q
h − 1) + i sin (

P

h
+ θ)

)−1

, (61)

r1 =
2 cos (P

h
+ θ)e

2Q
h

+i(θ+α)
√
1− e−2Q/h

cos (P
h
+ θ)(2e

2Q
h − 1) + i sin (P

h
+ θ)

. (62)

It is clear that if

P (E) + hθ = hπ(n+
1

2
), n = 0, 1, 2, ... , (63)

than we have total transmission |t| = 1.
It is worth noting that the formula for the transmission coefficient (61) was first

obtained in [25] for a single layer of graphene without gap.
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6. WKB asymptotic solution for complex resonant and real bound states
localized within the smooth barrier

Consider a problem of resonant states localized within the smooth barrier (see Fig. 1).
For the sake of simplicity consider the case of symmetric barrier, that is, Q1 = Q2 = Q,
θ1 = θ2 = θ. Now, let the turning points be −x2,−x1, x1, x2, and 0 < x1 < x2. Again,
when the energy of electron-hole is greater than the cut-off energy (E > Ec = pγ), we have 5
domains Ωi, i = 1, 2, ..., 5 and 5 WKB forms of solution to leading order. To determine the
correct radiation conditions as x → ±∞ that are necessary for the localization, we present
WKB solutions in the domains 1 and 5 in the form

ψ = e−
i
h
Sp(x,−x2)a2e2, ψ = e

i
h
Sp(x,x2)d1e1, (64)

respectively, where e1,2 are the corresponding eigenvectors (see (18) in section 4). If a1 =
0, d2 = 0, a2 	= 0, then

T22(E) = 0, (65)

and as a result we obtain a Bohr-Sommerfeld quantization condition for complex energy
eigenlevels

h−1P (E) + θ +
i

2
log (1− e

−2Q
h ) = π(n+

1

2
), n = 0, 1, 2, ..., N1 (66)

for pγ < E < U0. Solutions to this equation are complex resonances En = Re(En) − iΓn,
where Γ−1

n is the lifetime of the localized resonance. What is important is that the real
part of these complex positive resonances decrease with n, thus showing off the anti-particle
hole-like character of the localized modes. For these resonances we have Γn > 0. From (66),
we obtain the important estimate

Γn =
hw

2Δt
, w = − log (1− e−2Q/h), Δt = −dP

dE

∣∣∣∣
E=En

. (67)

This is the equivalent of the formula (14) in [17]. Namely, w is the transmission probability
through the tunnelling strip, and Δt is the time interval between the turning points −x1
and x1. If pγ → 0, then Q → 0, and Γn → +∞, that is opposite to [17] (to be exact, the
estimate for Γn in [17] works only for linear potential when pγ is not small).

For the second set for the bound states, when the energy of electron-hole is smaller
than the cut-off energy (E < pγ), we have 2 turning points −x1 and x1. Between them we
have got oscillatory WKB solutions

ψ = e
i
h
Sp(x,−x1)d̄1e1 + e−

i
h
Sp(x,−x1)d̄2e2, (68)

or

ψ = e
i
h
Sp(x,x1)ā1e1 + e−

i
h
Sp(x,x1)ā2e2, (69)

and outside decaying

ψ = e
1
h
Sq(x,−x1)c̄2l2, x < −x1, ψ = e−

1
h
Sq(x,x1)c̄1l1, x > x1, (70)

where l1,2 are corresponding eigenvectors

l1,2 =
± i

2
(arcsin ξ

pγ
− π

2
)

√
qx

(
1∓ iqx±ξ

γ+ipy

1± iqx±ξ
γ+ipy

)
.
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Fig. 2. The dependences of |t(E)| are shown for py = 0.1 - a and py = 0.2 -
b for the potential U = 1/ cosh 2x, and the other parameters are h = 0.1,
γ = 0.1.

By gluing these WKB solutions through the two boundary layers near −x1 and x1 and using
the techniques described in the Appendix D, we eliminate ā1,2 and d̄1,2 and come to the
homogeneous system

ic̄1 + c̄2e
i
h
P = 0,

ic̄1 − c̄2e
− i

h
P = 0.

Thus, we derive the Bohr-Sommerfeld quantization condition for real energy eigenlevels
(bound states) inside the cut-off energy strip for 0 < E < pγ.

P (E) = hπ(n+
1

2
), n = N1 + 1, ...N2. (71)

7. Numerical results

In this section we illustrate the effectiveness of the semiclassical formulae for the trans-
mission coefficients (61) and the energy spectrum obtained from Bohr-Sommerfeld quantiza-
tion conditions (66) by comparing their data with the results obtained by means of the finite
element method (COMSOL). All the computations were done for the symmetric barrier

U =
1

cosh 2x
. (72)

The other dimensionless parameters are h = 0.1, γ = 0.1. In Fig. 2a and 2b the dependences
of |t(E)| are shown for py = 0.1 and py = 0.2. One can see a very good agreement between
semiclassical results and the data obtained by means of finite element method. In Fig. 2a
there are 3 resonances of total transmission (|t(E)| = 1) that take place for E = Re(E1,2,3)
where E1,2,3 are obtained from (66) and E1 = 0.607 − i0.035, E2 = 0.371 − i0.016, E3 =
0.205− i0.0044. In Fig. 2b there are only 2 resonances that take place for E = Re(E1,2) and
E1 = 0.572− i0.01, E2 = 0.343− i0.002. Note that Γn = Im(En) decrease with n what is in
complete agreement with the thickness of the resonances shown in Fig. 2a and 2b.

In Fig. 3 the real parts of En for the first seven eigenvalues of quasibound (shown
in the triangular domain only) and the next six En for the bound states are computed
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Fig. 3. The real parts of En for the first seven eigenvalues of quasibound
(shown in the triangular domain only) and the next six En for the bound
states are computed semiclassically with respect to py using Bohr-Sommerfeld
quantization conditions (66) and (71) with mass gap γ = 0.1 - a and γ = 0.0
- b. The lines depicted with stars represent E = ±pγ and E = U0 − pγ .

semiclassically for the symmetric barrier

U =
1

cosh x
(73)

with respect to py using Bohr-Sommerfeld quantization conditions (66) and (71) with mass
gap γ = 0.1 and γ = 0.0. The structure of the energy eigenlevels has been deformed due to
the presence of the mass gap. It is clearly seen that in the case of normal incidence py = 0
there are six bound states within the gap opposite to the gapless monolayer.

8. Appendix A. Transfer and scattering matrix properties for a smooth step

Let us come back to the scattering problem in terms of transfer matrix T (see [28]) for
the left slope of the entire barrier formulated in (17). Taking into account the conservation
of the x-component of the probability density current (see equation (8) in [24] or (18) in [25])

Jx = v̄u+ ūv, (74)

we obtain that
|a1|2 − |a2|2 = |d2|2 − |d1|2. (75)

Thus, for the slope transfer matrix T it holds that

T̄21T22 − T̄11T12 = 0, |T21|2 − |T11|2 = 1, |T22|2 − |T12|2 = −1, (76)

or

T+

(−1 0
0 1

)
T =

(
1 0
0 −1

)
. (77)

As a result we have |T11| = |T22|, |T12| = |T21|, |det(T )| = 1. For the scattering matrix

S =

(
S11 S12

S21 S22

)
(78)

we have

S

(
a1
d1

)
=

(
a2
d2

)
, (79)
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and

|a1|2 + |d1|2 = |a2|2 + |d2|2. (80)

From (80) we obtain that

S+S = SS+ = I, (81)

thus, the scattering matrix is unitary. If entries of S are known, than,

T =

( −S11/S12 1/S12

S21 − S11S22/S12 S22/S12

)
, det(T ) = −S21/S12. (82)

Time-reversal symmetry in scattering through the graphene barrier would mean that

(σ3ψ)
∗ = e−

i
h
p−x xa∗1e

−
2 + e

i
h
p−x a∗2e

−
1 , x ∈ Ω1, (83)

(σ3ψ)
∗ = e−

i
h
p+x d∗1e

+
2 + e

i
h
p+x d∗2e

+
1 , x ∈ Ω3, (84)

where

σ3 =

(
1 0
0 −1

)
,

are both asymptotic solutions to the Dirac system. Thus, we have

S

(
a∗2
d∗2

)
=

(
a∗1
d∗1

)
, (85)

T

(
a∗2
a∗1

)
=

(
d∗2
d∗1

)
. (86)

In what follows that

S = ST ,

(
0 1
1 0

)
T

(
0 1
1 0

)
= T ∗. (87)

Thus, S12 = S21,

detT = −1, (88)

and

T =

(
T11 T12
T ∗
12 T ∗

11

)
. (89)

If a1 = 1, a2 = r1, d1 = 0, d2 = t1, then

t1 =
1

TL
12

, r1 = −T
L
11

TL
12

, |r1|2 + |t1|2 = 1. (90)

If a1 = 0, a2 = t2, d1 = 1, d2 = r2, then

t2 =
1

TL
12

, r2 =
TL
22

TL
12

, |r2|2 + |t2|2 = 1. (91)
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9. Appendix B. Transfer and scattering matrix properties for a smooth barrier

Let us formulate this scattering problem in terms of transfer matrix T for the entire
barrier (see (54), (55), Ta = d). However, for the barrier we have

|a1|2 − |a2|2 = |d1|2 − |d2|2, (92)

and

T+

(
1 0
0 −1

)
T =

(
1 0
0 −1

)
. (93)

For the scattering matrix S we have

S

(
a1
d2

)
=

(
a2
d1

)
, (94)

and
|a1|2 + |d2|2 = |a2|2 + |d1|2. (95)

From (95) we obtain that
S+S = SS+ = I. (96)

If entries of S are known, than,

T =

(
S21 − S11S22/S12 S22/S12

−S11/S12 1/S12

)
, det(T ) = S21/S12. (97)

Taking into account the time-reversal symmetry in scattering through the graphene
barrier, we obtain S = ST , and

T =

(
T11 T12
T ∗
12 T ∗

11

)
, detT = 1. (98)

10. Appendix C

For the equation (8) (effective Schrödinger equation)

h2W ′′ + (ξ2 − p2γ + ihU ′)W = 0, (99)

we shall have

W =
1√
px

(
a1e

i
h
Sp(x,x1)−iΦ1

√ −pγ
ξ + px

+ ia2e
−i
h
Sp(x,x1)−iΦ2

√
ξ + px
−pγ

)
(1 +O(h)), (100)

for x < x1 (ξ < −pγ), then,

W =
1√
qx

(
c1e

− 1
h
Sq(x,x1)e

i
2
(arcsin ξ

pγ
+π

2
)
+ c2e

1
h
Sq(x,x1)e

− i
2
(arcsin ξ

pγ
+π

2
) )

(1 +O(h)), (101)

for x1 < x < x2 (−pγ < ξ < pγ), and

1√
px

(− id1e
i
h
Sp(x,x2)−iΦ2

√
pγ

ξ + px
+ d2e

−i
h
Sp(x,x2)−iΦ1

√
ξ + px
pγ

)
(1 +O(h)), (102)

for x > x2 (ξ > pγ).
To leading order, the uniform asymptotic representation within the neighbourhood

of x1 is given by (see ( [23], chapter 4, section 3.3))

W = h−1/6

√
π

z′
coshμ1

(
b
(1)
1 Ai(h−2/3z) + b

(1)
2 Bi(h−2/3z)

)
+ (103)
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+ih1/6
√

π

−zz′ sinhμ1

(
b
(1)
1 Ai′(h−2/3z) + b

(1)
2 Bi′(h−2/3z)

)
,

for x � x1 (ξ � −pγ), and

W = h−1/6

√
π

z′
cos ν1

(
b
(1)
1 Ai(h−2/3z) + b

(1)
2 Bi(h−2/3z)

)
+ (104)

−ih1/6
√

π

zz′
sin ν1

(
b
(1)
1 Ai′(h−2/3z) + b

(1)
2 Bi′(h−2/3z)

)
,

for x � x1 (ξ � −pγ). Here we have introduced

z = −
(
3

2

x1∫
x

pxdx
′
)2/3

< 0, x � x1 (ξ � −pγ), (105)

z =

(
3

2

x∫
x1

pxdx
′
)2/3

> 0, x � x1 (ξ � −pγ), (106)

μ1 = log

√
ξ + px
−pγ , ν1 =

1

2
(arcsin

ξ

pγ
+
π

2
). (107)

Note that for this neighbourhood z′(x) > 0. According to ( [23], chapter 4, section 3.3), the
functions A0 = coshμ1, B0 = − sinhμ1 are the solutions to the following systems for x � x1
(ξ � −pγ),

2z′
√−zB′

0 + A0 = 0,

2z′
√−zA′

0 +B0 = 0, (108)

where
z′
√−z = px.

For x � x1 (ξ � −pγ), A0 = cos ν1, B0 = −i sin ν1 are the solutions to

2z′
√
zB′

0 + iA0 = 0,

2z′
√
zA′

0 + iB0 = 0, (109)

where
z′
√
z = qx.

To leading order, the uniform asymptotic representation within the neighbourhood
of x2 is similarly given by

W = h−1/6

√
π

|z′| coshμ2

(
b
(2)
1 Ai(h−2/3z) + b

(2)
2 Bi(h−2/3z)

)
+ (110)

−ih1/6
√

π

−z|z′| sinhμ2

(
b
(2)
1 Ai′(h−2/3z) + b

(2)
2 Bi′(h−2/3z)

)
,

for x � x2 (ξ � pγ), and

W = h−1/6

√
π

|z′| cos ν2
(
b
(2)
1 Ai(h−2/3z) + b

(2)
2 Bi(h−2/3z)

)
+ (111)

ih1/6
√

π

z|z′| sin ν2
(
b
(2)
1 Ai′(h−2/3z) + b

(2)
2 Bi′(h−2/3z)

)
,
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for x � x2 (ξ � pγ). Here we have introduced

z = −
(
3

2

x∫
x2

pxdx
′
)2/3

< 0, x � x2 (ξ � pγ), (112)

z =

(
3

2

x1∫
x

pxdx
′
)2/3

> 0, x � x2 (ξ � pγ), (113)

μ2 = log

√
ξ + px
pγ

, ν2 =
1

2
(arcsin

ξ

pγ
− π

2
). (114)

Note that for this neighbourhood z′(x) < 0. According to ( [23], chapter 4, section 3.3),
the functions A0 = coshμ2, B0 = sinhμ1 are the solutions to the systems (108) for x � x2
(ξ � pγ), where

−z′√−z = px.

For x � x2 (ξ � pγ), A0 = cos ν2, B0 = i sin ν2 are the solutions to (109) with

−z′√z = qx.

Now, using the asymptotic expansions of the Airy functions Ai(x) and Bi(x) (see
Appendix C) and matching the uniform asymptotic expansions (103) and (104) within the
neighbourhood of x1 with WKB asymptotics (100) for x� x1, we obtain

a1e
−iΦ1 =

1

2
(b

(1)
1 eiπ/4 + b

(1)
2 e−iπ/4), (115)

ia2e
−iΦ2 =

1

2
(b

(1)
1 e−iπ/4 + b

(1)
2 eiπ/4). (116)

Matching the uniform asymptotic expansions (103) and (104) within the neighbourhood of
x1 with WKB asymptotics (101) for x� x1, we obtain

eiπ/4c1 =
1

2
b
(1)
1 eiπ/4, e−iπ/4c2 =

1

2
b
(1)
2 e−iπ/4. (117)

Matching the uniform asymptotic expansions (110) and (111) within the neighbourhood of
x2 with WKB asymptotics (101) for x� x2, we obtain

e−Q1/h+iπ/2c1 = b
(2)
2 , 2eQ1/h−iπ/2c2 = b

(2)
1 , (118)

where

Q1 =

x2∫
x1

qx(x)dx.

Matching the uniform asymptotic expansions (110) and (111) within the neighbourhood of
x2 with WKB asymptotics (102) for x� x2, we obtain

−id1e−iΦ3 =
1

2
(b

(2)
1 e−iπ/4 + b

(2)
2 eiπ/4), (119)

d2e
−iΦ4 =

1

2
(b

(2)
1 eiπ/4 + b

(2)
2 e−iπ/4). (120)

Now we derive the entries of the transfer matrix TL connecting d and a

TL(α,Q1) =

⎛
⎝ eiα(e

Q1
h − e−

Q1
h

4
) e

Q1
h + e−

Q1
h

4

e
Q1
h + e−

Q1
h

4
e−iα(e

Q1
h − e−

Q1
h

4
)

⎞
⎠ , (121)
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where α = Φ2 − Φ1. It is clear that the transfer matrix for the left slope satisfies all the
properties (75)-(91).

For the right slope we have the following scattering problem

W =
1√
px

(− ia1e
i
h
Sp(x,x3)−iΦ2

√
pγ

ξ + px
+ a2e

−i
h
Sp(x,x3)−iΦ1

√
ξ + px
pγ

)
(1 +O(h)), (122)

for x < x3 (ξ > pγ), and

W =
1√
px

(
d1e

i
h
Sp(x,x4)−iΦ1

√ −pγ
ξ + px

+ id2e
−i
h
Sp(x,x2)−iΦ2

√
ξ + px
−pγ

)
(1 +O(h)), (123)

for x > x4 (ξ < −pγ). By performing complex conjugation for (122), (123), and using (24),
(25) and (121), derived for the left slope, we obtain(−a∗1eiΦ2

a∗2e
iΦ1

)
= TL(α,Q2)

(
d∗1e

iΦ1

−d∗2eiΦ2

)
,

and thus, we have d = TRa with

TR(α,Q2) =

⎛
⎝ e−iα(e

Q2
h − e−

Q2
h

4
) e

Q2
h + e−

Q2
h

4

e
Q2
h + e−

Q2
h

4
eiα(e

Q2
h − e−

Q2
h

4
)

⎞
⎠ , (124)

where

Q2 =

x4∫
x3

qx(x)dx.

11. Conclusion

Semiclassical analysis of Dirac electron with mass gap tunnelling through a smooth
Gaussian shape barrier representing an electrostatic potential in the ballistic regime has been
presented. The corresponding 1D scattering problem is formulated in terms of a transfer
matrix and treated in the WKB (adiabatic) approximation. For skew electron incidence the
WKB approximation deals with the asymptotic analysis of matched asymptotic techniques
and boundary layers for four turning points. Scattering through a smooth barrier in graphene
resembles scattering through a double barrier for 1D Schrödinger operator, i.e. a 1D Fabry-
Perot resonator. The main results of the paper are WKB formulas for the entries of the
transfer matrix. They explain the mechanism of total transmission of a Dirac electron in
graphene with mass gap through a smooth barrier for some resonance values of the energy of
skew incident electrons. Moreover, we have showed the existence of modes localized within
the barrier and exponentially decaying away from it for two discrete complex and real sets
of energy eigenlevels determined by a Bohr-Sommerfeld quantization condition. It has been
shown that total transmission through the barrier takes place when the energy of the incident
electron coincides with the real part of one of the complex energy eigenlevels. These facts
have been confirmed by numerical simulations performed using the finite element method
(COMSOL). It is necessary to note that some of the details of the comparison equation
method of WKB analysis used in the paper require more rigorous treatment. These part
of the work along with further detailed discussion on other scattering regimes through the
barrier will be carried on in future publications.
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