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The generation of higher harmonics of carbon nanotubes interacting with femtosecond laser pulses was investigated.

The analysis was conducted on the basis of quantum kinetic equation for the π-electrons involved in the inside of

the band and inter-band transitions. The dynamics of the electromagnetic pulse, depending on the parameters of

the problem, were studied.
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1. Introduction

This paper investigates the dynamics of femtosecond pulses propagating in carbon nan-
otubes (CNTs). Significant progress in the synthesis of new mesoscopic structures and their
great promise for use in nanoelectronics and optics has led to increased research in this area.
The unusual manifestation of nonlinear optical properties of these materials when interacting
with strong electromagnetic fields was expected. Theoretical and experimental studies predict
that the strong nonlinear response is inherent in metal clusters [1–3], fullerenes [4–6], car-
bon nanotubes and composites based on them [7, 8]. In particular, the generation of higher
harmonics, previously observed in noble gases [9,10], has been predicted for mesoscopic struc-
tures. Moreover, a distinctive feature of the CNT is a strong selectivity of their high harmonic
spectrum. A theoretical study of the nonlinear response of isolated nanotubes by intense laser
radiation was studied in this work. A full quantum-theoretical approach to the one-electron
approximation in the tight-binding model was used.

2. Statement of a problem

2.1. Kinetic equations

We consider an infinitely long single-walled carbon nanotube oriented along the z axis
and irradiated normal to the axis of the ultra-short pulse with a natural frequency w0, polarized
to this axis: E(r) = ezEz (x, y) (ez is the unit vector along the z axis). CNTs are considered
as a single-layer graphene sheet which is scrolled into a cylinder. We take into account only π-
electrons, suggesting that their motion can be described in the tightly-bound approximation [11,
12]. CNT radius is much smaller than the wavelength of the field, which allows us to neglect
the spatial inhomogenity of the field in the tubes.

Following [13] in the one-electron approximation, the Schrdinger equation becomes:

ih̄
∂ψ

∂t
= − h̄2

2m0

∆ψ + [W (r)− e(E · r)]ψ. (1)

Neglecting the harmonic solution of (1) can be written as:
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ψ =
∑
l,p

Cl(p)ψl(p, r), (2)

where l is the set of quantum numbers characterizing the state of π-electrons with a given quasi-
momentum. ψl(p, r) = h̄−0.5 exp (ipr/h)ul,p (r) are the Bloch functions with an amplitude
ul,p (r), which is periodical to an arbitrary vector lattice a: ul,p (r + a) = ul,p (r). Here
a = n1a1 + n2a2, n1, n2 are the integers, a1, a2 are the elementary vectors of the graphene
hexagonal lattice.

The dispersion law for zig-zag CNTs can be written in the following form [14]:

εs(p) = ±γ0

√
1 + 4 cos(ap) cos(πs/m) + 4 cos2(πs/m), (3)

where s = 1, 2, . . .m, (m, 0) is type of CNT, γ0 is the hopping integral (2.7 eV), a = 3b/2h̄,
b = 0.142 nm is the distance between the adjacent carbon atoms.

From equations (1) and (2) with the spectrum of nanotubes:

Ĥ0 =

(
0 H12 (p)

H∗21 (p) 0

)
, (4)

which can be rewritten in the tightly-bound approximation as:

H12 (p) = −γ0

3∑
j=1

exp

(
ipτj
h̄

)
, (5)

where τj is the vector connecting the atom to its nearest neighbors. For density matrix elements
taking into account F = <(ρcv); Φ = =(ρcv); ρ = ρcc, ρcv is the density matrix, ω is the
transition frequency, is the electron charge, we can obtain the following expression:

∂ρ

∂t
+ eEz

∂ρ

∂pz
= 2

e

h̄
EzRabΦ,

∂F

∂t
+ eEz

∂F

∂pz
= ωΦ,

∂Φ

∂t
+ eEz

∂Φ

∂pz
=
e

h̄
EzRab (2ρ− 1)− ωF ,

Rll′,p =
ih̄

2

∫
Ω

(
u∗l,p

∂ul′,p
∂pz

−
∂u∗l,p
∂pz

ul,p

)
d2r.

(6)

The integration domain is the volume Ω of two-dimensional unit cell.
The initial conditions are following:

ρt=0 = F0 (εc (pz, s)) ; F |t=0 = Φ|t=0 = 0. (7)

This means that at room temperature, the electrons are distributed according to the
equilibrium Fermi distribution with zero chemical potential (µ = 0).

The boundary conditions reflect the periodicity of solutions in the space of quasi-
momentum (similar for F and Φ):

ρ

(
t,

√
3π

ωcna

)
= ρ

(
t,−
√

3π

ωcna

)
. (8)



Propagation of femtosecond pulses in carbon nanotubes 93

3. Electric current in nanotube

A quantum-mechanical operator of current density can be written in the following
form [13]:

ĵz (r) = − ieh̄

2m0

(
∂

∂z′
δ (r − r′) + δ (r − r′) ∂

∂z′

)
. (9)

Total current density was decomposed into two components: ĵz = j
(1)
z + j

(2)
z , where

intraband transitions is responsible for:

j(1)
z =

4e

(2πh̄)2

∫
1ZB

∂εc (p)

∂pz
ρ (t,p) d2p, (10)

and inter-band:

j(2)
z =

8e

(2πh̄)2 h̄

∫
1ZB

εc (p)Rcv (pz, s) Φ (t,p) d2p. (11)

We take into account that ρvv + ρcc = 1 and εv = −εc.
Choosing the gauge field, E = −1

c

∂A

∂t
, (where is the light velocity in a vacuum). We

need to change the momentum to a generalized momentum: p→ p− eA/c, so:
Φ

F

ρ

 = x̂

(
p− eA

c

)
Φ

F

ρ

 .

Then, equation (5) takes the following form with the replacement ρ− 0.5→ ρ:
ρt = −2

c
AtRΦ,

Ft = ωΦ,

Φt = −2

c
AtRρ− ωF .

(12)

The matrix of the system coefficients can be written as:

x̂ =

 0 0 A

0 0 ω

A −ω 0

 .
Where the notation: A = −2c−1AtR and according to the approximation described in [15–19]:

ex̂ = Î+x̂

(
1 +

(A2 − ω2)

3!
+

(A2 − ω2)
2

5!
+ . . .

)
+x̂2

(
1

2!
+

(A2 − ω2)

4!
+

(A2 − ω2)
2

6!
+ . . .

)
,

j(1)
z =

4e

(2πh̄)2

∫
1ZB

∂εc (p− eA/c)
∂pz

A (t)2
∞∑
k=0

(
A (t)2 − ω (p)2)k

(2k + 2)!

1

(1 + exp (−εc (p) /kBT ))
d2p,

j(2)
z =

8e

(2πh̄)2 h̄

∫
1ZB

−2A (t) εc (p− eA/c)Rcv (p)

(1 + exp (−εc (p) /kBT ))

∞∑
k=0

(
A (t)2 − ω (p)2)k

(2k + 1)!
d2p,
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where kB is the Boltzmann constant, T is the temperature.
The Maxwell equations for the dielectric non-magnetic medium can be written as fol-

lowing [16]:

∂2A

∂x2
+

2N0

c
a
∂4A

∂t4
−2N0

c
bA+

4π

c
(j1 + j2)− 1

c2
(1 + 4πα)

∂2A

∂t2
−12πη

c4

∂2A

∂t2

(
∂A

∂t

)2

= 0, (13)

where A is the vector-potential, PL = αE is the polarization, PNL = η |E|2 E is the nonlinear
part of polarization, t is the time. We consider a simple model, where the polarization vector
is parallel to the vector E is the electric field of light wave, N0, a, a1, . . . , b, b1, . . . are the
empirical constants of medium dispersion [17].

4. Numerical analysis and results

Equation (13) was solved numerically [20]. Boundary conditions took on a Gaussian
form with one field- (14a) and two field oscillations (14b):

(A)

(B)

FIG. 1. Time dependence of the electric field at various space points
a) x = 0.1 · 10−5 m; b) x = 0.2 · 10−5 m. (A) two field oscillations; (B) one
field oscillation
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A(0, t) = Q · e−(ut)2/γ,

dA(0, t)

dx
=

2Qut

γ
e−(ut)2/γ,

(14a)

A(0, t) = Q · e−(ut)2/γ sin(ut),

dA(0, t)

dx
=

2Qut

γ
e−(ut)2/γ sin(−ut) +Q · e−(ut)2/γ cos(ut),

(14b)

where Q is the pulse amplitude, u is the pulse velocity, γ2 = 1/(1− u2/A2).
The evolution of the electric field during its propagation in the sample is shown in

Fig. 1.
It can be seen from this dependence that when the propagation distance increases, pulses

drift away from each other. Moreover, in the case of two field oscillations, the amplitude of
the main peak is stable, and in the case of one oscillation there is a decrease in the main
pulse amplitude and an increase in the trailing pulse. This can be attributed to the dispersion
characteristics of the medium.

The dependence of the electric field on the initial pulse amplitude is shown in Fig. 2.
As expected, low-amplitude pulses propagate almost without distortion and exhibit only

the dispersion spread. However, pulses with high amplitudes exhibit a larger distortion caused
by both the interference of the edge pulse and the specific form of the medium’s nonlinearity.

Figure 3 demonstrates that the dispersion constants have a great influence on the electric
field (and the effect of the b constant is manifested much more strongly compared to the constant
a). In our opinion, this effect is due to this type of dispersion reducing the linear response of
the system to an external field.

Thus, based on the results of numerical calculations, one can draw the conclusion that
the pulse propagation is determined primarily by the dispersion characteristics of the medium,
as well as the process of establishing a balance between the dispersion and interference effects
of the wave front.

FIG. 2. Time dependence of the electric field at various initial amplitudes of the
pulse (x = 0.2 · 10−5 m): a) Q = 1 a.u.; b) Q = 2 a.u. (the case of two field
oscillations)
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FIG. 3. Time dependence of the electric field at various dispersion constants
(x = 0.1 · 10−5 m): a) b = 0.001 a.u; b) b = 0.005 a.u. (the case of two field
oscillations)
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