WEYL FUNCTION FOR SUM OF OPERATORS TENSOR PRODUCTS

A. A. Boitsev ${ }^{1}$, H. Neidhardt ${ }^{2}$, I. Yu. Popov ${ }^{1}$
${ }^{1}$ Saint Petersburg National Research University of Information Technologies, Mechanics and Optics, 49 Kronverkskiy, Saint Petersburg, 197101, Russia
${ }^{2}$ Weierstrass Institute for Applied Analysis and Stochastic, Berlin, Germany boitsevanton@gmail.com, hagen.neidhardt@wias-berlin.de, popov1955@gmail.com

PACS 03.65 Nk

The boundary triplets approach is applied to the construction of self-adjoint extensions of the operator having the form $S=A \otimes I_{T}+I_{A} \otimes T$ where the operator A is symmetric and the operator T is bounded and self-adjoint. The formula for the γ-field and the Weyl function corresponding the the boundary triplet Π_{S} is obtained in terms of the γ-field and the Weyl function corresponding to the boundary triplet Π_{A}.
Keywords: operator extension, Weyl function, boundary triplet.

1. Introduction

The spectral theory of differential operators is very important for mathematics and has many applications in quantum physics (see, e.g., [1]. The theory of self-adjoint operators and especially of self-adjoint extensions of symmetric operators occupies a special place in the operator theory [2]. In many interesting problems of quantum physics (like the interaction of photons with electrons) the operators take on the form of the sum of tensor products [3], [4]. From general position, the extensions are usually described in terms of so-called boundary triplets [5]. Up to now, there is no boundary triplets method for obtaining all self-adjoint extensions of such an operator.

In particular, we consider a closed densely defined symmetric operator

$$
\begin{equation*}
S=A \otimes I_{T}+I_{A} \otimes T \tag{1.1}
\end{equation*}
$$

where A is a closed densely defined symmetric operator on the separable Hilbert space \mathfrak{H}_{A} and T is a bounded self-adjoint operator acting on the separable infinite dimensional Hilbert space \mathfrak{H}_{T}. Notice that the deficiency indices of S are infinite even if A has finite deficiency indices.

Our aim is to describe all self-adjoint extensions of S using the boundary triplet approach. More precisely, assuming that $\Pi_{A}=\left\{\mathcal{H}_{A}, \Gamma_{0}^{A}, \Gamma_{1}^{A}\right\}$ is a boundary triplet for A^{*} we construct a boundary triplet $\Pi_{S}=\left\{\mathcal{H}_{S}, \Gamma_{0}^{S}, \Gamma_{1}^{S}\right\}$ for S^{*}. In addition, using the γ-field $\gamma_{A}(\cdot)$ and the Weyl function $M_{A}(\cdot)$ of the boundary triplet Π_{A} we express the γ-field $\gamma_{S}(\cdot)$ and Weyl function $M_{S}(\cdot)$ of Π_{S}.

The present note generalizes results of [6]. In [6] on the Hilbert space $\mathfrak{H}=L^{2}\left(\mathbb{R}_{+}, \mathcal{H}\right)$ the operator

$$
\begin{align*}
(S f)(x) & =-\frac{d^{2}}{d t^{2}} f(t)+T f(t), \tag{1.2}\\
f \in \operatorname{dom}(S) & :=\left\{f \in W^{2,2}\left(\mathbb{R}_{+}, \mathcal{H}\right): f(0)=f^{\prime}(0)=0\right\} .
\end{align*}
$$

was considered where T is a bounded self-adjoint operator. One easily checks that the operator (1.2) has the form (1.1) where A acts on $L^{2}\left(\mathbb{R}_{+}\right)$and is given by

$$
(A f)(t)=-\frac{d^{2}}{d t^{2}} f(t), \quad f \in \operatorname{dom}(A):=\left\{W^{2,2}\left(\mathbb{R}_{+}\right): f(0)=f^{\prime}(0)=0\right\}
$$

In [6] it was verified that $\Pi_{S}=\left\{\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right\}$

$$
\Gamma_{0} f:=f(0), \quad \Gamma_{1} f=f^{\prime}(0), \quad f \in \operatorname{dom}\left(S^{*}\right)=W^{2,2}\left(\mathbb{R}_{+}, \mathcal{H}\right)
$$

defines a boundary triplet for S^{*}. The corresponding Weyl function is given by $M_{S}(z)=$ $i \sqrt{z-T}, z \in \mathbb{C}_{ \pm}$.

Notation. Let \mathfrak{H} and \mathcal{H} be separable Hilbert spaces. The set of bounded linear operators from \mathfrak{H}_{1} to \mathfrak{H}_{2} is denoted by $\left[\mathfrak{H}_{1}, \mathfrak{H}_{2}\right] ;[\mathfrak{H}]:=[\mathfrak{H}, \mathfrak{H}]$. By $\mathfrak{S}_{p}(\mathfrak{H}), p \in(0, \infty]$, we denote the Schatten-v.Neumann ideals of compact operators on \mathfrak{H}; in particular, $\mathfrak{S}_{\infty}(\mathfrak{H})$ denotes the ideal of compact operators in \mathfrak{H}.

By dom $(T), \operatorname{ran}(T)$ and $\sigma(T)$ we denote the domain, range and spectrum of the operator T, respectively. The symbols $\sigma_{p}(\cdot), \sigma_{c}(\cdot)$ and $\sigma_{r}(\cdot)$ stand for the point, continuous and residual spectrum of a linear operator. Recall that $z \in \sigma_{c}(H)$ if $\operatorname{ker}(H-z)=\{0\}$ and $\operatorname{ran}(H-z) \neq \overline{\operatorname{ran}(H-z)}=\mathfrak{H} ; z \in \sigma_{r}(H)$ if $\operatorname{ker}(H-z)=\{0\}$ and $\overline{\operatorname{ran}(H-z)} \neq \mathfrak{H}$.

2. Preliminaries

2.1. Linear relations

A linear relation Θ in \mathcal{H} is a closed linear subspace of $\mathcal{H} \oplus \mathcal{H}$. The set of all linear relations in \mathcal{H} is denoted by $\widetilde{\mathcal{C}}(\mathcal{H})$. Denote also by $\mathcal{C}(\mathcal{H})$ the set of all closed linear (not necessarily densely defined) operators in \mathcal{H}. Identifying each operator $T \in \mathcal{C}(\mathcal{H})$ with its graph $\operatorname{gr}(T)$ we regard $\mathcal{C}(\mathcal{H})$ as a subset of $\widetilde{\mathcal{C}}(\mathcal{H})$.

The role of the set $\widetilde{\mathcal{C}}(\mathcal{H})$ in extension theory becomes clear from Proposition 2.3. However, its role in the operator theory is substantially motivated by the following circumstances: in contrast to $\mathcal{C}(\mathcal{H})$, the set $\widetilde{\mathcal{C}}(\mathcal{H})$ is closed with respect to taking inverse and adjoint relations Θ^{-1} and Θ^{*}. The latter are given by: $\Theta^{-1}=\{\{g, f\}:\{f, g\} \in \Theta\}$ and

$$
\Theta^{*}=\left\{\binom{k}{k^{\prime}}:\left(h^{\prime}, k\right)=\left(h, k^{\prime}\right) \text { for all }\binom{h}{h^{\prime}} \in \Theta\right\}
$$

A linear relation Θ is called symmetric if $\Theta \subset \Theta^{*}$ and self-adjoint if $\Theta=\Theta^{*}$.

2.2. Boundary triplets and proper extensions

Let us briefly recall some basic facts regarding boundary triplets. Let S be a densely defined closed symmetric operator with equal deficiency indices $n_{ \pm}(S):=\operatorname{dim}\left(\mathfrak{N}_{ \pm \mathrm{i}}\right), \mathfrak{N}_{z}:=$ $\operatorname{ker}\left(S^{*}-z\right), z \in \mathbb{C}_{ \pm}$, acting on some separable Hilbert space \mathfrak{H}.

Definition 2.1.

(i) A closed extension \widetilde{S} of S is called proper if $\operatorname{dom}(S) \subset \operatorname{dom}(\widetilde{S}) \subset \operatorname{dom}\left(S^{*}\right)$.
(ii) Two proper extensions $\widetilde{S}^{\prime}, \widetilde{S}$ are called disjoint if $\operatorname{dom}\left(\widetilde{S^{\prime}}\right) \cap \operatorname{dom}(\widetilde{S})=\operatorname{dom}(S)$ and transversal if in addition $\operatorname{dom}\left(\widetilde{S^{\prime}}\right)+\operatorname{dom}(\widetilde{S})=\operatorname{dom}\left(S^{*}\right)$.

We denote by Ext E $_{\text {s }}$ the set of all proper extensions of S completed by the non-proper extensions S and S^{*} is denoted. Any self-adjoint or maximal dissipative (accumulative) extension is proper.

Definition 2.2 ($[7])$. A triplet $\Pi=\left\{\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right\}$, where \mathcal{H} is an auxiliary Hilbert space and $\Gamma_{0}, \Gamma_{1}: \operatorname{dom}\left(S^{*}\right) \rightarrow \mathcal{H}$ are linear mappings, is called a boundary triplet for S^{*} if the "abstract Green's identity"

$$
\begin{equation*}
\left(S^{*} f, g\right)-\left(f, S^{*} g\right)=\left(\Gamma_{1} f, \Gamma_{0} g\right)-\left(\Gamma_{0} f, \Gamma_{1} g\right), \quad f, g \in \operatorname{dom}\left(S^{*}\right) \tag{2.1}
\end{equation*}
$$

is satisfied and the mapping $\Gamma:=\left(\Gamma_{0}, \Gamma_{1}\right)^{\top}: \operatorname{dom}\left(S^{*}\right) \rightarrow \mathcal{H} \oplus \mathcal{H}$ is surjective, i.e. $\operatorname{ran}(\Gamma)=$ $\mathcal{H} \oplus \mathcal{H}$.

A boundary triplet $\Pi=\left\{\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right\}$ for S^{*} always exists whenever $n_{+}(S)=n_{-}(S)$. Note also that $n_{ \pm}(S)=\operatorname{dim}(\mathcal{H})$ and $\operatorname{ker}\left(\Gamma_{0}\right) \cap \operatorname{ker}\left(\Gamma_{1}\right)=\operatorname{dom}(S)$.

In general, the linear maps $\Gamma_{j}: \mathfrak{H} \longrightarrow \mathcal{H}, j=0,1$, are neither bounded nor closed. However, equipping the domain $\operatorname{dom}\left(S^{*}\right)$ with the graph norm

$$
\begin{equation*}
\|f\|_{S^{*}}^{2}:=\left\|S^{*}\right\|^{2}+\|f\|^{2}, \quad f \in \operatorname{dom}\left(S^{*}\right) \tag{2.2}
\end{equation*}
$$

one gets a Hilbert space, which is denoted by $\mathfrak{H}_{+}\left(S^{*}\right)$, and regarding the maps $\Gamma_{j}: \mathfrak{H} \longrightarrow \mathcal{H}$, $j=0,1$, as acting from $\mathfrak{H}_{+}\left(S^{*}\right)$ into \mathcal{H} it turns out that that the operators $\Gamma_{j}: \mathfrak{H}_{+}\left(S^{*}\right) \longrightarrow$ $\mathcal{H}, j=0,1$, are bounded. In the following work we denote the operator $\Gamma_{j}: \mathfrak{H}_{+}\left(S^{*}\right) \longrightarrow \mathcal{H}$ by $\widehat{\Gamma}_{j}: \mathfrak{H}_{+}\left(S^{*}\right) \longrightarrow \mathcal{H}, j=0,1$. From surjectivity it follows that $\operatorname{ran}(\widehat{\Gamma})=\mathcal{H} \oplus \mathcal{H}$, where $\widehat{\Gamma}:=\left(\widehat{\Gamma}_{1}, \widehat{\Gamma}_{1}\right)$. Notice that the abstract Green's identity (2.1) can be written as

$$
\begin{equation*}
\left(\widehat{S}^{*} f, g\right)-\left(f, \widehat{S}^{*} g\right)=\left(\widehat{\Gamma}_{1} f, \widehat{\Gamma}_{0} g\right)-\left(\widehat{\Gamma}_{0} f, \widehat{\Gamma}_{1} g\right), \quad f, g \in \operatorname{dom}\left(S^{*}\right) \tag{2.3}
\end{equation*}
$$

where \widehat{S}^{*} denotes the operator S^{*} regarded as acting from $\mathfrak{H}_{+}\left(S^{*}\right)$ into \mathfrak{H}.
With any boundary triplet Π one associates two canonical self-adjoint extensions $S_{j}:=S^{*} \upharpoonright \operatorname{ker}\left(\Gamma_{j}\right), j \in\{0,1\}$. Conversely, for any extension $S_{0}=S_{0}^{*} \in \operatorname{Ext}_{\mathrm{S}}$ there exists a (non-unique) boundary triplet $\Pi=\left\{\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right\}$ for S^{*} such that $S_{0}:=S^{*} \mid \operatorname{ker}\left(\Gamma_{0}\right)$.

Using the concept of boundary triplets one can parameterize all proper extensions of A in the following way.

Proposition $2.3([8,9])$. Let $\Pi=\left\{\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right\}$ be a boundary triplet for S^{*}. Then the mapping

$$
\begin{equation*}
\left.\operatorname{Ext}_{\mathrm{S}} \ni \widetilde{\mathrm{~S}} \rightarrow \Gamma \operatorname{dom}(\widetilde{\mathrm{~S}})=\left(\Gamma_{0} \mathrm{f}, \Gamma_{1} \mathrm{f}\right)^{\top}: \mathrm{f} \in \operatorname{dom}(\widetilde{\mathrm{~S}})\right\}=: \Theta \in \widetilde{\mathcal{C}}(\mathcal{H}) \tag{2.4}
\end{equation*}
$$

establishes a bijective correspondence between the sets $\operatorname{Ext}_{\mathrm{S}}$ and $\widetilde{\mathcal{C}}(\mathcal{H})$. We write $\widetilde{S}=S_{\Theta}$ if \widetilde{S} corresponds to Θ by (2.4). Moreover, the following holds:
(i) $S_{\Theta}^{*}=S_{\Theta^{*}}$, in particular, $S_{\Theta}^{*}=S_{\Theta}$ if and only if $\Theta^{*}=\Theta$.
(ii) S_{Θ} is symmetric (self-adjoint) if and only if Θ is symmetric (self-adjoint).
(iii) The extensions S_{Θ} and S_{0} are disjoint (transversal) if and only if there is a closed (bounded) operator B such that $\Theta=\operatorname{gr}(B)$. In this case (2.4) takes the form

$$
\begin{equation*}
S_{\Theta}:=S_{\mathrm{gr}(B)}=S^{*} \upharpoonright \operatorname{ker}\left(\Gamma_{1}-B \Gamma_{0}\right) . \tag{2.5}
\end{equation*}
$$

In particular, $S_{j}:=S^{*} \upharpoonright \operatorname{ker}\left(\Gamma_{j}\right)=S_{\Theta_{j}}, j \in\{0,1\}$, where $\Theta_{0}:=\{0\} \times \mathcal{H}$ and $\Theta_{1}:=\mathcal{H} \times\{0\}=\operatorname{gr}(\mathbb{O})$ where \mathbb{O} denotes the zero operator in \mathcal{H}. Note also that $\widetilde{\mathcal{C}}(\mathcal{H})$ contains the trivial linear relations $\{0\} \times\{0\}$ and $\mathcal{H} \times \mathcal{H}$ parameterizing the extensions S and S^{*}, respectively, for any boundary triplet Π.

2.3. γ-field and Weyl function

It is well known that Weyl functions are important tools in the direct and inverse spectral theory of Sturm-Liouville operators. In $[8,11]$ the concept of Weyl function was generalized to the case of an arbitrary symmetric operator S with $n_{+}(S)=n_{-}(S) \leqslant \infty$. Following [8], we briefly recall basic facts on Weyl functions and γ-fields associated with a boundary triplet Π.

Definition $2.4([8,11])$. Let $\Pi=\left\{\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right\}$ be a boundary triplet for S^{*} and $S_{0}=S^{*} \upharpoonright$ $\operatorname{ker}\left(\Gamma_{0}\right)$. The operator valued functions $\gamma(\cdot): \rho\left(S_{0}\right) \rightarrow[\mathcal{H}, \mathcal{H}]$ and $M(\cdot): \rho\left(S_{0}\right) \rightarrow[\mathcal{H}]$ defined by

$$
\begin{equation*}
\gamma(z):=\left(\Gamma_{0} \upharpoonright \mathfrak{N}_{z}\right)^{-1} \quad \text { and } \quad M(z):=\Gamma_{1} \gamma(z), \quad z \in \rho\left(S_{0}\right), \tag{2.6}
\end{equation*}
$$

are called the γ-field and the Weyl function, respectively, corresponding to the boundary triplet Π.

Clearly, the Weyl function can equivalently be defined by

$$
M(z) \Gamma_{0} f_{z}=\Gamma_{1} f_{z}, \quad f_{z} \in \mathfrak{N}_{z}, \quad z \in \rho\left(S_{0}\right)
$$

The γ-field $\gamma(\cdot)$ and the Weyl function $M(\cdot)$ in (2.6) are well defined. Moreover, both $\gamma(\cdot)$ and $M(\cdot)$ are holomorphic on $\rho\left(S_{0}\right)$ and the following relations

$$
\begin{equation*}
\gamma(z)=\left(I+(z-\zeta)\left(S_{0}-z\right)^{-1}\right) \gamma(\zeta), \quad z, \zeta \in \rho\left(S_{0}\right) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
M(z)-M(\zeta)^{*}=(z-\bar{\zeta}) \gamma(\zeta)^{*} \gamma(z), \quad z, \zeta \in \rho\left(S_{0}\right) \tag{2.8}
\end{equation*}
$$

hold. Identity (2.8) yields that $M(\cdot)$ is $[\mathcal{H}]$-valued Nevanlinna function $(M(\cdot) \in R[\mathcal{H}])$, i.e. $M(\cdot)$ is $[\mathcal{H}]$-valued holomorphic function on $\mathbb{C}_{ \pm}$satisfying

$$
M(z)=M(\bar{z})^{*} \quad \text { and } \quad \frac{\operatorname{Im}(\mathrm{M}(\mathrm{z}))}{\operatorname{Im}(\mathrm{z})} \geqslant 0, \quad z \in \mathbb{C}_{+} \cup \mathbb{C}_{-}
$$

It also follows from (2.8) that $0 \in \rho(\operatorname{Im}(\mathrm{M}(\mathrm{z})))$ for all $z \in \mathbb{C}_{ \pm}$.

2.4. Krein-type formula for resolvents

Let $\Pi=\left\{\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right\}$ be a boundary triplet for $S^{*}, M(\cdot)$ and $\gamma(\cdot)$ the corresponding Weyl function and γ-field, respectively. For any proper (not necessarily self-adjoint) extension $\widetilde{S}_{\Theta} \in \operatorname{Ext}_{\mathrm{S}}$ with non-empty resolvent set $\rho\left(\widetilde{S}_{\Theta}\right)$ the following Krein-type formula holds (cf. $[8,11,12]$)

$$
\begin{equation*}
\left(S_{\Theta}-z\right)^{-1}-\left(S_{0}-z\right)^{-1}=\gamma(z)(\Theta-M(z))^{-1} \gamma^{*}(\bar{z}), \quad z \in \rho\left(S_{0}\right) \cap \rho\left(S_{\Theta}\right) \tag{2.9}
\end{equation*}
$$

Formula (2.9) extends the known Krein formula for canonical resolvents to the case of any $S_{\Theta} \in \operatorname{Ext}_{\mathrm{S}}$ with $\rho\left(S_{\Theta}\right) \neq \emptyset$. Moreover, due to relations (2.4), (2.5) and (2.6) formula (2.9) is connected with the boundary triplet Π. We emphasize, that this connection makes it possible to apply the Krein-type formula (2.9) to boundary value problems.

2.5. Operator spectral integrals

Let us recall some useful facts regarding operator spectral integrals. We follow in essentially [10, Section I.5.1].

Definition 2.5. Let $E(\cdot)$ be a spectral measure defined on the Borel sets \mathcal{B} of the real axis \mathbb{R}. Let us assume that the support $\operatorname{supp}(E)$ is a bounded set, i.e. $\operatorname{supp}(E) \subset[a, b)$, $-\infty<a<b<\infty$. Further, let $G(\cdot):[a, b) \longrightarrow \mathcal{B}(\mathfrak{H})$ be a Borel measurable function. Let \mathfrak{Z} be a partition of the interval $[a, b)$ of the form $[a, b)=\left[\lambda_{0}, \lambda_{1}\right) \cup\left[\lambda_{1}, \lambda_{2}\right) \cup \cdots \cup\left[\lambda_{n-1}, \lambda_{n}\right)$ where $\lambda_{0}=a$ and $\lambda_{n}=b$, and put $\Delta_{m}:=\left[\lambda_{m-1}, \lambda_{m}\right), m=1, \ldots, n$. Thus $[a, b)=\bigcup_{m=1}^{n} \Delta_{m}$ and the intervals Δ_{m} are pairwise disjoint. Let $|\mathfrak{Z}|:=\max _{m}\left|\Delta_{m}\right|$ and let

$$
F_{\mathfrak{Z}}(G):=\sum_{m=1}^{n} G\left(x_{m}\right) E\left(\Delta_{m}\right), \quad x_{m} \in \Delta_{m}
$$

If there is an operator $F_{0} \in \mathcal{B}(\mathfrak{H})$ such that $\lim _{|\mathfrak{3}| \rightarrow 0}\left\|F_{\mathfrak{Z}}(G)-F_{0}\right\|=0$ independent of \mathfrak{Z} and $\left\{x_{m}\right\}$, then F_{0} is called the operator spectral integral of $G(\cdot)$ with respect to $E(\cdot)$ and is denoted by

$$
F_{0}=\int_{a}^{b} G(\lambda) d E(\lambda) .
$$

Remark 2.6. Similarly the operator spectral integral $\int_{a}^{b} d E(\lambda) G(\lambda)$ can be defined as above. If $f(\cdot):[a, b) \longrightarrow \mathfrak{H}$ is a Borel measurable function, then the vector spectral integral $\int_{a}^{b} d E(\lambda) f(\lambda)$ can be defined similarly.

Let us indicate some properties of the operator spectral integral.
(i) If $G(\lambda):=g(\lambda) I$ where $g(\cdot) \in C([a, b])$, then $\int_{a}^{b} G(\lambda) d E(\lambda)$ exists and coincides with scalar spectral integral $\int_{a}^{b} g(\lambda) d E(\lambda)$.
(ii) If $\int_{a}^{b} G(\lambda) d E(\lambda)$ exists and $h(\cdot) \in C([a, b])$, then also $\int_{a}^{b} h(\lambda) G(\lambda) d E(\lambda)$ exists and one has

$$
\int_{a}^{b} h(\lambda) G(\lambda) d E(\lambda)=\int_{a}^{b} G(\lambda) d E(\lambda) \int_{a}^{b} h(\lambda) d E(\lambda)
$$

Proposition 2.7 (Proposition I.5.1.2 of [10]). Let $G(\cdot)$ be defined on $[a, b)$ and assume the existence of the derivative $G^{\prime}(\lambda)$ with respect to the operator norm on $[a, b)$. Further, let $G^{\prime}(\cdot)$ be Bochner integrable on $[a, b)$ and assume that $A(\lambda)=A(a)+\int_{a}^{\lambda} G^{\prime}(x) d x$. Then $\int_{a}^{b} G(\lambda) d E(\lambda)$ exists and the estimate

$$
\left\|\int_{a}^{b} G(\lambda) d E(\lambda)\right\| \leqslant\|G(a)\|+\int_{a}^{b}\left\|G^{\prime}(\lambda)\right\| d \lambda
$$

is valid.
Similar existence theorems can be proven for the other types of spectral integrals. For instance the vector spectral integral exists if $f(\cdot)$ is strongly continuous, strongly differentiable on $[a, b]$ and if $f^{\prime}(\cdot)$ is also strongly continuous. In particular, the operator and vector spectral integrals exist if the integrands $G(\cdot)$ and $f(\cdot)$ are holomorphic.

3. Main results

Let A be a closed symmetric operator with equal deficiency indices acting in the separable Hilbert space \mathfrak{H}_{A} and let T be a bounded self-adjoint operator acting in the separable Hilbert space \mathcal{H}_{T}. We consider the operator $S=A \otimes I_{T}+I_{A} \otimes T$. To define
the operator S we first consider the operator $A \otimes I_{T}$. The operator $A \otimes I_{T}$ is defined as the closure of the operator $A \odot I_{I}$ defined by

$$
\operatorname{dom}\left(A \odot I_{T}\right):=\left\{f=\sum_{k=1}^{r} g_{k} \otimes h_{k}: g_{k} \in \operatorname{dom}(A), \quad h_{k} \in \mathcal{H}_{T}, \quad r \in \mathbb{N}\right\}
$$

and

$$
\left(A \odot I_{T}\right) f=\sum_{k=1}^{r} A g_{k} \otimes h_{k}, \quad f \in \operatorname{dom}\left(A \odot I_{T}\right)
$$

One can easily check that $A \odot I_{T}$ is a densely defined symmetric operator which yields that $A \otimes I_{T}$ is a densely defined closed symmetric operator. By $\mathfrak{H}_{+}(A)$ we denote Hilbert space which is obtained equipping the domain $\operatorname{dom}(A)$ with the graph norm of A, cf. (2.2). $\operatorname{dom}\left(A \otimes I_{T}\right)=\mathfrak{H}_{+}(A) \otimes \mathcal{H}_{T}$. By Proposition 7.26 of [2] we have $\left(A \otimes I_{T}\right)^{*}=A^{*} \otimes I_{T}$. Its domain is given by $\operatorname{dom}\left(A^{*} \otimes I_{T}\right)=\mathfrak{H}_{+}\left(A^{*}\right) \otimes \mathcal{H}_{T}$.

Similarly, the operator $I_{A} \otimes T$ can be defined. $I_{A} \otimes T$ is found to be a bounded self-adjoint operator with norm $\|T\|$. The operator $S:=A \otimes I_{T}+I_{A} \otimes T$ is a well-defined closed symmetric operator with domain $\operatorname{dom}\left(A \otimes I_{T}\right)$. Notice that

$$
S=\overline{A \odot I_{T}+I_{A} \odot T}=\overline{A \odot I_{T}}+I_{A} \otimes T
$$

Its adjoint is given $S^{*}=A^{*} \otimes I_{T}+I_{A} \otimes T$.
Let $\widehat{\Gamma}_{j}:=\widehat{\Gamma}_{j}^{A} \otimes I_{T}: \mathfrak{H}_{+}\left(A^{*}\right) \otimes \mathcal{H}_{T} \longrightarrow \mathcal{H}_{A} \otimes \mathcal{H}_{T}, j=0$, 1. Since $\operatorname{ran}\left(\widehat{\Gamma}^{A}\right)=\mathcal{H}_{A} \oplus \mathcal{H}_{A}$ we have $\operatorname{ran}(\widehat{\Gamma})=\left(\mathcal{H}_{A} \otimes \mathcal{H}_{T}\right) \oplus\left(\mathcal{H}_{A} \otimes \mathcal{H}_{T}\right)$ where $\widehat{\Gamma}:=\left(\widehat{\Gamma}_{0}, \widehat{\Gamma}_{1}\right)$. Let us consider the embedding operator $J: \mathfrak{H}_{+}\left(A^{*}\right) \otimes \mathcal{H}_{T} \longrightarrow \mathcal{H}_{A} \otimes \mathcal{H}_{T}$. We introduce the operator $\Gamma_{j}: \operatorname{dom}\left(A^{*} \otimes I_{T}\right) \longrightarrow \mathcal{H}_{A} \otimes \mathcal{H}_{T}$ by setting

$$
\begin{equation*}
\Gamma_{j} J \widehat{f}:=\widehat{\Gamma}_{j} \widehat{f}, \quad \widehat{f} \in \mathfrak{H}_{+}\left(A^{*}\right) \otimes \mathcal{H}_{T}, \quad j=0,1 \tag{3.1}
\end{equation*}
$$

Notice that $\operatorname{ran}(J)=\operatorname{dom}\left(A^{*} \otimes I_{T}\right)$. Since $\operatorname{ran}(\widehat{\Gamma})=\left(\mathcal{H}_{A} \otimes \mathcal{H}_{T}\right) \oplus\left(\mathcal{H}_{A} \otimes \mathcal{H}_{T}\right)$ we get $\operatorname{ran}(\Gamma)=\left(\mathcal{H}_{A} \otimes \mathcal{H}_{T}\right) \oplus\left(\mathcal{H}_{A} \otimes \mathcal{H}_{T}\right)$ where $\Gamma=\left(\Gamma_{0}, \Gamma_{1}\right)$. Let us introduce the triplet $\Pi=$ $\left\{\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right\}$ where $\mathcal{H}:=\mathcal{H}_{A} \otimes \mathcal{H}_{T}$ and Γ_{j} are given by (3.1).

Proposition 3.1. If $\Pi_{A}=\left\{\mathcal{H}_{A}, \Gamma_{0}^{A}, \Gamma_{1}^{A}\right\}$ is a boundary triplet for A^{*}, then $\Pi=\left\{\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right\}$ is a boundary triplet for S^{*}

Proof. First, we are going to show that Π is a boundary triplet for $\left(A \otimes I_{I}\right)^{*}=A^{*} \otimes I_{T}$. The surjectivity of $\Gamma=\left(\Gamma_{0}, \Gamma_{1}\right)$ was already shown above. Next, we check that the "Green's identity" holds Let $g_{k}, g_{k}^{\prime} \in \mathfrak{H}_{+}\left(A^{*}\right), h_{k}, h_{k}^{\prime} \in \mathcal{H}_{T}$ so that $f=\sum_{k=1}^{N} g_{k} \otimes h_{k}$ and $f^{\prime}=\sum_{j=1}^{M} g_{j}^{\prime} \otimes h_{j}^{\prime}$. We have

$$
\begin{gathered}
\left(\left(A^{*} \otimes I_{T}\right) J \sum_{k=1}^{N} g_{k} \otimes h_{k}, J \sum_{j=1}^{M} g_{j}^{\prime} \otimes h_{j}^{\prime}\right)-\left(J \sum_{k=1}^{N} g_{k} \otimes h_{k}, J\left(A^{*} \otimes I_{T}\right) \sum_{j=1}^{M} g_{j}^{\prime} \otimes h_{j}^{\prime}\right) \\
=\sum_{k=1}^{N} \sum_{j=1}^{M}\left(h_{k}, h_{j}^{\prime}\right)\left[\left(A^{*} J_{A^{*}} g_{k}, J_{A^{*}} g_{j}^{\prime}\right)-\left(J_{A^{*}} g_{k}, A^{*} J_{A^{*}} g_{j}^{\prime}\right)\right] \\
=\sum_{k=1}^{N} \sum_{j=1}^{M}\left(h_{k}, h_{j}^{\prime}\right)\left[\left(\Gamma_{1}^{A} J_{A^{*}} g_{k}, \Gamma_{0}^{A} J_{A^{*}} g_{j}^{\prime}\right)-\left(\Gamma_{0}^{A} J_{A^{*}} g_{k}, \Gamma_{1}^{A} J_{A^{*}} g_{j}^{\prime}\right)\right]
\end{gathered}
$$

where $J_{A^{*}}: \mathfrak{H}_{+}\left(A^{*}\right) \longrightarrow \mathfrak{H}_{A}$ is the embeding operator. Similarly we get

$$
\begin{aligned}
& \left(\Gamma_{1} J \sum_{k=1}^{N} g_{k} \otimes h_{k}, \Gamma_{0} J \sum_{j=1}^{M} g_{j}^{\prime} \otimes h_{j}^{\prime}\right)-\left(\Gamma_{0} J \sum_{k=1}^{N} g_{k} \otimes h_{k}, \Gamma_{1} J \sum_{j=1}^{M} g_{j}^{\prime} \otimes h_{j}^{\prime}\right) \\
& \quad=\sum_{k=1}^{N} \sum_{j=1}^{M}\left(h_{k}, h_{j}^{\prime}\right)\left[\left(\Gamma_{1}^{A} J_{A^{*}} g_{k}, \Gamma_{0}^{A} J_{A^{*}} g_{j}^{\prime}\right)-\left(\Gamma_{0}^{A} J_{A^{*}} g_{k}, \Gamma_{1}^{A} J_{A^{*}} g_{j}^{\prime}\right)\right]
\end{aligned}
$$

Hence we get

$$
\begin{gathered}
\left(\left(A^{*} \otimes I_{T}\right) J \sum_{k=1}^{N} g_{k} \otimes h_{k}, J \sum_{j=1}^{M} g_{j}^{\prime} \otimes h_{j}^{\prime}\right)-\left(J \sum_{k=1}^{N} g_{k} \otimes h_{k}, J\left(A^{*} \otimes I_{T}\right) \sum_{j=1}^{M} g_{j}^{\prime} \otimes h_{j}^{\prime}\right) \\
\quad=\left(\Gamma_{1} J \sum_{k=1}^{N} g_{k} \otimes h_{k}, \Gamma_{0} J \sum_{j=1}^{M} g_{j}^{\prime} \otimes h_{j}^{\prime}\right)-\left(\Gamma_{0} J \sum_{k=1}^{N} g_{k} \otimes h_{k}, \Gamma_{1} J \sum_{j=1}^{M} g_{j}^{\prime} \otimes h_{j}^{\prime}\right)
\end{gathered}
$$

which yields

$$
\begin{gathered}
\left(\left(A^{*} \otimes I_{T}\right) J \sum_{k=1}^{N} g_{k} \otimes h_{k}, J \sum_{j=1}^{M} g_{j}^{\prime} \otimes h_{j}^{\prime}\right)-\left(J \sum_{k=1}^{N} g_{k} \otimes h_{k},\left(A^{*} \otimes I_{T}\right) J \sum_{j=1}^{M} g_{j}^{\prime} \otimes h_{j}^{\prime}\right) \\
\quad=\left(\widehat{\Gamma}_{1} \sum_{k=1}^{N} g_{k} \otimes h_{k}, \widehat{\Gamma}_{0} \sum_{j=1}^{M} g_{j}^{\prime} \otimes h_{j}^{\prime}\right)-\left(\widehat{\Gamma}_{0} \sum_{k=1}^{N} g_{k} \otimes h_{k}, \widehat{\Gamma}_{1} \sum_{j=1}^{M} g_{j}^{\prime} \otimes h_{j}^{\prime}\right)
\end{gathered}
$$

Since elements of the form $f=\sum_{k=1}^{N} g_{k} \otimes h_{k}$ and $f^{\prime}=\sum_{j=1}^{M} g_{j}^{\prime} \otimes h_{j}^{\prime}$ are dense in $\mathfrak{H}_{+}\left(A^{*}\right)$ the equality can be closed which gives

$$
\left(\left(A^{*} \otimes I_{T}\right) J f, J f^{\prime}\right)-\left(J f,\left(A^{*} \otimes I_{T}\right) J f^{\prime}\right)=\left(\widehat{\Gamma}_{1} f, \widehat{\Gamma}_{0} f^{\prime}\right)-\left(\widehat{\Gamma}_{0} f, \widehat{\Gamma}_{1} f^{\prime}\right)
$$

for $f, f^{\prime} \in \mathfrak{H}_{+}\left(A^{*}\right) \otimes \mathcal{H}_{T}$ which immediately yields the abstract Green's identity for $A^{*} \otimes I_{T}$. Hence Π is a boundary triplet $A^{*} \otimes I_{T}$. Since $T_{A} \otimes T$ is a bounded self-adjoint operator one proves that Π is a boundary for S^{*}. Indeed, since $\operatorname{dom}\left(A^{*} \otimes I_{T}\right)=\operatorname{dom}\left(S^{*}\right)$ one immediately verifies the abstract Green's identity and $\Gamma \operatorname{dom}\left(A^{*} \otimes I_{T}\right)=\Gamma \operatorname{dom}\left(S^{*}\right)$ shows the surjectivity.

Let us also mention that $S_{0}:=S^{*} \upharpoonright \operatorname{ker}\left(\Gamma_{0}^{S}\right)$ admits the representation

$$
\begin{equation*}
S_{0}=A_{0} \otimes I_{\mathcal{H}_{T}}+I_{\mathcal{H}_{A}} \otimes T \tag{3.2}
\end{equation*}
$$

Let $E_{T}(\lambda), \lambda \in \mathbb{R}$, be the spectral measure of the self-adjoint operator T. Obviously,

$$
\widehat{E}_{T}(\lambda):=I_{A} \otimes E_{T}(\lambda), \quad \lambda \in \mathbb{R}
$$

defines a spectral measure on $\mathcal{H}_{A} \otimes \mathcal{H}_{T}$.
Proposition 3.2. Let Π_{A} be a boundary triplet for A^{*} with γ-field $\gamma_{A}(z)$. If Π_{S} is the boundary triplet of Proposition 3.1 of S^{*}, then the γ-field $\gamma_{S}(\cdot)$ of Π_{S} admits the representation

$$
\begin{equation*}
\gamma_{S}(z)=\int_{a}^{b} d \widehat{E}_{T}(\lambda) \gamma_{A}(z-\lambda) \otimes I_{\mathcal{H}_{T}}=\int_{a}^{b} \gamma_{A}(z-\lambda) \otimes I_{\mathcal{H}_{T}} d \widehat{E}_{T}(\lambda) \tag{3.3}
\end{equation*}
$$

$z \in \mathbb{C}_{ \pm}$where $\sigma(T) \subset[a, b)$.

Proof. We set $G(\lambda):=\gamma_{A}(z-\lambda) \otimes I_{T}, \lambda \in[a, b)$. From (2.7) we get

$$
G^{\prime}(\lambda)=\left(A_{0}-\zeta\right)\left(A_{0}-z+\lambda\right)^{-2} \gamma_{A}(\zeta) \otimes I_{T}, \quad \lambda \in \mathbb{R}
$$

Since $\int_{a}^{b}\left\|G^{\prime}(\lambda)\right\| d \lambda<\infty$ the operator spectral integral

$$
\begin{equation*}
D(z):=\int_{\mathbb{R}} \gamma_{A}(z-\lambda) \otimes I_{\mathcal{H}_{T}} d \widehat{E}_{T}(\lambda) \tag{3.4}
\end{equation*}
$$

exists by Proposition 2.7. We will show that $\operatorname{ran}(D(z)) \subseteq \mathfrak{H}_{+}\left(S^{*}-z\right)$. Let \mathfrak{Z} be a partition of $[a, b)$ and let us consider the Riemann sum

$$
\begin{equation*}
D_{\mathfrak{Z}}(z):=\sum_{k=1}^{n} \gamma_{A}\left(z-\lambda_{k}\right) \otimes I_{T} \widehat{E}_{T}\left(\Delta_{k}\right), \quad \lambda_{k} \in \Delta_{k} \tag{3.5}
\end{equation*}
$$

For every $z \in \mathbb{C}_{ \pm}$one has $\lim _{|\mathfrak{z}| \rightarrow 0}\left\|D_{\mathfrak{Z}}(z)-D(z)\right\|=0$. Obviously, for each \mathfrak{Z} we have $D_{3} f \in \mathfrak{H}_{+}\left(S^{*}\right), f \in \mathfrak{H}$. Let us estimate the operator norm of $\left(\gamma_{A}\left(z-\lambda_{k}\right) \otimes I_{T}\right) \widehat{E}_{T}\left(\Delta_{k}\right)$ with respect to the Hilbert space $\mathfrak{H}_{+}\left(S^{*}-z\right)$. Obviously we have

$$
\begin{aligned}
& \left(S^{*}-z\right)\left(\gamma_{A}\left(z-\lambda_{k}\right) \otimes I_{T}\right) \widehat{E}_{T}\left(\Delta_{k}\right) \\
& \quad=\left(A^{*}-z\right) \gamma_{A}\left(z-\lambda_{k}\right) \otimes E_{T}\left(\Delta_{k}\right)+\gamma_{A}\left(z-\lambda_{k}\right) \otimes T E_{T}\left(\Delta_{k}\right)
\end{aligned}
$$

which yields

$$
\left(S^{*}-z\right)\left(\gamma_{A}\left(z-\lambda_{k}\right) \otimes I_{T}\right) \widehat{E}_{T}\left(\Delta_{k}\right)=\gamma_{A}\left(z-\lambda_{k}\right) \otimes\left(T E_{T}\left(\Delta_{k}\right)-\lambda_{k} E_{T}\left(\Delta_{k}\right)\right)
$$

Hence we find

$$
\left\|\left(S^{*}-z\right)\left(\gamma_{A}\left(z-\lambda_{k}\right) \otimes I_{T}\right) \widehat{E}_{T}\left(\Delta_{k}\right)\right\| \leqslant\left\|\gamma_{A}\left(z-\lambda_{k}\right)\right\|\left\|T E_{T}\left(\Delta_{k}\right)-\lambda_{k} E_{T}\left(\Delta_{k}\right)\right\|
$$

Since $\left\|T E_{T}\left(\Delta_{k}\right)-\lambda_{k} E_{T}\left(\Delta_{k}\right)\right\| \leqslant\left|\Delta_{k}\right|$, where $|\cdot|$ is the Lebesgue measure of the set Δ_{k}, we find

$$
\left\|\left(S^{*}-z\right)\left(\gamma_{A}\left(z-\lambda_{k}\right) \otimes I_{T}\right) \widehat{E}_{T}\left(\Delta_{k}\right)\right\| \leqslant\left\|\gamma_{A}\left(z-\lambda_{k}\right)\right\|\left|\Delta_{k}\right| .
$$

Using that $C_{\gamma_{A}}(z):=\sup _{\lambda \in[a, b)}\left\|\gamma_{A}(z-\lambda)\right\|<\infty$ we immediately get the estimate

$$
\begin{equation*}
\left\|\left(S^{*}-z\right) D_{\mathfrak{Z}}(z)\right\| \leqslant C_{\gamma_{A}}(z)(b-a), \quad z \in \mathbb{C}_{ \pm} \tag{3.6}
\end{equation*}
$$

In particular we get $\left\|\left(S^{*}-z\right) D(z)\right\| \leqslant C_{\gamma_{A}}(z)(b-a), z \in \mathbb{C}_{ \pm}$. Let us show that the integral $D(z)$ also exists in the strong sense in $\mathfrak{H}_{+}\left(S^{*}-z\right)$.

$$
\begin{aligned}
& \left(S^{*}-z\right) D_{\mathfrak{3}}(z) g \otimes h=\left(\left(A^{*}-z\right) \otimes I_{T}\right) D_{\mathfrak{3}}(z) g \otimes h+\left(I_{A} \otimes T\right) D_{\mathfrak{3}}(z) g \otimes h \\
& =\left(\left(A^{*}-z\right) \otimes I_{T}\right) \sum_{k=1}^{n} \gamma_{A}\left(z-\lambda_{k}\right) g \otimes E_{T}\left(\Delta_{k}\right) h+\left(I_{A} \otimes T\right) \sum_{k=1}^{n} \gamma_{A}\left(z-\lambda_{k}\right) g \otimes E_{T}\left(\Delta_{k}\right) h \\
& =\sum_{k=1}^{n}-\lambda_{k} \gamma_{A}\left(z-\lambda_{k}\right) g \otimes E_{T}\left(\Delta_{k}\right) h+\sum_{k=1}^{n} \gamma_{A}\left(z-\lambda_{k}\right) g \otimes T E_{T}\left(\Delta_{k}\right) h \\
& =\sum_{k=1}^{n} \gamma_{A}\left(z-\lambda_{k}\right) g \otimes\left(T E_{T}\left(\Delta_{k}\right)-\lambda_{k} E_{T}\left(\Delta_{k}\right)\right) h \\
& =\left(\sum_{k=1}^{n} \gamma_{A}\left(z-\lambda_{k}\right) g \otimes\left(T E_{T}\left(\Delta_{k}\right)-\lambda_{k} E_{T}\left(\Delta_{k}\right)\right) h\right) .
\end{aligned}
$$

Hence

$$
\left\|\left(S^{*}-z\right) D_{\mathfrak{Z}}(z) g \otimes h\right\|=\sum_{k=1}^{n}\left\|\gamma_{A}\left(z-\lambda_{k}\right) g \otimes\left(T E_{T}\left(\Delta_{k}\right)-\lambda_{k} E_{T}\left(\Delta_{k}\right)\right) h\right\|
$$

we have

$$
\begin{equation*}
\left\|\left(S^{*}-z\right) D_{\mathcal{Z}}(z) g \otimes h\right\| \leqslant \sum_{k=1}^{n}\left\|\gamma_{A}\left(z-\lambda_{k}\right) g\right\|\left\|\left(T E_{T}\left(\Delta_{k}\right)-\lambda_{k} E_{T}\left(\Delta_{k}\right)\right) h\right\| \tag{3.7}
\end{equation*}
$$

Finally we obtain

$$
\begin{equation*}
\left\|\left(S^{*}-z\right) D_{\mathfrak{Z}}(z) g \otimes h\right\| \leqslant\|h\| \sum_{k=1}^{n}\left\|\gamma_{A}\left(z-\lambda_{k}\right) g\right\|\left|\Delta_{k}\right| . \tag{3.8}
\end{equation*}
$$

Let \mathfrak{Z}^{\prime} be a refinement of \mathfrak{Z}, that $\mathfrak{Z}^{\prime}=\left\{\Delta_{k^{\prime}}^{\prime}\right\}_{k^{\prime}=1}^{n^{\prime}}$ where for each k^{\prime} there is always a k such that $\Delta_{k^{\prime}}^{\prime} \subseteq \Delta_{k}$. This yields the estimate

$$
\begin{equation*}
\left\|\left(S^{*}-z\right)\left(D_{\mathfrak{Z}}(z)-D_{\mathfrak{Z}^{\prime}}(z)\right) g \otimes h\right\| \leqslant\|h\| \sum_{k^{\prime}=1}^{n^{\prime}}\left\|\left(\gamma_{A}\left(z-\lambda_{k^{\prime}}^{\prime}\right)-\gamma_{A}\left(z-\lambda_{k}\right)\right) g\right\|\left|\Delta_{k^{\prime}}^{\prime}\right| . \tag{3.9}
\end{equation*}
$$

where $\lambda_{k^{\prime}}^{\prime} \in \Delta_{k^{\prime}} \subseteq \Delta_{k} \ni \lambda_{k}$. Hence $\left|\lambda_{k^{\prime}}^{\prime}-\lambda_{k}\right| \leqslant\left|\Delta_{k}\right| \leqslant|\mathcal{Z}|$. Using (2.7) we find

$$
\left\|\gamma_{A}\left(z-\lambda_{k^{\prime}}^{\prime}\right) g-\gamma_{A}\left(z-\lambda_{k}\right)\right\| \leqslant \frac{1}{\operatorname{Im}(\mathrm{z})} \sup _{\lambda \in[a, b)}\left\|\frac{S_{0}-\zeta}{S_{0}-z+\lambda}\right\|\left\|\gamma_{A}(\zeta)\right\||\mathfrak{Z}|
$$

which yields the estimate

$$
\begin{equation*}
\left\|\left(S^{*}-z\right)\left(D_{\mathfrak{Z}}(z)-D_{\mathfrak{Z}^{\prime}}(z)\right) g \otimes h\right\| \leqslant(b-a)\|h\|\|g\| \frac{1}{\operatorname{Im}(\mathrm{z})} \sup _{\lambda \in[a, b)}\left\|\frac{S_{0}-\zeta}{S_{0}-z+\lambda}\right\|\left\|\gamma_{A}(\zeta)\right\||\mathfrak{Z}| \tag{3.10}
\end{equation*}
$$

Hence the Riemann sums $D_{\mathfrak{Z}}(z)$ converge strongly in $\mathfrak{H}_{+}\left(S^{*}-z\right)$ as $|\mathfrak{Z}| \rightarrow 0$. Since the Hilbert spaces $\mathfrak{H}_{+}\left(S^{*}\right)$ and $\mathfrak{H}_{+}\left(S^{*}-z\right), z \in \mathbb{C}_{ \pm}$, are isomorph the Riemann sums converge strongly in $\mathfrak{H}_{+}\left(S^{*}\right)$.

It remains to show that $\left(S^{*}-z\right) D(z)=0$. Recall that

$$
\begin{aligned}
\left(S^{*}-z\right) D_{\mathfrak{3}}(z) g \otimes h & =\sum_{k=1}^{n}\left(\left(A^{*}-z\right) \gamma_{A}\left(z-\lambda_{k}\right) g \otimes E_{T}\left(\Delta_{k}\right) h+\gamma_{A}\left(z-\lambda_{k}\right) g \otimes T E_{T}\left(\Delta_{k}\right) h\right) \\
& =\sum_{k=1}^{n} \gamma_{A}\left(z-\lambda_{k}\right) g \otimes\left(T E_{T}\left(\Delta_{k}\right)-\lambda_{k} E_{T}\left(\Delta_{k}\right)\right) h .
\end{aligned}
$$

For instance,

$$
\begin{gathered}
\left\|\left(S^{*}-z\right) D_{\mathfrak{Z}}(z) g \otimes h\right\|=\sum_{k=1}^{n}\left\|\gamma_{A}\left(z-\lambda_{k}\right) g \otimes\left(T E_{T}\left(\Delta_{k}\right)-\lambda_{k} E_{T}\left(\Delta_{k}\right)\right) h\right\| \leqslant \\
\sum_{k=1}^{n}\left\|\gamma_{A}\left(z-\lambda_{k}\right) g\right\|\left\|\left(T-\lambda_{k}\right) E_{T}\left(\Delta_{k}\right) h\right\|
\end{gathered}
$$

To the degree that $\left\|\gamma_{A}\left(z-\lambda_{k}\right)\right\|$ is bounded, we have $\left\|\left(S^{*}-z\right) D_{\mathfrak{Z}}(z) g \otimes h\right\| \rightarrow 0$ as $|\mathfrak{Z}| \rightarrow 0$ for any $g \otimes h$. For the element of the form $f=\sum_{k=1}^{n} g_{k} \otimes h_{k}$ obviously the same result holds. Then, we use that the set of $f=\sum_{k=1}^{n} g_{k} \otimes h_{k}$ is dense in $\mathfrak{H}_{+}\left(S^{*}\right)$
Proposition 3.3. Let Π_{A} be a boundary triplet for A^{*} with Weyl function $M_{A}(\cdot)$. If Π_{S} is the boundary triplet of Proposition 3.1 of S^{*}, then the Weyl function $M_{S}(\cdot)$ of Π_{S} admits the representation

$$
\begin{align*}
M_{S}(z) & =\int_{a}^{b} d \widehat{E}_{T}(\lambda) M_{A}(z-\lambda) \otimes I_{\mathcal{H}_{T}} \\
& =\int_{a}^{b} M_{A}(z-\lambda) \otimes I_{\mathcal{H}_{T}} d \widehat{E}_{T}(\lambda) \tag{3.11}
\end{align*}
$$

$z \in \mathbb{C}_{ \pm}$where $\sigma(T) \subset[a, b)$. In particular, if $n_{ \pm}(A)=1$, then $M_{A}(\cdot)$ is scalar, $\mathcal{H}_{S}=\mathcal{H}_{T}$ and

$$
\begin{equation*}
M_{S}(z)=M_{A}(z-T), \quad z \in \mathbb{C}_{ \pm} \tag{3.12}
\end{equation*}
$$

Proof. We set $G(\lambda):=M_{A}(z-\lambda) \otimes I_{T}, \lambda \in[a, b)$. From (2.7), (2.8) we get $G^{\prime}(\lambda)=-\gamma_{A}(\zeta)^{*} \gamma_{A}(z-\lambda)+(z-\lambda-\bar{\zeta}) \gamma_{A}(\zeta)^{*}\left(A_{0}-\zeta\right)\left(A_{0}-z+\lambda\right)^{-2} \gamma_{A}(\zeta) \otimes I_{T}, \quad \lambda \in \mathbb{R}$.

Since $\int_{a}^{b}\left\|G^{\prime}(\lambda)\right\| d \lambda<\infty$ the operator spectral integral

$$
\begin{equation*}
D(z):=\int_{\mathbb{R}} \gamma_{A}(z-\lambda) \otimes I_{\mathcal{H}_{T}} d \widehat{E}_{T}(\lambda) \tag{3.14}
\end{equation*}
$$

exists by Proposition 2.7.
Analogously to Proposition 3.2, we can prove that the integral exists in the strong sense in $\mathfrak{H}_{+}\left(S^{*}-z\right)$ and in $\mathfrak{H}_{+}\left(S^{*}\right)$, as the spaces are isomorph.

Let us note $D_{\mathfrak{Z}}(z)=\sum_{k=1}^{n} \gamma_{A}\left(z-\lambda_{k}\right) \otimes I_{T} \widehat{E}_{T}\left(\Delta_{k}\right)$. Then,

$$
\begin{gathered}
\Gamma_{1}^{S} D_{\mathfrak{Z}}(z)=\Gamma_{1}^{S} \sum_{k=1}^{n} \gamma_{A}\left(z-\lambda_{k}\right) \otimes I_{T} \widehat{E}_{T}\left(\Delta_{k}\right)= \\
\sum_{k=1}^{n} \Gamma_{1}^{A} \gamma_{A}\left(z-\lambda_{k}\right) \otimes E_{T}\left(\Delta_{k}\right)=\sum_{k=1}^{n} M_{A}\left(z-\lambda_{k}\right) \otimes E_{T}\left(\Delta_{k}\right)=L_{\mathfrak{Z}}(z)
\end{gathered}
$$

As far as $L_{\mathfrak{Z}}(z)$ and $D_{\mathfrak{Z}}(z)$ converge in a strong sense in $\mathfrak{H}_{+}\left(S^{*}\right)$ and Γ_{0}^{S} is bounded in $\mathfrak{H}_{+}\left(S^{*}\right)$, we get the estimate.

Note: In case T has pure point spectrum, the formula (3.11) becomes simpler

$$
\begin{equation*}
M_{S}(z)=\sum_{\lambda} M_{A}(z-\lambda) \otimes \xi_{\lambda}, \tag{3.15}
\end{equation*}
$$

where ξ_{λ} is an eigenvector of T, corresponding to λ

4. Example 1

In this section we will describe a simple example. Let's consider the symmetric operator $A=-\frac{d^{2}}{d x^{2}}$ with the domain

$$
\operatorname{dom}(A)=\left\{f \in W_{2}^{2}(0 ;+\infty): f(0)=f^{\prime}(0)=0\right\}
$$

in the Hilbert space $L^{2}(\mathbb{R})$. Notice that $n_{ \pm}(A)=1$. Let's consider the following bounded self-adjoint operator

$$
T=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

acting on $\mathcal{H}_{T}=\mathbb{C}^{2}$. We introduce the operator $S=A \otimes I_{T}+I_{A} \otimes T$ defined in $\mathcal{H}_{A} \otimes H_{T}$. Our goal is to get the γ-field and the Weyl function corresponding to H in terms of γ-field and the Weyl function, corresponding to A, using the results described above.

Obviously, operator A^{*} has the deficiency indices $(1 ; 1)$, so it's deficiency subspace is one-dimensional. Let us calculate the boundary form of the operator A^{*}. Integrating by parts, we get:

$$
\left(A^{*} f, g\right)-\left(f, A^{*} g\right)=-\int_{0}^{+\infty} f^{\prime \prime} \bar{g} d x=-\left.f^{\prime} \bar{g}\right|_{0} ^{+\infty}+\left.f \bar{g}^{\prime}\right|_{0} ^{+\infty}-\int_{0}^{+\infty} f \bar{g}^{\prime \prime} d x
$$

So,

$$
\left(A^{*} f, g\right)-\left(f, A^{*} g\right)=-\left.f^{\prime} \bar{g}\right|_{0} ^{+\infty}+\left.f \bar{g}^{\prime}\right|_{0} ^{+\infty}
$$

Recall that an element f from the domain of the adjoint operator also satisfies the condition $f(+\infty), f^{\prime}(+\infty)=0$. Hence, we have:

$$
\left(A^{*} f, g\right)-\left(f, A^{*} g\right)=-f(0) \bar{g}^{\prime}(0)+f^{\prime}(0) \bar{g}(0) .
$$

Now we can obtain the boundary operators, corresponding to A^{*} :

$$
\Gamma_{0}^{A} f=f(0), \quad \Gamma_{1}^{A} f=f^{\prime}(0)
$$

Recalling the result of Proposition 3.1, we introduce the boundary operators for H^{*} :

$$
\Gamma_{0}^{S} f=f(0) \otimes I, \Gamma_{1}^{S} f=f^{\prime}(0) \otimes I .
$$

Let us calculate the γ-field, corresponding to A^{*}. The deficiency element of the operator A^{*}, corresponding to the point z, has the form: $e^{i \sqrt{z} x}$ (we choose the branch of the square root in such a way that $\Im \sqrt{z}>0$). Applying Γ_{0}^{A}, we have:

$$
\Gamma_{0}^{A} e^{i \sqrt{z} x}=1
$$

so that

$$
\gamma_{A}(z)=1 .
$$

Let us describe the γ-field, corresponding to S^{*}. As far as T is self-adjoint, the spectral decomposition holds:

$$
T=P_{1}-P_{2},
$$

where P_{1} and P_{2} are the projectors onto the invariant subspaces of the operator T, corresponding to the eigenvalues 1 and -1 , respectively. The projectors have the following forms:

$$
P_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad P_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Using the result of Proposition (3.2), we have:

$$
\gamma_{S}(z)=\gamma_{A}(z-1) \otimes P_{1}+\gamma_{A}(z+1) \otimes P_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

The corresponding Weyl function is obviously as follows:

$$
M_{A}(z)=\Gamma_{1}^{A} \gamma_{A}(z)=i \sqrt{z}
$$

Using the result of Proposition (3.3), we have:

$$
M_{S}(z)=M_{A}(z-1) \otimes P_{1}+M_{A}(z+1) \otimes P_{2}=\left(\begin{array}{cc}
i \sqrt{z-1} & 0 \\
0 & i \sqrt{z+1}
\end{array}\right) .
$$

5. Example 2

In this example we consider an operator $S=A \otimes I_{T}+I_{A} \otimes B$ defined in $\mathcal{H}_{A} \otimes \mathcal{H}_{T}$, $\mathcal{H}_{A}=L_{2}(a, b), \mathcal{H}_{T}=\mathbb{C}^{2}$. Let us take the symmetric operator A as negative Laplacian $A=-\frac{d^{2}}{d x^{2}}$ with the domain $\operatorname{dom}(A)=\left\{\phi \in W^{2,2}[a ; b] \mid \phi(a)=\phi(b)=\phi^{\prime}(a)=\phi^{\prime}(b)=0\right\}$ and a self-adjoint operator T be the same as in previous example. Let us obtain the γ-field for S.

The boundary operators for A^{*} are:

$$
\widehat{\Gamma}_{0} f=\binom{f^{\prime}(b)}{f(a)}, \quad \widehat{\Gamma}_{1} f=\binom{f(b)}{f^{\prime}(a)}
$$

Then, the boundary operators for the operator S^{*} are:

$$
\begin{equation*}
\Gamma_{0} f=\binom{f^{\prime}(b)}{f(a)} \otimes I, \quad \Gamma_{1} f=\binom{f(b)}{f^{\prime}(a)} \otimes I \tag{5.1}
\end{equation*}
$$

Due to the fact that the deficiency elements of A corresponding to the point z are

$$
\begin{equation*}
e^{i \sqrt{z} x}, e^{-i \sqrt{z} x} \tag{5.2}
\end{equation*}
$$

we obtain the γ-field $\gamma_{A}(z)$ for A^{*} in the form

$$
\gamma_{A}(z)=\frac{-i}{2 \sqrt{z} \cos (\sqrt{z}(b-a))}\left(\begin{array}{cc}
e^{-i \sqrt{z} a} & i \sqrt{z} e^{-i \sqrt{z} b} \tag{5.3}\\
-e^{i \sqrt{z} a} & i \sqrt{z} e^{i \sqrt{z} b}
\end{array}\right)
$$

So, using the result of Proposition 3.3., we have:

$$
\gamma_{S}(z)=\gamma_{A}(z-1) \otimes\left(\begin{array}{ll}
1 & 0 \tag{5.4}\\
0 & 0
\end{array}\right)+\gamma_{A}(z+1) \otimes\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Direct calculation of the Weyl function for A^{*} gives us

$$
M_{A}(z)=\frac{1}{\sqrt{z} \cos (\sqrt{z}(b-a))} \cdot\left(\begin{array}{cc}
\sin (\sqrt{z}(b-a)) & \sqrt{z} \tag{5.5}\\
\sqrt{z} & \sqrt{z} \sin \sqrt{z}(b-a)
\end{array}\right)
$$

Then,

$$
M_{S}(z)=M_{A}(z-1) \otimes\left(\begin{array}{ll}
1 & 0 \tag{5.6}\\
0 & 0
\end{array}\right)+M_{A}(z+1) \otimes\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

6. Concluding remarks

In this paper we considered the γ-field and the Weyl function corresponding to the boundary triplet Π_{S} for the operator $S=A \otimes I_{T}+I_{A} \otimes T$ where the operator A is symmetric and the operator T is bounded and self-adjoint. We obtained the formulas in terms of the γ-field and the Weyl function corresponding to the boundary triplet Π_{A}. The result can be immediately applied to the scattering theory due to the relation between the Weyl function and the scattering matrix (see, e.g., [13]). There is an interesting question about the case when the operator T is unbounded (it is well known that this case has many specific features [14]). We will present the corresponding result in the next paper.

Acknowledgments

Supported by Federal Targeted Program "Scientific and Educational Human Resources for Innovation-Driven Russia" (contract 16.740.11.0030), grant 11-08-00267 of Russian Foundation for Basic Researches and grants of the President of Russia (state contract 14.124.13.2045-MK and grant MK-1493.2013.1), by Program of Development of Leading Russian Universities. A part of this work was made during visits of IYP and AAB to Berlin. We thank WIAS Berlin for kind hospitality.

References

[1] M.S.Birman, M.Z.Solomyak. Spectral Theory of Selfadjoint Operators in Hilbert Space. Kluwer, Dordrecht (1987).
[2] Konrad Schmüdgen. Unbounded self-adjoint operators on Hilbert space, volume 265 of Graduate Texts in Mathematics. Springer, Dordrecht, 2012.
[3] B.S.Pavlov. Operator extensions theory and explicitly solvable models. Uspekhi Mat. Nauk. 42 (6). P. 99-131 (1987); English transl in: Russ. Math. Surv. 42, P. 127-168 (1987).
[4] N.Bagraev, G.Martin, B.S.Pavlov, A.Yafyasov. Landau-Zener effect for a quasi-2D periodic sandwich. Nanosystems: Phys. Chem. Math. 2 (4), P. 32-50 (2011).
[5] V.Ryzhov. A general boundary value problem and its Weyl function. Opuscula Math. 27 (2), P. 305-331.
[6] M. Malamud, H. Neidhardt. Sturm-liouville boundary value problems with operator potentials and unitary equivalence. J. Differ. Equations, 252 (11), P. 5875-5922 (2012).
[7] V. I. Gorbachuk, M. L. Gorbachuk. Boundary value problems for operator differential equations, volume 48 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht (1991).
[8] V. A. Derkach and M. M. Malamud. Generalized resolvents and the boundary value problems for Hermitian operators with gaps. J. Funct. Anal. 95 (1), P. 1-95 (1991).
[9] M. M. Malamud. Some classes of extensions of a Hermitian operator with lacunae. Ukraïn. Mat. Zh. 44 (2), P. 215-233 (1992).
[10] H. Baumgärtel, M. Wollenberg. Mathematical scattering theory, volume 59 of Mathematical Textbooks and Monographs, Part II: Mathematical Monographs. Akademie-Verlag, Berlin (1983).
[11] V. A. Derkach, M. M. Malamud. On the Weyl function and Hermite operators with lacunae. Dokl. Akad. Nauk SSSR, 293 (5), P. 1041-1046 (1987).
[12] V. A. Derkach, M. M. Malamud. The extension theory of Hermitian operators and the moment problem. J. Math. Sci. 73 (2), P. 141-242 (1995).
[13] J. Berndt, M. M. Malamud, H. Ntidhardt. Scattering matrices and Weyl functions. Proc. London Math. Soc. 97 (3), P. 568-598 (2008).
[14] A. N. Kochubei. On extensions of symmetric operators and symmetric binary relations. Mat. Zametki. 17, P. 41-48 (1975).

