WEYL FUNCTION FOR SUM OF OPERATORS TENSOR PRODUCTS

A. A. Boitsev¹, H. Neidhardt², I. Yu. Popov¹

¹Saint Petersburg National Research University of Information Technologies, Mechanics and Optics, 49 Kronverkskiy, Saint Petersburg, 197101, Russia

²Weierstrass Institute for Applied Analysis and Stochastic, Berlin, Germany

boitsevanton@gmail.com, hagen.neidhardt@wias-berlin.de, popov1955@gmail.com

PACS 03.65 Nk

The boundary triplets approach is applied to the construction of self-adjoint extensions of the operator having the form $S = A \otimes I_T + I_A \otimes T$ where the operator A is symmetric and the operator T is bounded and self-adjoint. The formula for the γ -field and the Weyl function corresponding the the boundary triplet Π_S is obtained in terms of the γ -field and the Weyl function corresponding to the boundary triplet Π_A .

Keywords: operator extension, Weyl function, boundary triplet.

1. Introduction

The spectral theory of differential operators is very important for mathematics and has many applications in quantum physics (see, e.g., [1]. The theory of self-adjoint operators and especially of self-adjoint extensions of symmetric operators occupies a special place in the operator theory [2]. In many interesting problems of quantum physics (like the interaction of photons with electrons) the operators take on the form of the sum of tensor products [3], [4]. From general position, the extensions are usually described in terms of so-called boundary triplets [5]. Up to now, there is no boundary triplets method for obtaining all self-adjoint extensions of such an operator.

In particular, we consider a closed densely defined symmetric operator

$$S = A \otimes I_T + I_A \otimes T \tag{1.1}$$

where A is a closed densely defined symmetric operator on the separable Hilbert space \mathfrak{H}_A and T is a bounded self-adjoint operator acting on the separable infinite dimensional Hilbert space \mathfrak{H}_T . Notice that the deficiency indices of S are infinite even if A has finite deficiency indices.

Our aim is to describe all self-adjoint extensions of S using the boundary triplet approach. More precisely, assuming that $\Pi_A = \{\mathcal{H}_A, \Gamma_0^A, \Gamma_1^A\}$ is a boundary triplet for A^* we construct a boundary triplet $\Pi_S = \{\mathcal{H}_S, \Gamma_0^S, \Gamma_1^S\}$ for S^* . In addition, using the γ -field $\gamma_A(\cdot)$ and the Weyl function $M_A(\cdot)$ of the boundary triplet Π_A we express the γ -field $\gamma_S(\cdot)$ and Weyl function $M_S(\cdot)$ of Π_S .

The present note generalizes results of [6]. In [6] on the Hilbert space $\mathfrak{H} = L^2(\mathbb{R}_+, \mathcal{H})$ the operator

$$(Sf)(x) = -\frac{d^2}{dt^2}f(t) + Tf(t),$$

$$f \in \text{dom}(S) := \{f \in W^{2,2}(\mathbb{R}_+, \mathcal{H}) : f(0) = f'(0) = 0\}.$$
(1.2)

was considered where T is a bounded self-adjoint operator. One easily checks that the operator (1.2) has the form (1.1) where A acts on $L^2(\mathbb{R}_+)$ and is given by

$$(Af)(t) = -\frac{d^2}{dt^2}f(t), \quad f \in \text{dom}(A) := \{W^{2,2}(\mathbb{R}_+) : f(0) = f'(0) = 0\}.$$

In [6] it was verified that $\Pi_S = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$

$$\Gamma_0 f := f(0), \quad \Gamma_1 f = f'(0), \quad f \in \text{dom}\,(S^*) = W^{2,2}(\mathbb{R}_+, \mathcal{H}).$$

defines a boundary triplet for S^* . The corresponding Weyl function is given by $M_S(z) = i\sqrt{z-T}, z \in \mathbb{C}_{\pm}$.

Notation. Let \mathfrak{H} and \mathcal{H} be separable Hilbert spaces. The set of bounded linear operators from \mathfrak{H}_1 to \mathfrak{H}_2 is denoted by $[\mathfrak{H}_1, \mathfrak{H}_2]$; $[\mathfrak{H}] := [\mathfrak{H}, \mathfrak{H}]$. By $\mathfrak{S}_p(\mathfrak{H})$, $p \in (0, \infty]$, we denote the Schatten-v.Neumann ideals of compact operators on \mathfrak{H} ; in particular, $\mathfrak{S}_{\infty}(\mathfrak{H})$ denotes the ideal of compact operators in \mathfrak{H} .

By dom (T), ran (T) and $\sigma(T)$ we denote the domain, range and spectrum of the operator T, respectively. The symbols $\sigma_p(\cdot)$, $\sigma_c(\cdot)$ and $\sigma_r(\cdot)$ stand for the point, continuous and residual spectrum of a linear operator. Recall that $z \in \sigma_c(H)$ if $\underline{\ker(H-z)} = \{0\}$ and $\operatorname{ran}(H-z) \neq \overline{\operatorname{ran}(H-z)} = \mathfrak{H}; z \in \sigma_r(H)$ if $\ker(H-z) = \{0\}$ and $\overline{\operatorname{ran}(H-z)} \neq \mathfrak{H}$.

2. Preliminaries

2.1. Linear relations

A linear relation Θ in \mathcal{H} is a closed linear subspace of $\mathcal{H} \oplus \mathcal{H}$. The set of all linear relations in \mathcal{H} is denoted by $\widetilde{\mathcal{C}}(\mathcal{H})$. Denote also by $\mathcal{C}(\mathcal{H})$ the set of all closed linear (not necessarily densely defined) operators in \mathcal{H} . Identifying each operator $T \in \mathcal{C}(\mathcal{H})$ with its graph gr (T) we regard $\mathcal{C}(\mathcal{H})$ as a subset of $\widetilde{\mathcal{C}}(\mathcal{H})$.

The role of the set $\widetilde{\mathcal{C}}(\mathcal{H})$ in extension theory becomes clear from Proposition 2.3. However, its role in the operator theory is substantially motivated by the following circumstances: in contrast to $\mathcal{C}(\mathcal{H})$, the set $\widetilde{\mathcal{C}}(\mathcal{H})$ is closed with respect to taking inverse and adjoint relations Θ^{-1} and Θ^* . The latter are given by: $\Theta^{-1} = \{\{g, f\} : \{f, g\} \in \Theta\}$ and

$$\Theta^* = \left\{ \begin{pmatrix} k \\ k' \end{pmatrix} : (h', k) = (h, k') \text{ for all } \begin{pmatrix} h \\ h' \end{pmatrix} \in \Theta \right\}.$$

A linear relation Θ is called symmetric if $\Theta \subset \Theta^*$ and self-adjoint if $\Theta = \Theta^*$.

2.2. Boundary triplets and proper extensions

Let us briefly recall some basic facts regarding boundary triplets. Let S be a densely defined closed symmetric operator with equal deficiency indices $n_{\pm}(S) := \dim(\mathfrak{N}_{\pm i}), \mathfrak{N}_z := \ker(S^* - z), z \in \mathbb{C}_{\pm}$, acting on some separable Hilbert space \mathfrak{H} .

Definition 2.1.

(i) A closed extension \widetilde{S} of S is called proper if dom $(S) \subset \text{dom}(\widetilde{S}) \subset \text{dom}(S^*)$.

(ii) Two proper extensions \widetilde{S}' , \widetilde{S} are called disjoint if dom $(\widetilde{S}') \cap \text{dom}(\widetilde{S}) = \text{dom}(S)$ and transversal if in addition dom $(\widetilde{S}') + \text{dom}(\widetilde{S}) = \text{dom}(S^*)$.

We denote by Ext_S the set of all proper extensions of S completed by the non-proper extensions S and S^* is denoted. Any self-adjoint or maximal dissipative (accumulative) extension is proper.

Definition 2.2 ([7]). A triplet $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$, where \mathcal{H} is an auxiliary Hilbert space and $\Gamma_0, \Gamma_1 : \text{dom}(S^*) \to \mathcal{H}$ are linear mappings, is called a boundary triplet for S^* if the "abstract Green's identity"

$$(S^*f,g) - (f,S^*g) = (\Gamma_1 f, \Gamma_0 g) - (\Gamma_0 f, \Gamma_1 g), \quad f,g \in \text{dom}\,(S^*).$$
(2.1)

is satisfied and the mapping $\Gamma := (\Gamma_0, \Gamma_1)^\top : \operatorname{dom}(S^*) \to \mathcal{H} \oplus \mathcal{H}$ is surjective, i.e. $\operatorname{ran}(\Gamma) = \mathcal{H} \oplus \mathcal{H}$.

A boundary triplet $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ for S^* always exists whenever $n_+(S) = n_-(S)$. Note also that $n_{\pm}(S) = \dim(\mathcal{H})$ and $\ker(\Gamma_0) \cap \ker(\Gamma_1) = \dim(S)$.

In general, the linear maps $\Gamma_j : \mathfrak{H} \longrightarrow \mathcal{H}, j = 0, 1$, are neither bounded nor closed. However, equipping the domain dom (S^*) with the graph norm

$$||f||_{S^*}^2 := ||S^*||^2 + ||f||^2, \qquad f \in \mathrm{dom}\,(S^*), \tag{2.2}$$

one gets a Hilbert space, which is denoted by $\mathfrak{H}_+(S^*)$, and regarding the maps $\Gamma_j : \mathfrak{H} \longrightarrow \mathcal{H}$, j = 0, 1, as acting from $\mathfrak{H}_+(S^*)$ into \mathcal{H} it turns out that that the operators $\Gamma_j : \mathfrak{H}_+(S^*) \longrightarrow \mathcal{H}$, j = 0, 1, are bounded. In the following work we denote the operator $\Gamma_j : \mathfrak{H}_+(S^*) \longrightarrow \mathcal{H}$ by $\widehat{\Gamma}_j : \mathfrak{H}_+(S^*) \longrightarrow \mathcal{H}$, j = 0, 1. From surjectivity it follows that $\operatorname{ran}(\widehat{\Gamma}) = \mathcal{H} \oplus \mathcal{H}$, where $\widehat{\Gamma} := (\widehat{\Gamma}_1, \widehat{\Gamma}_1)$. Notice that the abstract Green's identity (2.1) can be written as

$$(\widehat{S}^* f, g) - (f, \widehat{S}^* g) = (\widehat{\Gamma}_1 f, \widehat{\Gamma}_0 g) - (\widehat{\Gamma}_0 f, \widehat{\Gamma}_1 g), \quad f, g \in \operatorname{dom}(S^*).$$
(2.3)

where \widehat{S}^* denotes the operator S^* regarded as acting from $\mathfrak{H}_+(S^*)$ into \mathfrak{H} .

With any boundary triplet Π one associates two canonical self-adjoint extensions $S_j := S^* \upharpoonright \ker(\Gamma_j), j \in \{0, 1\}$. Conversely, for any extension $S_0 = S_0^* \in \operatorname{Ext}_S$ there exists a (non-unique) boundary triplet $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ for S^* such that $S_0 := S^* \upharpoonright \ker(\Gamma_0)$.

Using the concept of boundary triplets one can parameterize all proper extensions of A in the following way.

Proposition 2.3 ([8,9]). Let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be a boundary triplet for S^* . Then the mapping

$$\operatorname{Ext}_{S} \ni \widetilde{S} \to \Gamma \operatorname{dom}(\widetilde{S}) = (\Gamma_{0}f, \Gamma_{1}f)^{\top} : f \in \operatorname{dom}(\widetilde{S}) \} =: \Theta \in \widetilde{\mathcal{C}}(\mathcal{H})$$
(2.4)

establishes a bijective correspondence between the sets Ext_{S} and $\widetilde{\mathcal{C}}(\mathcal{H})$. We write $\widetilde{S} = S_{\Theta}$ if \widetilde{S} corresponds to Θ by (2.4). Moreover, the following holds:

(i) $S_{\Theta}^* = S_{\Theta^*}$, in particular, $S_{\Theta}^* = S_{\Theta}$ if and only if $\Theta^* = \Theta$.

(ii) S_{Θ} is symmetric (self-adjoint) if and only if Θ is symmetric (self-adjoint).

(iii) The extensions S_{Θ} and S_0 are disjoint (transversal) if and only if there is a closed (bounded) operator B such that $\Theta = \operatorname{gr}(B)$. In this case (2.4) takes the form

$$S_{\Theta} := S_{\operatorname{gr}(B)} = S^* \upharpoonright \ker (\Gamma_1 - B\Gamma_0).$$
(2.5)

In particular, $S_j := S^* \upharpoonright \ker(\Gamma_j) = S_{\Theta_j}, \ j \in \{0,1\}$, where $\Theta_0 := \{0\} \times \mathcal{H}$ and $\Theta_1 := \mathcal{H} \times \{0\} = \operatorname{gr}(\mathbb{O})$ where \mathbb{O} denotes the zero operator in \mathcal{H} . Note also that $\widetilde{\mathcal{C}}(\mathcal{H})$ contains the trivial linear relations $\{0\} \times \{0\}$ and $\mathcal{H} \times \mathcal{H}$ parameterizing the extensions S and S^* , respectively, for any boundary triplet Π .

2.3. γ -field and Weyl function

It is well known that Weyl functions are important tools in the direct and inverse spectral theory of Sturm-Liouville operators. In [8, 11] the concept of Weyl function was generalized to the case of an arbitrary symmetric operator S with $n_+(S) = n_-(S) \leq \infty$. Following [8], we briefly recall basic facts on Weyl functions and γ -fields associated with a boundary triplet Π .

Definition 2.4 ([8,11]). Let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be a boundary triplet for S^* and $S_0 = S^* \upharpoonright$ ker (Γ_0). The operator valued functions $\gamma(\cdot) : \rho(S_0) \to [\mathcal{H}, \mathcal{H}]$ and $M(\cdot) : \rho(S_0) \to [\mathcal{H}]$ defined by

$$\gamma(z) := \left(\Gamma_0 \upharpoonright \mathfrak{N}_z\right)^{-1} \quad \text{and} \quad M(z) := \Gamma_1 \gamma(z), \quad z \in \rho(S_0), \tag{2.6}$$

are called the γ -field and the Weyl function, respectively, corresponding to the boundary triplet Π .

Clearly, the Weyl function can equivalently be defined by

 $M(z)\Gamma_0 f_z = \Gamma_1 f_z, \qquad f_z \in \mathfrak{N}_z, \quad z \in \rho(S_0).$

The γ -field $\gamma(\cdot)$ and the Weyl function $M(\cdot)$ in (2.6) are well defined. Moreover, both $\gamma(\cdot)$ and $M(\cdot)$ are holomorphic on $\rho(S_0)$ and the following relations

$$\gamma(z) = (I + (z - \zeta)(S_0 - z)^{-1})\gamma(\zeta), \qquad z, \zeta \in \rho(S_0),$$
(2.7)

and

$$M(z) - M(\zeta)^* = (z - \overline{\zeta})\gamma(\zeta)^*\gamma(z), \qquad z, \zeta \in \rho(S_0),$$
(2.8)

hold. Identity (2.8) yields that $M(\cdot)$ is $[\mathcal{H}]$ -valued Nevanlinna function $(M(\cdot) \in R[\mathcal{H}])$, i.e. $M(\cdot)$ is $[\mathcal{H}]$ -valued holomorphic function on \mathbb{C}_{\pm} satisfying

$$M(z) = M(\overline{z})^*$$
 and $\frac{\operatorname{Im}(M(z))}{\operatorname{Im}(z)} \ge 0, \quad z \in \mathbb{C}_+ \cup \mathbb{C}_-.$

It also follows from (2.8) that $0 \in \rho(\text{Im}(M(z)))$ for all $z \in \mathbb{C}_{\pm}$.

2.4. Krein-type formula for resolvents

Let $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ be a boundary triplet for S^* , $M(\cdot)$ and $\gamma(\cdot)$ the corresponding Weyl function and γ -field, respectively. For any proper (not necessarily self-adjoint) extension $\widetilde{S}_{\Theta} \in \operatorname{Ext}_{\mathrm{S}}$ with non-empty resolvent set $\rho(\widetilde{S}_{\Theta})$ the following Krein-type formula holds (cf. [8, 11, 12])

$$(S_{\Theta} - z)^{-1} - (S_0 - z)^{-1} = \gamma(z)(\Theta - M(z))^{-1}\gamma^*(\overline{z}), \quad z \in \rho(S_0) \cap \rho(S_{\Theta}).$$
(2.9)

Formula (2.9) extends the known Krein formula for canonical resolvents to the case of any $S_{\Theta} \in \text{Ext}_{S}$ with $\rho(S_{\Theta}) \neq \emptyset$. Moreover, due to relations (2.4), (2.5) and (2.6) formula (2.9) is connected with the boundary triplet Π . We emphasize, that this connection makes it possible to apply the Krein-type formula (2.9) to boundary value problems.

2.5. Operator spectral integrals

Let us recall some useful facts regarding operator spectral integrals. We follow in essentially [10, Section I.5.1].

Definition 2.5. Let $E(\cdot)$ be a spectral measure defined on the Borel sets \mathcal{B} of the real axis \mathbb{R} . Let us assume that the support supp (E) is a bounded set, i.e. supp $(E) \subset [a, b)$, $-\infty < a < b < \infty$. Further, let $G(\cdot) : [a, b) \longrightarrow \mathcal{B}(\mathfrak{H})$ be a Borel measurable function. Let \mathfrak{Z} be a partition of the interval [a, b) of the form $[a, b) = [\lambda_0, \lambda_1) \cup [\lambda_1, \lambda_2) \cup \cdots \cup [\lambda_{n-1}, \lambda_n)$ where $\lambda_0 = a$ and $\lambda_n = b$, and put $\Delta_m := [\lambda_{m-1}, \lambda_m)$, $m = 1, \ldots, n$. Thus $[a, b) = \bigcup_{m=1}^n \Delta_m$ and the intervals Δ_m are pairwise disjoint. Let $|\mathfrak{Z}| := \max_m |\Delta_m|$ and let

$$F_{\mathfrak{Z}}(G) := \sum_{m=1}^{n} G(x_m) E(\Delta_m), \qquad x_m \in \Delta_m.$$

If there is an operator $F_0 \in \mathcal{B}(\mathfrak{H})$ such that $\lim_{|\mathfrak{Z}|\to 0} ||F_{\mathfrak{Z}}(G) - F_0|| = 0$ independent of \mathfrak{Z} and $\{x_m\}$, then F_0 is called the operator spectral integral of $G(\cdot)$ with respect to $E(\cdot)$ and is denoted by

$$F_0 = \int_a^b G(\lambda) dE(\lambda).$$

Remark 2.6. Similarly the operator spectral integral $\int_a^b dE(\lambda)G(\lambda)$ can be defined as above.

If $f(\cdot) : [a, b) \longrightarrow \mathfrak{H}$ is a Borel measurable function, then the vector spectral integral $\int_a^b dE(\lambda)f(\lambda)$ can be defined similarly.

Let us indicate some properties of the operator spectral integral.

- (i) If $G(\lambda) := g(\lambda)I$ where $g(\cdot) \in C([a, b])$, then $\int_a^b G(\lambda)dE(\lambda)$ exists and coincides with scalar spectral integral $\int_a^b g(\lambda)dE(\lambda)$.
- (ii) If $\int_a^b G(\lambda) dE(\lambda)$ exists and $h(\cdot) \in C([a, b])$, then also $\int_a^b h(\lambda) G(\lambda) dE(\lambda)$ exists and one has

$$\int_{a}^{b} h(\lambda)G(\lambda)dE(\lambda) = \int_{a}^{b} G(\lambda)dE(\lambda) \int_{a}^{b} h(\lambda)dE(\lambda).$$

Proposition 2.7 (Proposition I.5.1.2 of [10]). Let $G(\cdot)$ be defined on [a, b) and assume the existence of the derivative $G'(\lambda)$ with respect to the operator norm on [a, b). Further, let $G'(\cdot)$ be Bochner integrable on [a, b) and assume that $A(\lambda) = A(a) + \int_a^{\lambda} G'(x) dx$. Then $\int_a^b G(\lambda) dE(\lambda)$ exists and the estimate

$$\left\|\int_{a}^{b} G(\lambda) dE(\lambda)\right\| \leq \|G(a)\| + \int_{a}^{b} \|G'(\lambda)\| d\lambda$$

is valid.

Similar existence theorems can be proven for the other types of spectral integrals. For instance the vector spectral integral exists if $f(\cdot)$ is strongly continuous, strongly differentiable on [a, b] and if $f'(\cdot)$ is also strongly continuous. In particular, the operator and vector spectral integrals exist if the integrands $G(\cdot)$ and $f(\cdot)$ are holomorphic.

3. Main results

Let A be a closed symmetric operator with equal deficiency indices acting in the separable Hilbert space \mathfrak{H}_A and let T be a bounded self-adjoint operator acting in the separable Hilbert space \mathcal{H}_T . We consider the operator $S = A \otimes I_T + I_A \otimes T$. To define

the operator S we first consider the operator $A \otimes I_T$. The operator $A \otimes I_T$ is defined as the closure of the operator $A \odot I_I$ defined by

dom
$$(A \odot I_T) := \left\{ f = \sum_{k=1}^r g_k \otimes h_k : g_k \in \text{dom}(A), \quad h_k \in \mathcal{H}_T, \quad r \in \mathbb{N} \right\}$$

and

$$(A \odot I_T)f = \sum_{k=1}^r Ag_k \otimes h_k, \quad f \in \text{dom} (A \odot I_T).$$

One can easily check that $A \odot I_T$ is a densely defined symmetric operator which yields that $A \otimes I_T$ is a densely defined closed symmetric operator. By $\mathfrak{H}_+(A)$ we denote Hilbert space which is obtained equipping the domain dom (A) with the graph norm of A, cf. (2.2). dom $(A \otimes I_T) = \mathfrak{H}_+(A) \otimes \mathcal{H}_T$. By Proposition 7.26 of [2] we have $(A \otimes I_T)^* = A^* \otimes I_T$. Its domain is given by dom $(A^* \otimes I_T) = \mathfrak{H}_+(A^*) \otimes \mathcal{H}_T$.

Similarly, the operator $I_A \otimes T$ can be defined. $I_A \otimes T$ is found to be a bounded self-adjoint operator with norm ||T||. The operator $S := A \otimes I_T + I_A \otimes T$ is a well-defined closed symmetric operator with domain dom $(A \otimes I_T)$. Notice that

$$S = \overline{A \odot I_T + I_A \odot T} = \overline{A \odot I_T} + I_A \otimes T.$$

Its adjoint is given $S^* = A^* \otimes I_T + I_A \otimes T$.

Let $\widehat{\Gamma}_{j} := \widehat{\Gamma}_{j}^{A} \otimes I_{T} : \mathfrak{H}_{+}(A^{*}) \otimes \mathcal{H}_{T} \longrightarrow \mathcal{H}_{A} \otimes \mathcal{H}_{T}, j = 0, 1.$ Since ran $(\widehat{\Gamma}^{A}) = \mathcal{H}_{A} \oplus \mathcal{H}_{A}$ we have ran $(\widehat{\Gamma}) = (\mathcal{H}_{A} \otimes \mathcal{H}_{T}) \oplus (\mathcal{H}_{A} \otimes \mathcal{H}_{T})$ where $\widehat{\Gamma} := (\widehat{\Gamma}_{0}, \widehat{\Gamma}_{1})$. Let us consider the embedding operator $J : \mathfrak{H}_{+}(A^{*}) \otimes \mathcal{H}_{T} \longrightarrow \mathcal{H}_{A} \otimes \mathcal{H}_{T}$. We introduce the operator $\Gamma_{j} : \operatorname{dom}(A^{*} \otimes I_{T}) \longrightarrow \mathcal{H}_{A} \otimes \mathcal{H}_{T}$ by setting

$$\Gamma_j J \widehat{f} := \widehat{\Gamma}_j \widehat{f}, \quad \widehat{f} \in \mathfrak{H}_+(A^*) \otimes \mathcal{H}_T, \quad j = 0, 1.$$
 (3.1)

Notice that ran $(J) = \text{dom}(A^* \otimes I_T)$. Since ran $(\widehat{\Gamma}) = (\mathcal{H}_A \otimes \mathcal{H}_T) \oplus (\mathcal{H}_A \otimes \mathcal{H}_T)$ we get ran $(\Gamma) = (\mathcal{H}_A \otimes \mathcal{H}_T) \oplus (\mathcal{H}_A \otimes \mathcal{H}_T)$ where $\Gamma = (\Gamma_0, \Gamma_1)$. Let us introduce the triplet $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ where $\mathcal{H} := \mathcal{H}_A \otimes \mathcal{H}_T$ and Γ_j are given by (3.1).

Proposition 3.1. If $\Pi_A = \{\mathcal{H}_A, \Gamma_0^A, \Gamma_1^A\}$ is a boundary triplet for A^* , then $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ is a boundary triplet for S^*

Proof. First, we are going to show that Π is a boundary triplet for $(A \otimes I_I)^* = A^* \otimes I_T$. The surjectivity of $\Gamma = (\Gamma_0, \Gamma_1)$ was already shown above. Next, we check that the "Green's identity" holds Let $g_k, g'_k \in \mathfrak{H}_+(A^*), h_k, h'_k \in \mathcal{H}_T$ so that $f = \sum_{k=1}^N g_k \otimes h_k$ and $f' = \sum_{j=1}^M g'_j \otimes h'_j$.

We have

$$\left((A^* \otimes I_T) J \sum_{k=1}^N g_k \otimes h_k, J \sum_{j=1}^M g'_j \otimes h'_j \right) - \left(J \sum_{k=1}^N g_k \otimes h_k, J(A^* \otimes I_T) \sum_{j=1}^M g'_j \otimes h'_j \right)$$

$$= \sum_{k=1}^N \sum_{j=1}^M (h_k, h'_j) \left[(A^* J_{A^*} g_k, J_{A^*} g'_j) - (J_{A^*} g_k, A^* J_{A^*} g'_j) \right]$$

$$= \sum_{k=1}^N \sum_{j=1}^M (h_k, h'_j) \left[(\Gamma_1^A J_{A^*} g_k, \Gamma_0^A J_{A^*} g'_j) - (\Gamma_0^A J_{A^*} g_k, \Gamma_1^A J_{A^*} g'_j) \right]$$

where $J_{A^*}: \mathfrak{H}_+(A^*) \longrightarrow \mathfrak{H}_A$ is the embedding operator. Similarly we get

$$\left(\Gamma_1 J \sum_{k=1}^N g_k \otimes h_k, \Gamma_0 J \sum_{j=1}^M g'_j \otimes h'_j \right) - \left(\Gamma_0 J \sum_{k=1}^N g_k \otimes h_k, \Gamma_1 J \sum_{j=1}^M g'_j \otimes h'_j \right)$$

= $\sum_{k=1}^N \sum_{j=1}^M (h_k, h'_j) \left[(\Gamma_1^A J_{A^*} g_k, \Gamma_0^A J_{A^*} g'_j) - (\Gamma_0^A J_{A^*} g_k, \Gamma_1^A J_{A^*} g'_j) \right].$

Hence we get

$$\left((A^* \otimes I_T) J \sum_{k=1}^N g_k \otimes h_k, J \sum_{j=1}^M g'_j \otimes h'_j \right) - \left(J \sum_{k=1}^N g_k \otimes h_k, J(A^* \otimes I_T) \sum_{j=1}^M g'_j \otimes h'_j \right)$$
$$= \left(\Gamma_1 J \sum_{k=1}^N g_k \otimes h_k, \Gamma_0 J \sum_{j=1}^M g'_j \otimes h'_j \right) - \left(\Gamma_0 J \sum_{k=1}^N g_k \otimes h_k, \Gamma_1 J \sum_{j=1}^M g'_j \otimes h'_j \right)$$

which yields

$$\left((A^* \otimes I_T) J \sum_{k=1}^N g_k \otimes h_k, J \sum_{j=1}^M g'_j \otimes h'_j \right) - \left(J \sum_{k=1}^N g_k \otimes h_k, (A^* \otimes I_T) J \sum_{j=1}^M g'_j \otimes h'_j \right)$$
$$= \left(\widehat{\Gamma}_1 \sum_{k=1}^N g_k \otimes h_k, \widehat{\Gamma}_0 \sum_{j=1}^M g'_j \otimes h'_j \right) - \left(\widehat{\Gamma}_0 \sum_{k=1}^N g_k \otimes h_k, \widehat{\Gamma}_1 \sum_{j=1}^M g'_j \otimes h'_j \right)$$

Since elements of the form $f = \sum_{k=1}^{N} g_k \otimes h_k$ and $f' = \sum_{j=1}^{M} g'_j \otimes h'_j$ are dense in $\mathfrak{H}_+(A^*)$ the equality can be closed which gives

$$\left((A^* \otimes I_T) Jf, Jf' \right) - \left(Jf, (A^* \otimes I_T) Jf' \right) = \left(\widehat{\Gamma}_1 f, \widehat{\Gamma}_0 f' \right) - \left(\widehat{\Gamma}_0 f, \widehat{\Gamma}_1 f' \right)$$

for $f, f' \in \mathfrak{H}_+(A^*) \otimes \mathcal{H}_T$ which immediately yields the abstract Green's identity for $A^* \otimes I_T$. Hence Π is a boundary triplet $A^* \otimes I_T$. Since $T_A \otimes T$ is a bounded self-adjoint operator one proves that Π is a boundary for S^* . Indeed, since dom $(A^* \otimes I_T) = \text{dom}(S^*)$ one immediately verifies the abstract Green's identity and $\Gamma \text{dom}(A^* \otimes I_T) = \Gamma \text{dom}(S^*)$ shows the surjectivity.

Let us also mention that $S_0 := S^* \upharpoonright \ker(\Gamma_0^S)$ admits the representation

$$S_0 = A_0 \otimes I_{\mathcal{H}_T} + I_{\mathcal{H}_A} \otimes T. \tag{3.2}$$

Let $E_T(\lambda), \lambda \in \mathbb{R}$, be the spectral measure of the self-adjoint operator T. Obviously,

$$\widehat{E}_T(\lambda) := I_A \otimes E_T(\lambda), \quad \lambda \in \mathbb{R}$$

defines a spectral measure on $\mathcal{H}_A \otimes \mathcal{H}_T$.

Proposition 3.2. Let Π_A be a boundary triplet for A^* with γ -field $\gamma_A(z)$. If Π_S is the boundary triplet of Proposition 3.1 of S^* , then the γ -field $\gamma_S(\cdot)$ of Π_S admits the representation

$$\gamma_S(z) = \int_a^b d\widehat{E}_T(\lambda) \ \gamma_A(z-\lambda) \otimes I_{\mathcal{H}_T} = \int_a^b \gamma_A(z-\lambda) \otimes I_{\mathcal{H}_T} \ d\widehat{E}_T(\lambda) \tag{3.3}$$

 $z \in \mathbb{C}_{\pm}$ where $\sigma(T) \subset [a, b)$.

A. A. Boitsev, H. Neidhardt, I. Yu. Popov

Proof. We set $G(\lambda) := \gamma_A(z - \lambda) \otimes I_T$, $\lambda \in [a, b)$. From (2.7) we get

$$G'(\lambda) = (A_0 - \zeta)(A_0 - z + \lambda)^{-2}\gamma_A(\zeta) \otimes I_T, \qquad \lambda \in \mathbb{R}.$$

Since $\int_a^b \|G'(\lambda)\| d\lambda < \infty$ the operator spectral integral

$$D(z) := \int_{\mathbb{R}} \gamma_A(z - \lambda) \otimes I_{\mathcal{H}_T} \, d\widehat{E}_T(\lambda) \tag{3.4}$$

exists by Proposition 2.7. We will show that ran $(D(z)) \subseteq \mathfrak{H}_+(S^*-z)$. Let \mathfrak{Z} be a partition of [a, b) and let us consider the Riemann sum

$$D_{\mathfrak{Z}}(z) := \sum_{k=1}^{n} \gamma_A(z - \lambda_k) \otimes I_T \,\widehat{E}_T(\Delta_k), \qquad \lambda_k \in \Delta_k.$$
(3.5)

For every $z \in \mathbb{C}_{\pm}$ one has $\lim_{|\mathfrak{Z}|\to 0} \|D_{\mathfrak{Z}}(z) - D(z)\| = 0$. Obviously, for each \mathfrak{Z} we have $D_{\mathfrak{Z}}f \in \mathfrak{H}_{+}(S^{*}), f \in \mathfrak{H}$. Let us estimate the operator norm of $(\gamma_{A}(z-\lambda_{k})\otimes I_{T}) \widehat{E}_{T}(\Delta_{k})$ with respect to the Hilbert space $\mathfrak{H}_{+}(S^{*}-z)$. Obviously we have

$$(S^* - z)(\gamma_A(z - \lambda_k) \otimes I_T) E_T(\Delta_k) = (A^* - z)\gamma_A(z - \lambda_k) \otimes E_T(\Delta_k) + \gamma_A(z - \lambda_k) \otimes TE_T(\Delta_k).$$

which yields

$$(S^* - z)(\gamma_A(z - \lambda_k) \otimes I_T) \,\widehat{E}_T(\Delta_k) = \gamma_A(z - \lambda_k) \otimes (TE_T(\Delta_k) - \lambda_k E_T(\Delta_k))$$

Hence we find

$$\|(S^* - z)(\gamma_A(z - \lambda_k) \otimes I_T) \widehat{E}_T(\Delta_k)\| \leq \|\gamma_A(z - \lambda_k)\| \|TE_T(\Delta_k) - \lambda_k E_T(\Delta_k)\|.$$

Since $||TE_T(\Delta_k) - \lambda_k E_T(\Delta_k)|| \leq |\Delta_k|$, where $|\cdot|$ is the Lebesgue measure of the set Δ_k , we find

$$\|(S^* - z)(\gamma_A(z - \lambda_k) \otimes I_T) E_T(\Delta_k)\| \leq \|\gamma_A(z - \lambda_k)\| |\Delta_k|.$$

Using that $C_{\gamma_A}(z) := \sup_{\lambda \in [a,b]} \|\gamma_A(z-\lambda)\| < \infty$ we immediately get the estimate

$$||(S^* - z)D_3(z)|| \leq C_{\gamma_A}(z)(b - a), \qquad z \in \mathbb{C}_{\pm}.$$
 (3.6)

In particular we get $||(S^* - z)D(z)|| \leq C_{\gamma_A}(z)(b - a), z \in \mathbb{C}_{\pm}$. Let us show that the integral D(z) also exists in the strong sense in $\mathfrak{H}_+(S^* - z)$.

$$\begin{split} (S^* - z)D_3(z)g \otimes h &= ((A^* - z) \otimes I_T)D_3(z)g \otimes h + (I_A \otimes T)D_3(z)g \otimes h \\ &= ((A^* - z) \otimes I_T)\sum_{k=1}^n \gamma_A(z - \lambda_k)g \otimes E_T(\Delta_k)h + (I_A \otimes T)\sum_{k=1}^n \gamma_A(z - \lambda_k)g \otimes E_T(\Delta_k)h \\ &= \sum_{k=1}^n -\lambda_k \gamma_A(z - \lambda_k)g \otimes E_T(\Delta_k)h + \sum_{k=1}^n \gamma_A(z - \lambda_k)g \otimes TE_T(\Delta_k)h \\ &= \sum_{k=1}^n \gamma_A(z - \lambda_k)g \otimes (TE_T(\Delta_k) - \lambda_k E_T(\Delta_k))h \\ &= \left(\sum_{k=1}^n \gamma_A(z - \lambda_k)g \otimes (TE_T(\Delta_k) - \lambda_k E_T(\Delta_k))h\right). \end{split}$$

Hence

$$\|(S^*-z)D_{\mathfrak{Z}}(z)g\otimes h\| = \sum_{k=1}^n \|\gamma_A(z-\lambda_k)g\otimes (TE_T(\Delta_k)-\lambda_kE_T(\Delta_k))h\|,$$

Weyl function for sum of operators tensor products

we have

$$\|(S^* - z)D_{\mathfrak{Z}}(z)g \otimes h\| \leq \sum_{k=1}^{n} \|\gamma_A(z - \lambda_k)g\| \|(TE_T(\Delta_k) - \lambda_k E_T(\Delta_k))h\|.$$
(3.7)

Finally we obtain

$$\|(S^* - z)D_{\mathfrak{Z}}(z)g \otimes h\| \leq \|h\| \sum_{k=1}^n \|\gamma_A(z - \lambda_k)g\| |\Delta_k|.$$
(3.8)

Let \mathfrak{Z}' be a refinement of \mathfrak{Z} , that $\mathfrak{Z}' = \{\Delta'_{k'}\}_{k'=1}^{n'}$ where for each k' there is always a k such that $\Delta'_{k'} \subseteq \Delta_k$. This yields the estimate

$$\|(S^* - z)(D_{\mathfrak{Z}}(z) - D_{\mathfrak{Z}'}(z))g \otimes h\| \leq \|h\| \sum_{k'=1}^{n'} \|(\gamma_A(z - \lambda'_{k'}) - \gamma_A(z - \lambda_k))g\| |\Delta'_{k'}|.$$
(3.9)

where $\lambda'_{k'} \in \Delta_{k'} \subseteq \Delta_k \ni \lambda_k$. Hence $|\lambda'_{k'} - \lambda_k| \leq |\Delta_k| \leq |\mathfrak{Z}|$. Using (2.7) we find

$$\|\gamma_A(z-\lambda'_{k'})g-\gamma_A(z-\lambda_k)\| \leqslant \frac{1}{\operatorname{Im}(z)} \sup_{\lambda \in [a,b)} \left\|\frac{S_0-\zeta}{S_0-z+\lambda}\right\| \|\gamma_A(\zeta)\| \|\mathfrak{Z}\|$$

which yields the estimate

$$\|(S^* - z)(D_{\mathfrak{Z}}(z) - D_{\mathfrak{Z}'}(z))g \otimes h\| \leq (b - a)\|h\| \|g\| \frac{1}{\mathrm{Im}(z)} \sup_{\lambda \in [a,b)} \left\| \frac{S_0 - \zeta}{S_0 - z + \lambda} \right\| \|\gamma_A(\zeta)\| \|\mathfrak{Z}\|.$$
(3.10)

Hence the Riemann sums $D_3(z)$ converge strongly in $\mathfrak{H}_+(S^*-z)$ as $|\mathfrak{Z}| \to 0$. Since the Hilbert spaces $\mathfrak{H}_+(S^*)$ and $\mathfrak{H}_+(S^*-z)$, $z \in \mathbb{C}_{\pm}$, are isomorph the Riemann sums converge strongly in $\mathfrak{H}_+(S^*)$.

It remains to show that $(S^* - z)D(z) = 0$. Recall that

$$(S^* - z)D_{\mathfrak{Z}}(z)g \otimes h = \sum_{k=1}^n ((A^* - z)\gamma_A(z - \lambda_k)g \otimes E_T(\Delta_k)h + \gamma_A(z - \lambda_k)g \otimes TE_T(\Delta_k)h)$$
$$= \sum_{k=1}^n \gamma_A(z - \lambda_k)g \otimes (TE_T(\Delta_k) - \lambda_k E_T(\Delta_k))h.$$

For instance,

$$\|(S^* - z)D_{\mathfrak{Z}}(z)g \otimes h\| = \sum_{k=1}^n \|\gamma_A(z - \lambda_k)g \otimes (TE_T(\Delta_k) - \lambda_k E_T(\Delta_k))h\| \leqslant \sum_{k=1}^n \|\gamma_A(z - \lambda_k)g\| \|(T - \lambda_k)E_T(\Delta_k)h\|$$

To the degree that $\|\gamma_A(z-\lambda_k)\|$ is bounded, we have $\|(S^*-z)D_3(z)g\otimes h\| \to 0$ as $|\mathfrak{Z}| \to 0$ for any $g \otimes h$. For the element of the form $f = \sum_{k=1}^n g_k \otimes h_k$ obviously the same result holds. Then, we use that the set of $f = \sum_{k=1}^n g_k \otimes h_k$ is dense in $\mathfrak{H}_+(S^*)$

Proposition 3.3. Let Π_A be a boundary triplet for A^* with Weyl function $M_A(\cdot)$. If Π_S is the boundary triplet of Proposition 3.1 of S^* , then the Weyl function $M_S(\cdot)$ of Π_S admits the representation

$$M_{S}(z) = \int_{a}^{b} d\widehat{E}_{T}(\lambda) \ M_{A}(z-\lambda) \otimes I_{\mathcal{H}_{T}}$$

$$= \int_{a}^{b} M_{A}(z-\lambda) \otimes I_{\mathcal{H}_{T}} \ d\widehat{E}_{T}(\lambda),$$
(3.11)

 $z \in \mathbb{C}_{\pm}$ where $\sigma(T) \subset [a, b)$. In particular, if $n_{\pm}(A) = 1$, then $M_A(\cdot)$ is scalar, $\mathcal{H}_S = \mathcal{H}_T$ and

$$M_S(z) = M_A(z - T), \qquad z \in \mathbb{C}_{\pm}.$$
(3.12)

Proof. We set $G(\lambda) := M_A(z - \lambda) \otimes I_T$, $\lambda \in [a, b)$. From (2.7), (2.8) we get

$$G'(\lambda) = -\gamma_A(\zeta)^* \gamma_A(z-\lambda) + (z-\lambda-\overline{\zeta})\gamma_A(\zeta)^* (A_0-\zeta)(A_0-z+\lambda)^{-2} \gamma_A(\zeta) \otimes I_T, \qquad \lambda \in \mathbb{R}.$$
(3.13)

Since $\int_a^b \|G'(\lambda)\| d\lambda < \infty$ the operator spectral integral

$$D(z) := \int_{\mathbb{R}} \gamma_A(z-\lambda) \otimes I_{\mathcal{H}_T} \, d\widehat{E}_T(\lambda) \tag{3.14}$$

exists by Proposition 2.7.

Analogously to Proposition 3.2, we can prove that the integral exists in the strong sense in $\mathfrak{H}_+(S^*-z)$ and in $\mathfrak{H}_+(S^*)$, as the spaces are isomorph.

Let us note
$$D_3(z) = \sum_{k=1}^n \gamma_A(z - \lambda_k) \otimes I_T \widehat{E}_T(\Delta_k)$$
. Then,
 $\Gamma_1^S D_3(z) = \Gamma_1^S \sum_{k=1}^n \gamma_A(z - \lambda_k) \otimes I_T \widehat{E}_T(\Delta_k) =$
 $\sum_{k=1}^n \Gamma_1^A \gamma_A(z - \lambda_k) \otimes E_T(\Delta_k) = \sum_{k=1}^n M_A(z - \lambda_k) \otimes E_T(\Delta_k) = L_3(z)$

As far as $L_3(z)$ and $D_3(z)$ converge in a strong sense in $\mathfrak{H}_+(S^*)$ and Γ_0^S is bounded in $\mathfrak{H}_+(S^*)$, we get the estimate.

Note: In case T has pure point spectrum, the formula (3.11) becomes simpler

$$M_S(z) = \sum_{\lambda} M_A(z - \lambda) \otimes \xi_{\lambda}, \qquad (3.15)$$

where ξ_{λ} is an eigenvector of T, corresponding to λ

4. Example 1

In this section we will describe a simple example. Let's consider the symmetric operator $A = -\frac{d^2}{dx^2}$ with the domain

dom
$$(A) = \{ f \in W_2^2(0; +\infty) : f(0) = f'(0) = 0 \}$$

in the Hilbert space $L^2(\mathbb{R})$. Notice that $n_{\pm}(A) = 1$. Let's consider the following bounded self-adjoint operator

$$T = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

acting on $\mathcal{H}_T = \mathbb{C}^2$. We introduce the operator $S = A \otimes I_T + I_A \otimes T$ defined in $\mathcal{H}_A \otimes \mathcal{H}_T$. Our goal is to get the γ -field and the Weyl function corresponding to H in terms of γ -field and the Weyl function, corresponding to A, using the results described above.

Weyl function for sum of operators tensor products

Obviously, operator A^* has the deficiency indices (1; 1), so it's deficiency subspace is one-dimensional. Let us calculate the boundary form of the operator A^* . Integrating by parts, we get:

$$(A^*f,g) - (f,A^*g) = -\int_0^{+\infty} f''\bar{g}dx = -f'\bar{g}|_0^{+\infty} + f\bar{g}'|_0^{+\infty} - \int_0^{+\infty} f\bar{g}''dx$$

So,

$$(A^*f,g) - (f,A^*g) = -f'\bar{g}|_0^{+\infty} + f\bar{g}'|_0^{+\infty}$$

Recall that an element f from the domain of the adjoint operator also satisfies the condition $f(+\infty), f'(+\infty) = 0$. Hence, we have:

$$(A^*f,g) - (f,A^*g) = -f(0)\bar{g}'(0) + f'(0)\bar{g}(0)$$

Now we can obtain the boundary operators, corresponding to A^* :

$$\Gamma_0^A f = f(0), \qquad \Gamma_1^A f = f'(0)$$

Recalling the result of Proposition 3.1, we introduce the boundary operators for H^* :

$$\Gamma_0^S f = f(0) \otimes I, \Gamma_1^S f = f'(0) \otimes I.$$

Let us calculate the γ -field, corresponding to A^* . The deficiency element of the operator A^* , corresponding to the point z, has the form: $e^{i\sqrt{z}x}$ (we choose the branch of the square root in such a way that $\Im\sqrt{z} > 0$). Applying Γ_0^A , we have:

$$\Gamma_0^A e^{i\sqrt{z}x} = 1$$

so that

$$\gamma_A(z) = 1.$$

Let us describe the γ -field, corresponding to S^* . As far as T is self-adjoint, the spectral decomposition holds:

$$T = P_1 - P_2,$$

where P_1 and P_2 are the projectors onto the invariant subspaces of the operator T, corresponding to the eigenvalues 1 and -1, respectively. The projectors have the following forms:

$$P_1 = \left(\begin{array}{cc} 1 & 0\\ 0 & 0 \end{array}\right), \quad P_2 = \left(\begin{array}{cc} 0 & 0\\ 0 & 1 \end{array}\right).$$

Using the result of Proposition (3.2), we have:

$$\gamma_S(z) = \gamma_A(z-1) \otimes P_1 + \gamma_A(z+1) \otimes P_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

The corresponding Weyl function is obviously as follows:

$$M_A(z) = \Gamma_1^A \gamma_A(z) = i\sqrt{z}.$$

Using the result of Proposition (3.3), we have:

$$M_{S}(z) = M_{A}(z-1) \otimes P_{1} + M_{A}(z+1) \otimes P_{2} = \begin{pmatrix} i\sqrt{z-1} & 0\\ 0 & i\sqrt{z+1} \end{pmatrix}.$$

5. Example 2

In this example we consider an operator $S = A \otimes I_T + I_A \otimes B$ defined in $\mathcal{H}_A \otimes \mathcal{H}_T$, $\mathcal{H}_A = L_2(a, b), \mathcal{H}_T = \mathbb{C}^2$. Let us take the symmetric operator A as negative Laplacian $A = -\frac{d^2}{dx^2}$ with the domain dom $(A) = \{\phi \in W^{2,2}[a;b] | \phi(a) = \phi(b) = \phi'(a) = \phi'(b) = 0\}$ and a self-adjoint operator T be the same as in previous example. Let us obtain the γ -field for S.

The boundary operators for A^* are:

$$\widehat{\Gamma}_0 f = \begin{pmatrix} f'(b) \\ f(a) \end{pmatrix}, \quad \widehat{\Gamma}_1 f = \begin{pmatrix} f(b) \\ f'(a) \end{pmatrix}$$

Then, the boundary operators for the operator S^* are:

$$\Gamma_0 f = \begin{pmatrix} f'(b) \\ f(a) \end{pmatrix} \otimes I, \quad \Gamma_1 f = \begin{pmatrix} f(b) \\ f'(a) \end{pmatrix} \otimes I$$
(5.1)

Due to the fact that the deficiency elements of A corresponding to the point z are

$$e^{i\sqrt{z}x}, e^{-i\sqrt{z}x}, \tag{5.2}$$

we obtain the γ -field $\gamma_A(z)$ for A^* in the form

$$\gamma_A(z) = \frac{-i}{2\sqrt{z}\cos(\sqrt{z}(b-a))} \begin{pmatrix} e^{-i\sqrt{z}a} & i\sqrt{z}e^{-i\sqrt{z}b} \\ -e^{i\sqrt{z}a} & i\sqrt{z}e^{i\sqrt{z}b} \end{pmatrix}$$
(5.3)

So, using the result of **Proposition 3.3.**, we have:

$$\gamma_S(z) = \gamma_A(z-1) \otimes \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \gamma_A(z+1) \otimes \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$
(5.4)

Direct calculation of the Weyl function for A^* gives us

$$M_A(z) = \frac{1}{\sqrt{z}\cos(\sqrt{z}(b-a))} \cdot \begin{pmatrix} \sin(\sqrt{z}(b-a)) & \sqrt{z} \\ \sqrt{z} & \sqrt{z}\sin\sqrt{z}(b-a) \end{pmatrix}.$$
 (5.5)

Then,

$$M_S(z) = M_A(z-1) \otimes \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + M_A(z+1) \otimes \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
(5.6)

6. Concluding remarks

In this paper we considered the γ -field and the Weyl function corresponding to the boundary triplet Π_S for the operator $S = A \otimes I_T + I_A \otimes T$ where the operator A is symmetric and the operator T is bounded and self-adjoint. We obtained the formulas in terms of the γ -field and the Weyl function corresponding to the boundary triplet Π_A . The result can be immediately applied to the scattering theory due to the relation between the Weyl function and the scattering matrix (see, e.g., [13]). There is an interesting question about the case when the operator T is unbounded (it is well known that this case has many specific features [14]). We will present the corresponding result in the next paper.

Acknowledgments

Supported by Federal Targeted Program "Scientific and Educational Human Resources for Innovation-Driven Russia" (contract 16.740.11.0030), grant 11-08-00267 of Russian Foundation for Basic Researches and grants of the President of Russia (state contract 14.124.13.2045-MK and grant MK-1493.2013.1), by Program of Development of Leading Russian Universities. A part of this work was made during visits of IYP and AAB to Berlin. We thank WIAS Berlin for kind hospitality.

References

- M.S.Birman, M.Z.Solomyak. Spectral Theory of Selfadjoint Operators in Hilbert Space. Kluwer, Dordrecht (1987).
- [2] Konrad Schmüdgen. Unbounded self-adjoint operators on Hilbert space, volume 265 of Graduate Texts in Mathematics. Springer, Dordrecht, 2012.
- [3] B.S.Pavlov. Operator extensions theory and explicitly solvable models. Uspekhi Mat. Nauk. 42 (6). P. 99-131 (1987); English transl in: Russ. Math. Surv. 42, P. 127-168 (1987).
- [4] N.Bagraev, G.Martin, B.S.Pavlov, A.Yafyasov. Landau-Zener effect for a quasi-2D periodic sandwich. Nanosystems: Phys. Chem. Math. 2 (4), P. 32-50 (2011).
- [5] V.Ryzhov. A general boundary value problem and its Weyl function. Opuscula Math. 27 (2), P. 305-331.
- [6] M. Malamud, H. Neidhardt. Sturm-liouville boundary value problems with operator potentials and unitary equivalence. J. Differ. Equations, 252 (11), P. 5875–5922 (2012).
- [7] V. I. Gorbachuk, M. L. Gorbachuk. Boundary value problems for operator differential equations, volume 48 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht (1991).
- [8] V. A. Derkach and M. M. Malamud. Generalized resolvents and the boundary value problems for Hermitian operators with gaps. J. Funct. Anal. 95 (1), P. 1–95 (1991).
- [9] M. M. Malamud. Some classes of extensions of a Hermitian operator with lacunae. Ukraïn. Mat. Zh. 44 (2), P. 215–233 (1992).
- [10] H. Baumgärtel, M. Wollenberg. Mathematical scattering theory, volume 59 of Mathematical Textbooks and Monographs, Part II: Mathematical Monographs. Akademie-Verlag, Berlin (1983).
- [11] V. A. Derkach, M. M. Malamud. On the Weyl function and Hermite operators with lacunae. Dokl. Akad. Nauk SSSR, 293 (5), P. 1041–1046 (1987).
- [12] V. A. Derkach, M. M. Malamud. The extension theory of Hermitian operators and the moment problem. J. Math. Sci. 73 (2), P. 141–242 (1995).
- [13] J. Berndt, M. M. Malamud, H. Ntidhardt. Scattering matrices and Weyl functions. Proc. London Math. Soc. 97 (3), P. 568–598 (2008).
- [14] A. N. Kochubei. On extensions of symmetric operators and symmetric binary relations. *Mat. Zametki*. 17, P. 41-48 (1975).