
NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2014, 5 (2), P. 249–257

PLASMON POLARITONS EXCITATION AT RAPIDLY
GENERATED PLASMA INTERFACE

A.V. Vozianova

ITMO University, Kronverkskiy 49, 197101, St. Petersburg, Russia

vozianova@gmail.com

PACS 51.50.+v, 42.25.Bs, 41.20.Jb

In this paper we studied the possibility of the appearance of surface plasmon polaritons at the plasma/dielectric
interface with rapidly generated plasma in the right half- space, when the field is generated by a plane source,
was studied. The source was located parallel to the interface, and at an angle to it. It was shown that the
frequency-converted wave outgoing from plasma boundary corresponds to the plasmon polariton in the case
when the initial field is generated by the plane source located at the angle α to the plasma boundary for the
following condition ε1 sin

2 (α)− ε− we
2

w2 > 0.
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1. Introduction

Recent advances in nano-fabrication enable one to carry numerous nano-photonic
experiments including subwavelength metal structures fabrication. In turn,this flurry of
activity has, reawakened interest in theoretical research of surface plasmon polaritons,
despite the fact that the fundamental properties of surface plasmon polaritons have been
known for nearly five decades [1, 2]. By definition, surface plasmons are the quanta of
surface-charge-density oscillations, but the same terminology is commonly used for col-
lective oscillations in the electron density at the surface of metal. The surface charge
oscillations are naturally coupled to electromagnetic waves, which explains their desig-
nation as polaritons [3]. Plasmon polaritons are used in near-field microscopy, optical
imaging systems with nanometer resolution, hybrid photonic-plasmonic devices and meta-
materials with negative refractive index, environment sensing, surface plasmon sensors
for the analysis of biological bonds, etc. Surface plasmon polaritons are electromagnetic
waves propagating at the interface between two different media. Surface plasmons have
been utilized almost exclusively at optical frequencies because it needs the lossless nega-
tive permittivity medium to excite them, which is typical for metal at these frequencies.
The negative permittivity of metals is provided by plasma which has a large electron
density. Conversely, plasma is a medium which can easily change its own parameters,
among which is its electron density, and the plasma can simply be generated in the initial
dielectric medium [2]. Therefore, it is of intense interest to investigate the interaction of
electromagnetic waves with the non-stationary plasma surface whose density varies over
time and its permittivity becomes negative. The initial time of the non-stationary begin-
ning becomes an important factor. The introduction of this initial time moment allows to
distinguish the “switching on” of field and the beginning of non-stationarity.

The radiation of the plane source in a homogeneous stationary medium is well
known, but in the case of an inhomogeneous layered medium, it is more complicated. If
the medium is non-stationary, the radiation of the plane source takes on a less trivial form.
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In papers [4,5], the novel mechanism of frequency upshifting of p-polarized electromagnetic
wave, which is obliquely incident one on a thin plasma layer with slowly growing electron
density, was presented. In this paper the transformation of external field radiation of the
plane source from rapidly generated plasma was considered.

2. The radiation of the plane source (initial field is parallel to the plasma
boundary)

We consider the medium with dielectric permittivity ε, where the electromagnetic
field is radiated by a plane source j = qδ(x−a)eiωt, where j is a current describing extrinsic
source, q is the vector directed along a source. The plane source is parallel to the plane
YOZ, see Fig. 1

Fig. 1. The plane source is parallel to the plasma boundary and it is located
at a distance a from the interface in plasma half-space, where q is the vector
directed along a source, k is the wave vector. The rapidly generated plasma
in the right half-space is designed the vertical dashed lines.

At zero moment of time the half-space x > 0 is ionized and the plasma appears
in this half-space. The plasma permittivity is given by the known expression ε(ωe, ω) =

ε1 − ωe
2

ω2 , where ε1 describes the dispersionless part of the new medium in the half-space
x > 0 after the zero moment, ωe is the plasma frequency [3].The initial field of source
radiation is a plane wave propagating perpendicularly to the plane of the source. By using
the Green’s function G [6] let’s find the initial field of the source, which is given by
j = qδ(x− a)eiωt:

E0 = G · ∂j
∂t

= −∂G
∂t

· j = − v

4π
D̂q

∫ ∞

−∞
dt′
∫ ∞

−∞
dr′

θ(t− t′ − |r−r′|
v

)

| r− r′ | δ(x′ − a)eiωt
′
=

= − v

2π
D̂qeiωt−i

ω
v
|x−a| ((e1,q) e1 − q) =

v

2π
qeiωt−i

ω
v
|x−a|, (1)
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where differential operator D̂ =
(
��− 1

v2
∂2

∂t2

)
, and vectors q = (0, q, 0) e1 = (1, 0, 0).

Let’s consider how the electromagnetic field changes after plasma formation. It is
convenient to find the solution to this problem using the integral equations method in time
domain [6,7]. It follows that the problem’s solution in the half-space x < 0 (external field)
can be represented by two terms:

E = E0 + N̂ ∗ E0. (2)

Here, E0 is the field of source and the second term is given by the operator N̂ ∗ E0 =∫∞
0

〈
x | N̂ | x′

〉
E0(x

′)dx′. The symbol (*) designates the convolution,

(a ∗ b)(x) =
∫ ∞

−∞
dt′
∫
∞
dr′a(x− x′)b(x′)

and x = (t, r) is a 4D spatial-time vector. Integration is performed over the whole 4D
space −∞ < t′ < ∞, −∞ < x′, y′, z′ < ∞. The term in the convolution is determined by
the extrinsic current. The transition to the impulse representation (Fourier-Laplace repre-
sentation)in a rectangular system of coordinates is performed by virtue of transformation
functions:

< x||p >= δije
pt+ikr, < p||x >= δije

−pt−ikr,

where p = (p,k), p is a complex variable of the Laplace transformation, k is a real variable
of the 3D Fourier transformation.

The kernel of external resolvent operator N̂ (reflection operator) in the coordinate
representation has the form:

〈
x | N̂ | x′

〉
= θ(−x)v1

2 − v2

v2v1

∫
dp⊥

1

2ϕ1

{v1vumP + p2ueI⊥}ep(t−t
′)+ϕ

v
x−ϕ1

v1
x′+ik⊥(r⊥−r′⊥)

θ(x′),

(3)
where the vector r⊥ = (y, z) is located in the plane x = 0, and v = c√

εμ
, v1 = c√

ε1μ1
are

wave-phase velocities.
In this formula, block matrices are defined as follows:

P =

( −k⊥2 −iϕ
v
k⊥

−iϕ
v
k⊥

∗ k̂⊥

)
, I⊥ =

⎛
⎝0 0 0
0 1 0
0 0 1

⎞
⎠ ,k⊥

∗ =
(
k2
k3

)
, k̂⊥ =

(
k2

2 k2k3
k3k2 k3

2

)
,

k⊥ =
(
k2 k3

)
and k⊥

2 = k2
2 + k3

2. The coefficients

um =
2v1ϕ

vϕ+ v1ϕ1

, ue =
2v1ϕ

vϕ1 + v1ϕ

are similar to the Fresnel’s formulas for parallel and perpendicular polarizations and

ϕ =

√
p2 + v2k⊥

2, ϕ1 =

√
p2 + v12k⊥

2, v1 =
cp√

ε1p2 + ωe2
.

Here p⊥ = (p,k⊥) - Fourier - Laplace transformation variables. Thus, substituting the
expression for the initial field of source (1) and the reflection operator (3) in equation (2),
we obtain:
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〈x | E〉 = 〈x | E0〉+
〈
x | N̂ | x′

〉
∗ 〈x′ | E0〉 = v

2π
qeiωt−i

ω
v
|x−a|+

+
v

2π
θ(−x)

∫ ∞

0

dt′
∫ ∞

−∞
dr′
∫
dp⊥

v1
2 − v2

v2v1

1

2ϕ1

{v1vumP + p2ueI⊥}q·

· ep(t−t′)+ϕ
v
x−ϕ1

v1
x′+ik⊥(r⊥−r′⊥)

θ(x′)eiωt
′−iω

v
|x′−a| (4)

First, we calculate integrals over the spatial and temporal coordinates, and then
over Fourier-Laplace variables. The integration over the variable x′ gives the following
expression:

∫ ∞

0

e−i
ω
v
|x′−a|−ψ1x′dx′ =

∫ a

0

e−i
ω
v
(a−x′)−ψ1x′dx′+

∫ ∞

a

e−i
ω
v
(x′−a)−ψ1x′dx′ =

e−ψ1a − e−ika

ik − ψ1

+
e−ψ1a

ik + ψ1

where ψ1 =
ϕ1

v1
= 1

c

√
ε1p2 + ωe2 + c2k⊥

2) for the condition Re(ψ1) > 0. Later, this condition
will be taken into account for the calculation of residuals in the integral over the variable
p (see the expression (4)).
After integration over the spatial and Fourier transform variables, the second term in (4)
takes the following form:∫ γ+i∞

γ−i∞

ep(t+
x
v
)

p− iω
p
v1 − v

v2

(
e−

a
c

√
ε1p2+ωe

2 − e−ika

ik − 1
c

√
ε1p2 + ωe2

+
e−

a
c

√
ε1p2+ωe

2

ik + 1
c

√
ε1p2 + ωe2

)
dp

2πi
=

=

∫ γ+i∞

γ−i∞

ep(t+
x
v
)

p− iω

cp

v2

(
cp

z(p)
− v

)(
e−

a
c
z(p) − e−ika

ikc− z(p)
+

e−
a
c
z(p)

ikc+ z(p)

)
dp

2πi
,

where z(p) =
√
ε1p2 + ωe2. Note, that the obtained integral will be equal to zero at

t + x
v
< 0, since, in this case, the integration contour can be closed by circle of infinite

radius in the right half-plane, where the integrand has no singularities. To calculate the
integral in the interval t + x

v
< 0 the integration contour can be closed only to the left of

the line γ: 1) The equation p− iω = 0, gives a simple pole, p1 = iω, which isn’t contained
in the integration path, as it is located on the section between the branch points. 2) The
expressions ikc−z(p) = 0, and ikc+z(p) = 0 give two poles p2,3 = ± i√

ε1

√
εω2 + ωe2 = ±iω2.

There is a removable singularity (a finite limit of the integrand) at the point p2 = iω2,
therefore the residual at this point is equal to zero. The selection of root sign in the
equations ikc± z(p) = 0 follows from the condition Reψ1 > 0.

The integration contour contains all the singularities of the integrand. To obtain
the unambiguous integrand, let’s choose a Riemann’s surface. The integrand is a double-
valued function, because z(p) =

√
ε1p2 + ωe2 has two branch points ±i ωe√

ε1
. It is necessary

to allocate the branch of z(p), for which the condition Reψ1 = Re
√
z2 + εω2 > 0 is

performed. To uniquely identify z(p), it can be considered the complex plane p = ξ + iη,
as a two-sheeted surface. The surface sheets are joined along the banks of the cuts.
On each sheet, z(p) is uniquely defined as a function of the variable p. To satisfy the
condition Re

√
z2 + εω2 > 0, it should be glued the sheets of the Riemann’s surface along

the curve given by the equation Re
√
z2 + εω2 = 0. This condition determines the required

branch line. We make the cuts in the complex plane p. For this, we write ψ1
2 as follows:

ψ1
2 = ε1p

2 + ωe
2 + εω2 = ε1(ξ

2 − η2 + 2iξη) + ωe
2 + εω2.



Plasmon polaritons excitation at rapidly generated plasma interface 253

The correct procedure of the choice of the cut can be made for a dissipative di-
electric. To carry out this procedure, we assume that the medium has small losses (μ)
ωe = ωe + iμ and ωe � μ, μ→ 0 corresponds to the limiting case of a lossless medium.
Thus we have ψ1

2 = [ε1ξ
2 − ε1η

2 + ωe
2 − μ2 + εω2] + 2i [ε1ξη + ωeμ]. We make cuts for the

ψ1 in the complex plane p, so that the condition Reψ1 > 0 is fulfilled on one of the sheets
of the Riemann’s surface, and Reψ1 < 0 on the second sheet.

To satisfy these two conditions, it should be glued the sheets of the Riemann’s
surface along the curve given by the equation Reψ1 = 0. This equation determines the
required branch line. We then plot the real and imaginary parts ψ1

2 which depend on ξ
and η, as shown in Fig. 2.

Fig. 2. The regions of the complex plane p (Imp = ξ, Rep = η) are bounded
by the curves Reψ1

2 = 0 and Imψ1
2 = 0, for which the real and imaginary

parts of ψ2
1 maintain their signs: Reψ1

2 < 0 in the horizontal shading region,
Imψ1

2 < 0 in the vertical shading region.

Then, we divide the plane p into regions by curves on which either Reψ1
2 =

ε1ξ
2− ε1η

2+ωe
2−μ2+ εω2 = 0, or Imψ1

2 = 2(ε1ξη+ωeμ). Thus, we obtained two regions
formed by hyperboles intersection:

ε1(ξ
2 − η2)

ωe
2 − μ2 + εω2

= −1 and ξ = −ωeμ
ε1η

,

for which the conditions Reψ1
2 > 0, Imψ1

2 > 0. To satisfy the condition Reψ1
2 > 0,

it is necessary that the inequality | Argψ1
2 |< π is performed on the upper sheet of the

Riemann surface. Hence, that it needs to choose a cut along the line defined by the
equation Argψ1

2 = π or equivalent equations Reψ1 < 0 and Imψ1
2 = 0. As a result, the

position of the cuts (shown in Fig. 3 by bold lines) was uniquely determined.
Finally, we obtain the following expression for the modified external field:

〈x | E〉 = v

2π
qeiωt−i

ω
v
|x−a| +

v

2π
θ(−x)q ε

ε1

Ω− 1

Ω + 1
e−iω2(t+x

v )+ikaθ
(
t+

x

v

)
, (5)
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Fig. 3. Cuts in the complex plane p (Imp = ξ, Rep = η), satisfying the
condition Reψ1 > 0 are designated the solid curves.

where Ω =
√
ε+ ωe

2

ω2 . Consequently after the medium parameters jump in the left half-
space, the moving boundary x = −vt appears, which moves with the velocity v from the
media interface. In the product band, −vt < x < 0, the wave propagates with a new
frequency, ω2 = 1√

ε1

√
εω2 + ωe2 and a new wave number, ω2

v
. The external transformed

field consists of monochromatic waves with frequencies ω and ω2 = 1√
ε1

√
εω2 + ωe2. The

waves with both frequencies propagate without attenuation in the external half-space.

3. The radiation of the plane source (the initial field is at the angle α to the
plasma boundary)

Next, we consider the case when the electromagnetic field is radiated by a plane
source j = qδ(s)eiωt, which is located at an angle α to the YOZ plane boundary, see
Fig. 4. Similarly to the above case, at the zero moment of time, the half-space x > 0 is
ionized and the plasma appears in this half-space. The plasma permittivity is given by the
known expression ε(ωe, ω) = ε1− ωe

2

ω2 , where ε1 describes the dispersionless part of the new
medium in the half-space x > 0 after the zero moment, ωe is the plasma frequency.

Let’s consider the transformation of the source field outside the plasma (x < 0),
after the plasma’s appearance. As with the previous case, we find the solution to this
problem using the integral equations method in time domain [6, 7]. From this, it follows
that the solution in the half-space x < 0 (external field) can be represented by formula
(2). The problem is to study the field due to the sudden formation of plasma. At first, by
using Green’s function G [4], we find the initial field of source radiation before the plasma
formation in the case when the plane source is located at an angle to the media interface,
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Fig. 4. The plane source is at an angle α to the plasma boundary. The rapidly
generated plasma in the right half-space is designed the vertical dashed lines.
Here q is the vector directed along a source, k is the wave vector.

E0 = G · ∂j
∂t

= −∂G
∂t

· j = − v2

4π
D̂q

∫ ∞

−∞
dt′
∫ ∞

−∞
dr′

θ(t− t′ − |r−r′|
v

)

| r− r′ | δ(s)eiωt
′
. (6)

It is more convenient to calculate the radiation of current for the case when the
source is located parallel to the interface at the surface x = 0, when a = 0. That is, setting
δ(s) = δ(x), it is simple to make the rotation of the coordinate system by a corresponding
angle. Then, according to this formula (1), the initial field will have the form:

E0 =
v

2
qeiωt−i

ω
v
|x|, (7)

where q = (0, q2, 0). Let’s make rotation of the coordinate system by the angle α. The
coordinate transformation with angle rotation has the following form:

x = x′ cosα + y′ sinα, y = −x′ sinα + y′ cosα.

Substituting the initial field, we obtain:

E0 =
v

2
qeiωt−i

ω
v
|x′ cosα+y′ sinα|, (8)

where q = (q2 sinα, q2 cosα, 0).
Thus, it can immediately set the initial field of a plane wave which propagates at an angle
to the plasma plane. Thereby, substituting the expression for the initial field of source (8)
and the reflection operator (3) in (2), we obtain:
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〈x | E〉 = 〈x | E0〉+
〈
x | N̂ | x′

〉
∗ 〈x′ | E0〉 = v

2
qeiωt−i

ω
v
|x cosα+y sinα|+

+
v

2
θ(−x)

∫ ∞

0

dt′
∫ ∞

−∞
dr′
∫
dp⊥

1

2ϕ1

v1
2 − v2

v2v1
{v1vumP+

+ p2ueI⊥}ep(t−t
′)+ϕ

v
x−ϕ1

v1
x′+ik⊥(r⊥−r′⊥)

θ(x′)eiωt
′−iω

v
|x′ cosα+y′ sinα| (9)

The integration over the spatial variables and Fourier transform variable is similar
to the previous case for the condition Re

√
ε1p2 + ωe2 + c2k2

2 > 0. Then, the second term
in (9) takes the following form:

∫ ∞

−∞

dk2
2π

∫ γ+i∞

γ−i∞

dp

2πi

(
(ε− ε1)p

2 − ωe
2
) c2ϕ
ψ

F(p, k2)
2iω sinαep(t+

φ
v
x+ik2y)

(p− iω)(ψ − ick2 cotα)
(
k2

2 − ω2

v2
sin2 α

)
(10)

The function F(p, k2) =
(

A1

ϕ(ε1p2+ωe
2)+

√
εp2ψ

+ A2

c(vψ+cϕ)

)
has no singular points on the inte-

gration variables.

Here, vectors A1 =

⎛
⎝ k2q2

(
k2 sin(α)− i cosα

c
ψ
)

k2q2
(
i sinα

v
+ k2 cosα

)
0

⎞
⎠ , A2 =

⎛
⎝ 0

q2 cosα
0

⎞
⎠ , and

ϕ =

√
p2 + v2k2

2, ψ =

√
ε1p2 + ωe2 + c2k2

2.

Let’s consider the peculiarities of the integrand in (10) over the variable p. The integrand

has two simple poles at the points p1 = iω, p2 = i√
ε1

√
ωe2 +

c2k2
2

sin2 α
. After calculation of the

integral over the variable p in the expression (6) we obtain:

∫ ∞

∞

dk2
2π

F(p1, k2)e
iωt+x

√
k2

2−k2 eik2y

k2
2 − k2sin2 α

+

+

∫ ∞

∞

dk2
2π

F(p2, k2)e
it√
ε1

√
ωe

2+
v2k2

2ε

sin2 α
+ x

v
√
ε1

√
−ωe

2+v2k2
2(ε1− ε

sin2 α
) eik2y

k2
2 − k2sin2 α

(11)

Finally, we obtain the following expression for the modified external field:

〈x | E〉 = v

2
qeiωt−i

ω
v
|x′ cosα+y′ sinα|+

+
v

2
θ(−x)F̂(p1,−k sinα)ei

(
ωt−ikx

√
sin2 α−1−ky sinα

)
θ
(
t+

x

v

)
+

+
v

2
θ(−x)F̂(p2,−k sinα)ei

(
ω1t−i kx√

ε1
M(α)−k y sinα

)
θ
(
t+

x

v

)
,

(12)

where frequency ω1 =
ω√
ε1

√
ε+ ωe

2

ω2 and M(α) =
√
ε1 sin

2 α− ε− we
2

w2 .

Plasmon polaritons can occur only if the projection of the wave vector on the
propagation direction of the plasmon polaritons is real and the normal component of the
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wave vector is purely imaginary in both media [3]. In the second term (12), the projection
of the wave vector on the propagation direction (x axis ) is always imaginary, but in the
third term this projection of the wave vector (then x < 0) can be real if M2(α) = ε1 sin

2 α−
ε− we

2

w2 > 0. From this, one can make the conclusion that the transformed wave frequency
can decay with distance from the plasma boundary when M2(α) = ε1 sin

2 α − ε − we
2

w2 > 0
and sinα > 0.

When the value of M2(α) is positive, it is possible for the plasmon polariton to
appear. One can see that the surface plasmon polaritons appearance is impossible for some
media for any angle, and it’s possible for the second ones at the certain angle α, and for
the third ones for any value of the angle.

4. Conclusions

In this paper, the transformation of plane source radiation after medium ionization
was studied by using Volterra’s integral equations method. The plane source was consid-
ered at an angle to the interface with a sharp ionization of the medium, i.e. when the
problem becomes non-stationary. It was shown that the wave with transformed frequency
outgoing from plasma is similar to the plasmon polariton in the case when the initial field
is generated by the plane source located at the angle α to the plasma boundary for the
following condition ε1 sin

2 α − ε − we
2

w2 > 0. The dependence of the wave vector projection
on the source angle for various media was discussed and analyzed.
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