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An analysis is presented for the possibility of metal dispersion, driven by the development of thermodynamic

instabilities of its physical state in the vicinity of the critical point in an electrical explosion of conductors

(EEC). A new geometrical configuration of conductors, arranged in a thin-walled cylindrical shell on a rigid

dielectric cylinder with axially guided, internal return current is proposed. This constrains the part played by

instabilities of non-thermodynamic origin and provides the required power density distributed uniformly in

the conductor. For metals of the aluminum and copper type, the rates of heating have been estimated, which

ensure homogeneous vaporization as the key factor governing the mechanism of liquid metal dispersion during

the development of thermodynamic instabilities in the material. Directions in which magnetohydrodynamic

(MHD) modeling of high-power electrical discharge in EEC should be pursued in the development of optimal

regimes for energy injection into the conductor are outlined. Processes governing condensation of explosion

products in an aqueous environment in the case of the particles being electrically charged and involved in

chemical interaction with supercritical fluids have been analyzed. The method of synthesis proposed will

eventually permit the production of oxide nanoparticles which differ from nanoparticles of the same oxides

synthesized in electrical discharge in air and other oxygen-containing gas media, as well as in hydrothermal

synthesis employed in its classical methodological implementation.
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1. Introduction

Nanoparticles can form by condensation or deposition from a matrix medium in close
to thermodynamically equilibrium conditions, or by dispersion from consolidated material
in nonequilibrium thermodynamic processes driven by the application of powerful exter-
nal energy fluxes. The latter method increases substantially the energy contained in the
nanoparticles, which can account for their unique catalytic, sorption and other properties,
as well as for the observed threshold phenomena. Of particular interest for the field of dis-
persion are extremely fast (close to non-equilibrium) thermodynamic processes involved in
high rate phase transitions of a material through the sequence of “solid—liquid—gaseous”
aggregate states, including transitions through the critical point. It is the only extremum
in the equilibrium curves of the phase diagram, which belong simultaneously to the liquid
and vapor. Approaching it is accompanied by substantial growth of density fluctuations in
microvolumes of the material compared with the regions where metastable states exist, ad-
joining the curves describing equilibrium of two phases. For strong enough energy influxes,
density fluctuations can become self-organized to the extent where material can lose its ther-
modynamic stability, being replaced by assembly of dissipative microstructures. They can
serve as pre-nuclei for the subsequent formation of dispersed particles during the disruption
of the starting consolidated materials, and transfer a part of the energy to the material of
the environmental medium. This predetermines the possibility, in principle, of producing
particles of an extremely small size, down to a few nanometers, to be compared with the
results obtained by application of other well-known mechanisms of dispersion, e.g., mechan-
ical or thermal action, for example, impact crushing of a solid, its melting and breakup of
the liquid into drops, vaporization and subsequent deposition from the vapor phase.

Because the size and number of particles depend on the rates of influx and dissi-
pation of energy in the material under dispersion and its environment, methods providing
high power of the incoming energy fluxes become particularly important. They should be
adequate to the conditions required and the mechanisms involved in development of ther-
modynamic instability in the material in question, as well as to its characteristic dissipation
channels and of the material of the environment. Under laboratory conditions, such means
for energy input into a material can be provided by high-power pulsed lasers, charged particle
beams and heavy-current electrical discharges. Heavy current electrical discharges offer cer-
tain advantages in their potential to generate the desired energy density of particle beams
in volumes larger than those obtainable with lasers and corpuscular beams. Electric dis-
charges providing a high density for the discharge current, J > 106 A/cm2, in a material
with metallic electrical conductivity in the initial state have acquired the name “electric
explosion”. A number of researchers, including the authors of the present paper, believe the
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electric explosion of conductors to rank among the most energy-efficient methods for the
preparation of nanosized powders of metals and of their chemical compounds.

Although electrical explosions have been known for more than 200 years [1,2], system-
atic studies of them have been undertaken already for about fifty years at various research
centers [3-54]. Despite this study, a number of points still remain to be clarified. First, this
bears on the conditions and mechanisms driving the instabilities of material, which culminate
in destruction of the conductor and formation of nanoparticles, allowing for the interrela-
tion among the processes that are at work both in the metal proper and in its environment
[34,45,46,52,55,56].

The present work offers an analysis of these points, drawing from the available liter-
ature data, as well as from our original research.

2. Conditions and the characteristic pattern of development of instabilities of
material in an electric explosion of conductors

In the case of the comparatively slow Joule heating of a metal by electric current,
the most significant factors involved in destruction of a wire conductor in the process of
variation of its physical state are the forces of surface tension and waist and convective MHD
instabilities [4-7,9,15,17,18,20,21,30,32,33,41]. One more possible factor is development of the
barocapillary instability [57], which arises in the intense vaporization of material from the
surface of the molten metal and turbulization of vapor jets, destroying this surface. Such
an instability can be amplified by the positive feedback coupling of the vapor recoil reaction
with the depth of piercing of the molten metal surface. Each of these processes has its
characteristic time scale. Indeed, the time of action of capillary forces is on the order of
tk = (ρliqr

3/σ)0.5, tc = µ0r
2/ρe, and the time taken up by development of magnetodynamic

instabilities of the neck type −tm = (2πρliqr
2/H2

0 )0.5 [9,15,33,58,59]. Here, ρliq – is the
density of the metal in its liquid state, r is the conductor radius, σ is the surface tension
coefficient, µ0 is the magnetic constant, ρe is the electrical resistivity of the metal, H0 = I/r,
and I is the current through the conductor. When a metal is subjected to heating by current
for a time longer than the characteristic relaxation time of a material required to reach the
equilibrium thermodynamic state (estimates [60-62] yield for it 1−10 ns far from the critical
point), the processes involved in the development of the above instabilities may be considered
as being in thermodynamic equilibrium. The effect of each of them becomes manifest when
their characteristic metal heating time scales become equal. It can be estimated in terms
of the specific current action integral t = h/I2, where h =

∫ t
0
I2dt – is the integral value of

the current action required to heat the metal within the range over which the corresponding
process extends. The relative part played by each of these instabilities can vary depending
on the particular effect of the environment (rarefied gas or a dense liquid) in which the
electric explosion of the conductor takes place. The actual size of the particles formed
may depend on the uniformity of the heating (current density), level of the energy input,
radius of the wire, its initial microstructure, characteristics of the environment (density,
chemical activity, electric strength). On the whole, however, the characteristic size of the
“drops” formed during the development of such instabilities turns out to be on the order
of the diameter of the wire to be exploded (a few hundred to thousands of nanometers)
[5,31–33,50,63,64].

Particles of substantially smaller dimensions (down to a few nanometers) can be
prepared by noticeably increasing the power input into the conductor. Under the condi-
tions providing fast enough Joule heating in a time shorter than the characteristic time
required for relaxation to the equilibrium thermodynamic state, the part played by the
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above instabilities becomes of secondary importance, with the mechanism of dispersion stem-
ming from violation of thermodynamic stability of the state of material becoming dominant
[35,38,44,49,55,56,65,66]. In the course of intense heating, the temperature of the molten
metal can rise above the boiling point at a given pressure above its surface, culminating in a
transition of the system into the region of metastable biphasic state, with a fast approach to
the line of the highest possible overheating (spinodal) with increasing heating rate (Fig. 1).

Fig. 1. Typical diagram of the phase state of a material: 1 - binodal (liquid-
vapor phase equilibrium curve, or saturation line), 2 - spinodal (curve of maxi-
mum possible liquid phase overheating). Notes: SF - Solid Phase; LF - Liquid
Phase; VF - Vapor (Gas) Phase; MS - Metastable Sate; SCF - Supercritical
Fluid; TP - Triple Point; CP - Critical Point

This brings about reduction of the time the system spends in this state, uncertainty in
the thermodynamic parameters and, as a consequence, tendency to spontaneous relaxation to
the equilibrium boundary (bimodal) of the metastable region through “explosive” boiling-
up of the metal paralleled by a sharp growth in homogeneous vapor bubble formation.
The mechanisms governing such a relaxation depend on the properties of the material and
conditions of its heating, of which the most important is the specific power of energy input
into the material and the pressure (density) of the environmental medium. For instance, for
water and organic liquids the critical size of a vapor nucleus whose probability of further
growth is higher than that of collapse, just as the magnitude of the Gibbs free energy needed
for its formation, in overheating turns out to be lower than those on the bimodal under
conditions of thermodynamic equilibrium. Indeed, with overheating increased by only 1 K,
the average time taken by a critical nucleus to form may drop by three to four orders of
magnitude, with the rate of growth of a vapor bubble of above critical size exhibiting fast rise
[35,38,50]. Intense nucleation involving the formation of multiple vapor bubbles in a heavily
overheated liquid close to the spinodal initiates “explosive” boiling-up (“phase explosion”),
with eventual breakup into a mixture of vapor and droplets [35,38,56].

The possibility of using phase explosion of a liquid metal for preparation of metal
powders has been a subject of intense discussion in literature, but without a comprehensive
analysis of the dependence of the particle size obtained for particular energy input conditions
and the properties of the environmental medium. Significantly, Joule heating of a metal
conductor by current gives rise to a number of specific effects, complicating the mechanism
of explosive boiling. This comes from the need to consider the effect exerted by the electric
and magnetic fields on the work of critical vapor nucleus formation and the frequency (rate)
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of homogeneous formation of vapor bubble nuclei. Another specific feature of Joule heating of
conductors was found to be the nonuniformity of the pressure field inside the metal initiated
by the appearance of the magnetic component, a factor which complicates markedly the
overall calculation of the process [33,48,56].

3. A possible scenario of development of a phase explosion in a liquid metal
and of formation of nanosized particles of a new phase

As previously mentioned, in the case of comparatively slow Joule heating with a not
too close approach to the critical temperature of the metal, T < (0.8−0.9)Tc, and in the case
of a low-density, chemically-inert environmental medium (rarefied gas), the electric explosion
of a conductor may acquire the pattern of explosive decomposition of a molten and boiling-up
metal, as a result of development of the above-mentioned instabilities of non-thermodynamic
origin. The characteristic size of the “droplets” formed in such an explosion turns out to be
102 − 103 nm, depending on the working conditions, i.e. on the order of the diameter of the
wire to be exploded.

To reduce the size of dispersed particles, one has to constrain the part played by
the non-thermodynamic mechanisms involved in destruction of the metal in the course of
varying the physical state of the exploding conductor, so as to ensure its transition to the
region of the heaviest possible nonequilibrium metastable state with the maximum possible
overheating and fast approach to the critical point through “explosive” boiling-up initiating
homogenous vapor formation. This is favored by the magnetic field generated in the liquid
metal by the current flowing through it. Its action increases the work and the time passing
in waiting for the appearance of a vapor nucleus, which initiates the process of homogeneous
vapor formation. After this, the size of the critical nucleus for the liquid (molten) metal will
be larger, for the same overheating, than that for water and organic liquids. As a result,
spontaneous nucleus formation of vapor bubbles in liquid metals is not reached even under
intense overheatings, so that metals can be heated very close to the spinodal and, hence, to
the critical temperature, before phase explosion occurs. Besides, a liquid metal may contain
centers of heterogeneous boiling-up, which raise significantly the specific metal heating power
needed to reach the limiting metastable state defined by the spinodal. It should be stressed,
that as a result of the stabilizing action of electric current on the thermodynamic state of a
liquid metal, spontaneous relaxation of metastable states may start for most metals only at
temperatures T > (0.8− 0.9)Tc, where Tc is the critical temperature of the metal.

It is the possibility of overheating a liquid metal close to the critical temperature
at an adequately high energy input into the conductor that the proposed scenario of new
phase formation rests. In these conditions, in the vicinity of the critical point fluctua-
tions of the parameters of state of the material, primarily of the density and entropy, grow
substantially, just as the radius of their interaction (correlation), by switching from the
exponential law of decrease far from the critical point to the inverse proportionality law
close to it [67]. The relation between the probability of system parameter fluctuations
and the magnitude of the fluctuations themselves can be defined by the Einstein relation
W ∼ exp[−(∆T∆S+∆µ∆N)/2T ], which is essentially an outgrowth of the Boltzmann prin-
ciple relating the probability of an arbitrary state of a system to its total entropy SΠ in the
form W ∼ exp(∆SΠ). Increase of density gradients (density fluctuations) in small volumes
of an overheated liquid culminates in the loss of thermodynamic stability of the material and
nucleation of vapor bubbles by fluctuations. The material takes on an opalescent, finely dis-
persed, light-scattering structure, which may be considered as a “gas of liquid drops” [68-70].
The characteristic size of these “drops” (correlation radius) increases, and the magnitude of
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the density gradients needed for fluctuation-based nucleation decreases as one approaches
the critical point. Estimates based on various models of the critical state [50] suggest that
for metals, the size of these drops can vary from a few to several tens of nanometers. At
temperatures T ≈ (0.8− 0.9)Tc , defining the boundary at which the critical point still can
be reached, the size of the liquid drops is on the order of 10 − 30 nm. Realization of the
corresponding conditions rests on the possibility of providing a high enough specific heating
power combined with limiting metal expansion. Estimates of the heating power QV required
to reach this goal yield QV > 1 TW/cm3. Such power densities can provide electric current
J > 108 A/cm2 flowing through a wire with diameter d = 0.1 mm. These estimates were
made under the assumption that metal expansion is limited by the local sound velocity and
occurs along the bimodal, with the interpolation equation of the Van-der-Waals type used
as the equation of state [33]. Additional possibilities for attaining optimum conditions of
nanosized dispersion are considered below.

4. Specific features in modeling of local characteristics of phase-forming
processes and media

The rich variety of the complex physical and physico-chemical processes involved
in an electric explosion of metal conductors in a chemically active water medium accounts
for the surprisingly large number of local characteristics required for evaluation of the con-
ditions optimal for dispersion of a metal, a situation stemming from the development of
thermodynamic instabilities showing up in its physical state in the vicinity of the critical
point. This program is of considerable scientific and practical significance for the field of
present-day nanotechnologies, including various aspects of development of adequate physical
models, primarily in description of the variations in the state of material within a broad
range of parameters, from the triple point to formation of supercritical fluids. The specific
choice of the equations of state and of the dependence of transfer coefficients for dissipative
processes on density and temperature contribute in more than one respect to the calculated
characteristics of heating and subsequent explosion of an electric conductor.

4.1. Statistical modeling of critical phenomena in the close environment of
the critical point. Scaling invariance

For more than 350 years, studies aimed at establishing the interrelation among the
parameters of state of material, thousands of other publications on this subject have ap-
peared, with many of them having gained recognition [71]. These studies were initiated by
R. Boyle (1662) in experiments with gases. Kanjr (1822), M. Faraday (1823) and T. Endres
(1869) extended them to the region of phase transitions, “liquid–vapor” critical point and
supercritical fluids. Van der Waals (1873) provided theoretical generalization to the avail-
able experimental data with the use of an extended phenomenological model of an ideal gas
by Clapeyron (1834), in which molecular attraction and repulsion at close distances were
included in a simple form. Further systematization was provided by the physical theory of
L. D. Landau (1964) in terms of the mean field approximation approach, which described
supercritical phase transitions of the system as well [72]. No convenient equation for a physi-
cally adequate description of the state of matter over a sizable range of parameters, including
phase transitions and the critical point, has, however, been derived, either in the context of
the classical mean-field approach or with inclusion of fluctuation-induced deviations through
introduction of small corrections into the expansion of free energy F (T, V ) in powers of
ν = (V − Vc)/Vc and τ = τ = (|T− Tc|)/Tc relative to the critical point [73].
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The idea of “scaling invariance (scaling)” involving the characterization of thermo-
dynamic potentials through generalized homogeneous functions of nonintegral (fractional)
order with respect to their fields was found to be universal enough for solution of this prob-
lem. It was advanced in the 1960’s, almost simultaneously, by Bakengem, Widm adanff
Patashansky [74-79] for explanation of the experimentally revealed anomalous growth of
large-scale fluctuations, as well as of the singular pattern of behavior followed by a number
of thermodynamic functions close to the critical point. This idea was subsequently extended
to cover description of attendant kinetic phenomena. Among them are the increase of the
time of thermal relaxation, slowing down of the mutual diffusion of substances close to the
critical points of the solutions, variation of the pattern of Brownian motion, decrease of the
coefficients of thermal diffusivity close to the critical point of a pure liquid, the anomalously
high absorption of ultrasonic vibrations, critical opalescence and others [68-70]. Signifi-
cantly, kinetic phenomena occurring close to the critical point are assigned to the existence
of a characteristic frequency, expressed in terms of the equilibrium radius of interaction of
large-scale fluctuations (correlation radius).

The similarity of the critical phenomena observed in objects of different nature sug-
gests the possibility of unified description of the interrelation of certain physical quantities
(order parameters) in the vicinity of the critical point with a simple power function, for
instance, reduced temperature τ = (T −Tc)/Tc, or some other reduced parameters of similar
type, Pj(τ) = Bjτ

−δj, where Bj is a numerical coefficient, and δj is the critical index of
the quantity Pj. In particular, the asymptotic behavior of the susceptibility ∂ρ/∂P, density
∆ρ = ρ− ρc, correlation radius rc (a quantity approaching in its sense the average size of a
fluctuation), specific entropy S, heat capacity CV , CP and other parameters in pure liquids,
concentration y and chemical potential µ in solutions are expressed with unified temperature
dependences:

∂ρ/∂P, ∂x/∂µ ∼ τ−γ; CV , CP ∼ τ−α; (ρ− ρc), (S − Sc), (x− xc) ∼ τ−β; rc ∼ τ−ν .

Numerical values of the critical indices α, β, γ, ν can be obtained only from exper-
iment or from microscopic theory. The values of these indices, derived from experiment, or
from analytical and numerical solutions for lattice-type models (Ising, Heisenberg, Berlin-
Katz etc.) turn out to be invariant (equal or very close in magnitude) for phase transitions
of different physical nature and are defined only by the dimension d of the space under
consideration and the corresponding type of symmetry (order parameter) [68,80,81]. This
versatility can be assigned to the cooperative nature of the critical phenomena, which stems
from the properties of the totality of particles rather than from individual properties of each
particle. The spatial scale of their interaction exceeds by far the average separation between
particles. The size of density fluctuations grows as one approaches the critical point, up to
hundreds and even thousands of Angstroms, to become comparable to light wavelength, and
their amplitude reaching, by order of magnitude, the average values of the density proper.
This accounts for the opalescent, finely dispersed structure of material observed in the critical
region, which, as already mentioned, is usually referred to as “a gas of liquid droplets”.

The free Helmholtz energy can in this case be presented as consisting of components of
the regular part and a non-analytical uniform function of its arguments. In such a system, it
contains a term proportional to the number N of the “gas droplets” formed F = F0+kTcN =
= F0 + 3kTcV/4πr

3
c , where F0 is the regular part of free energy F, which does not depend on

the closeness to the critical point; V is the volume of the material, and 4πr3
c is the volume

of droplet in three-dimensional space. Invoking the power-law dependence of the correlation
radius rc on temperature in the form rc ∼ τ−ν , one can readily obtain an expression for
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the singular part of heat capacity at constant volume CV ∼ (∂2F/∂T 2)V ∼ τ 3ν−2 ∼ τ−α.
Now this expression yields a relation connecting the critical indices of the heat capacity
and correlation radius in three-dimensional space, 3ν = 2 − α. One can then employ the
standard similarity relations to establish the relation connecting the two remaining indices
α + 2β + γ = 2, α + β(1 + δ) = 2, dν = 2 − α; we see that in the general case, the
number of independent critical indices is always two. The numerical values of these indices,
derived theoretically by L. Onsager and C. Wilson [82–86] for the plane and three-dimensional
Ising lattice and supported by numerous measurements [68], are α = 0.11, β = 0.325, and
γ = 2− α− 2β = 1.24, respectively.

Idealized model concepts of the scaling theory suggest that far from the critical point
fluctuations are statistically independent, so that random variations of state at a given point
of the sample do not affect other parts of the system. Significantly, at the critical point,
the radius of correlation (of fluctuation interaction) becomes theoretically infinitely large,
enveloping all of the material [68,79,87–90]. In real systems, however, their susceptibility to
external perturbations of various physical origins (gravitational and electric fields, surface
forces and shear stresses, nonideal nature of samples and presence of boundaries etc.) also
grows ∼ τ γ, as one approaches the critical point, so that even small perturbations ∆E � kT
will be able to distort the pattern of a phase transition by 3 − 4 orders of magnitude [68].
This not only significantly complicates measurements in an experimental study, but can, at
an infinite growth of susceptibility of the system to external influence, culminate in notice-
able suppression of critical fluctuations by an external factor. This may result in restoration
in the system of the mean-field “classical” behavior with the corresponding set of critical
indices close to the critical point, with the area in the immediate vicinity of it becoming
again a region of the Van der Waals type. An analysis of this possibility is offered in Ref.
[91]. It is shown that in the general case, the pattern of universal behavior for systems
near the critical point may include both a transition from the “mean-field” classical behav-
ior to that of the Ising type, whose position is defined by the Ginzburg criterion [92], and
the appearance in its nearest environment of a reverse transition from the renormgroup to
“mean-field” classical behavior. At the same time, as follows from the data presented by the
same author, the transition in the reverse direction expected to occur far from the critical
point in pure liquids is not observed experimentally [93]. Now, our own experimental data
provided a basis for an analysis of the universal relations connecting critical indices and
amplitudes. Consideration is also given to the “pseudospinodal hypothesis” concerning the
possible existence of a “pseudospinodal”, i.e., of a line, all points of which would possess the
properties of a critical line, i.e., a line, on which the isothermal and adiabatic compressibil-
ities, isochoric and isobaric heat capacities diverged simultaneously. It is shown that this
possibility is provided only at one and the only “critical” point, which lies simultaneously
at the bimodal, spinodal and critical isotherm.

The transcritical state of matter can be employed as an initial approximation in
describing its variations far from the critical point by introducing proper corrections to the
asymptotic laws. In particular, in this way it becomes possible to describe the state of dense
gases and liquids within a fairly large range of parameters, where, in contrast to solids and
rarefied gases, straightforward calculation of thermodynamic quantities is impossible because
of the uncertainties involved in particle interaction [68]. At the same time, despite numerous
attempts undertaken in derivation of a scaling equation of state in physical variables which
could be used to calculate the singular component of interest, these attempts have not thus
far met with success. This possibility appeared with the use of a transition proposed by
Josephson and Scoffield to a parametric form of equation in polar coordinates without direct
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expression through physical variables [94,95]. This transition is graphically interpreted in
Fig. 2 [68].

Fig. 2. Parametric presentation of the Sterling equation of state close to the
critical point in polar coordinates

Its application turned out, however, to be inconvenient in approximation of experi-
mental data and fairly difficult in the calculation of standard tables and matching with other
equations of state, including those of the virial form, which adequately describe the behavior
of various characteristics of material far from the critical point. Development of methods
which could be employed in derivation of a unified scaling equation of state which would be
free of the above shortcomings is still under way. Indeed, a nonparametric equation of state
in the “density–temperature” physical variables has recently been obtained [96]:

F (ρ, T ) = F0(T ) +RTcf(ω, t) |∆ρ|δ+1 a1(x) +RT ln ρ+RTω

n3∑
i=1

j3(i)∑
j=0

Cijτ
j
1 (∆ρ)i.

This equation satisfies the power laws of critical phenomena. It covers a broad range
of parameters, including phase equilibrium lines (from the triple to the critical point), and
metastable and single-phase regions, dense gas and liquids down to the solidification line in
that number. Here, ω = ρ/ρc is the reduced density, δ is the critical index of the curve of
the critical isotherm, f(ω, t) = exp(−a∆ρ2/ 5

√
ω)/T is the transition (crossover) function for

a qualitatively correct description of the virial coefficients, a(x) is a scaling function of the
Helmholtz free energy in the form a(x) = A1(x+ x1)2−α +A2(x+ x2)2−α +B1(x+ x3)γ +C,
whose parameters are calculated through the critical indices and the value of the scal-
ing variable x = τ/|∆ρ|1/β at the saturation line. As a measure of separation from the
critical point, we can use here the isothermal compressibility KT = ρ−1 (∂ρ/∂p)T , assum-
ing that it behaves similarly at the critical and non-critical isochores. The assumptions
made here fit the phenomenological model of A. A. Migdal on the analyticity of the iso-
clinic line H(m) = m + ϕ3m

3 + ϕ5m
5 + . . ., where H = ∆µ[PcV

2
c (∂ρ/∂µ)](β+ν)/ν , and

m = ∆ρ[PcVc(∂ρ/∂µ)]β/ν [97], as well as the hypothesis of J. Benedek on the functions
KT (ρ, T )|ρ=ρc ∼ KT (ρ, T )|ρ 6=ρc ∼ τ−γ following analogous behavior [98]. A comparison of
the calculation results with data accumulated from a number of well-studied materials of
technological significance, including cryogenic gases and liquids, as well as refrigerants of a
variety of molecular structures (refrigerant R23, argon, perfluorpropane), suggests [96] that
the scaling equation of state developed reproduces with a high accuracy the thermodynamic
properties throughout the range of parameters specified above.
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Because this approach has not yet enjoyed application in development of similar
scaling equations of state for metals, the variations of their physical state in the course of a
phase explosion are described by invoking semiempirical equations and models of transport
coefficient calculations of various kinds. In the calculations presented below, we made use of
wide range semi-empirical equations of state permitting description of the state of material
in the condensed, gas, plasma and two-phase region of the phase diagram.

4.2. Phenomenological modeling of critical phenomena and thermodynamic
stability of one- and two-phase systems in the mean-field approximation

If the linear dimensions of phases are large enough, one can neglect the curvature of
their interface. In this case, thermodynamic equilibrium sets in when their temperatures,
pressures and chemical potentials are equal [67,69]:

T ′ = T ′′ = T ; P ′ = P ′′ = P ; µ′(T, P ) = µ′′(T, P )

These equations define the interfaces for the regions of single-phase liquid and equilibrium
two-phase (liquid–vapor) states of matter–the binodal.

For the Van der Waals type state equations, this system can be used to derive
Maxwell’s “equal areas” condition, which in the subcritical region of the diagram of state
(T < Tc) is combined with the equation of state P = P (T , ρ) to produce a system of
equations for finding the equilibrium pressure Pb(T ) and densities of liquid ρ′b(T ) and vapor
ρ′′b (T ) at the binodal. Thermodynamic stability with respect to continuous variations of the
parameters of state is defined here by the condition that the second variation of the internal
energy of a thermodynamic system ε be a positive quantity. For this purpose it is necessary
and sufficient that the following inequalities be met [67,99]:

D =

(
∂2ε

∂s2

)(
∂2ε

∂v2

)
−
(
∂2ε

∂s∂v

)
> 0,

∂2ε

∂s2
=

(
∂T

∂s

)
v

=
T

Cp
> 0,

∂2ε

∂v2
= −

(
∂P

∂s

)
s

> 0

Here, CP is the specific heat at constant pressure, and s and υ are the specific entropy and
specific volume, respectively. These expressions can be readily employed to derive other
useful relations for isodynamic derivatives as well:(

∂P

∂v

)
T

= − 1

βT v
= D

(
∂T

∂s

)−1

,

where βT is the coefficient of isothermal compressibility.
To sum up, for stable states:(

∂T

∂s

)
p

> 0;

(
∂P

∂v

)
T

= − (βT v)−1 .

The inequality D < 0 defines the unstable state region for the homogeneous phase, in which
any perturbations grow until it transfers to the equilibrium two-phase state. The equation
D = 0 identifies the boundary of the phase state parameters stable with respect to their
continuous variations, i.e., spinodal. For instance, for the Van der Waals model the equation
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for the spinodal in dimensionless variables reduced to the parameters of the critical point
reads as:

4 θ ϕ3 − 3 ϕ2 − 6 ϕ− 1 = 0 ,

where θ = T/T c, π = P/P c, ϕ = υ/υc are dimensionless variables. Estimates can be
conveniently obtained with the equation for spinodal derived in terms of the “hole” theory
of liquids [100]:

π ∼= 10 θ − 9

The coefficients of thermodynamic stability for the liquid phase at the spinodal pass through
zero values: (

∂P

∂ν

)
T

= 0,

(
∂µ′

∂n

)
(ν,T )

= 0,

(
∂T

∂s

)
P

= 0,

while the thermodynamic fluctuations related to them through the expressions:(
∂P

∂v

)
T

= − k T
〈ν2〉

;

(
∂T

∂s

)
p

=
k T 3

〈∆h2〉
,

grow sharply, a factor which may cause dispersion of the liquid.
In the supercritical region (T > Tc, P > Pc), the transition of material from the

condensed to gaseous state takes place under continuous variation of its density within the
temperature interval which corresponds to the region of thermodynamic hypostability of the
state of material to development of fluctuations of its thermodynamic characteristics. The
boundary of existence of a condensed phase in the supercritical region of the diagram of
state (quasispinodal is the curve of supercritical liquid–vapor transitions) is defined by the
points of extrema in the course of the thermodynamic stability coefficients of the condensed
state [35,38,44,49,65,66]:(

∂P

∂v

)
T

< 0;

(
∂2P

∂v2

)
T

= 0;

(
∂µ

∂n

)
v,T

> 0;

(
∂2µ

∂n2

)
v,T

= 0,

and is actually a continuation of the binodal into spinodals beyond the critical point. All
branches of the binodal, spinodals and quasispinodal converge to the critical point. The co-
efficients of volumetric expansion and isothermal compressibility at the quasispinodal points
pass through the final maxima. This opens the possibility of deriving the equation of qua-
sispinodal from experimental data on the coefficients of volumetric expansion or isothermal
compressibility in the supercritical region.

The spinodal–quasispinodal equation was calculated from available experimental data
for mercury, whose physical properties were studied in considerable detail. These calculations
resulted in the following equation:

π ∼= 11.1 θ − 10.1

This equation draws upon the law of corresponding states and can apparently be
extended to other metals as well. Thus, if one knows equations of state P = P (T, ρ) and
ε = ε (T, ρ) or has experimental data on the physical characteristics of the material, it
becomes possible to establish the boundary of thermodynamic stability of a material with
the use of the above relation.

To disperse a material by subjecting it to thermodynamic instabilities, the heating
conditions employed should provide the attainment of extreme metastable states, which
in the subcritical region of the diagram of states, are defined by the spinodal, and in the
supercritical region, by the quasispinodal. We analyze below the main factors which plague
solution of this problem. In the conditions characteristic of “fast” EEW, when instabilities of
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other than thermodynamic nature play a limited part, these factors are surface vaporization
and heterogeneous boiling.

4.3. Vaporization and dispersion of metal under high-power pulsed heating
with a high-density current

Formation of a vapor nucleus in a liquid being limited by inertia and nonequilibrium
processes, vaporization starts on the free surface of the liquid. Because the vapor forming in
the process allows stronger compression that the liquid, the local velocity of displacement of
the interphase cannot exceed the sound velocity at the corresponding point of the binodal.
The time taken by a rarefaction wave to propagate to the center of the volume occupied by
the liquid and back may be considered as a characteristic “sonic” time scale.

4.3.1. Vaporization wave in metals. If the heating conditions of a liquid are such that the
latent heat of evaporation enters the liquid in a time longer than the “sonic” time, the
system is in the regime of quasi-steady state evaporation from the surface. In this regime,
the temperature at the interphase can be assumed to be determined by external pressure
and to remain constant. In the case when the latent heat of evaporation is injected into the
liquid during the “sonic” time, and the number of centers of heterogeneous boiling ready to
operate is not large enough, the process dominating the mechanism of vaporization will be
evaporation from the surface, whose temperature will grow in the course of liquid overheating.

We are interested in more powerful regimes of liquid heating, in which the latent
heat of vaporization is injected into the liquid phase in a time much shorter than the “sonic”
time. In this case, the internal, not yet expanded regions of the liquid, will suffer overheating
substantially above the temperature determined by the binodal at the corresponding local
level of pressure. In these regions, conditions favoring the generation of homogeneous volume
vaporization will become achievable. In the vicinity of vapor bubble formation, the liquid
becomes strongly locally overheated, which initiates a still more intense growth of evapora-
tion. This process may also become compounded by the formation of local electric arcs at
the bubbles.

The “sonic” time can be estimated not from the real surface evaporation rate but
rather from its maximum value, which is equal to the local sound velocity in the two-phase
region at the binodal points [11-13,20,101]. Recalling that at the binodal the pressure Pb(T )
and density ρb (T ) of the liquid phase depend only on temperature, we obtain:

vs =

√ (
∂P

∂ρ

)
s

∼=

√
T

Cv ρb (T )
· dPb
dT

In interpretation of the EEW experiments, this velocity was termed the velocity of
“evaporation wave” in metals [11-13,20]. The dependences of the evaporation wave velocity
calculated from this relation fit well enough the experimental results obtained in the initial
region, but the discrepancy between the calculations and experiments was found to grow
with increasing temperature. This does not come as a surprise, because the conditions in
an overheated metal may become favorable for the onset of volume evaporation, a process
developing with increasing overheating.

4.3.2. Volume boiling-up of a metal heated by a high-density current. Volume boiling-up of a
liquid metal can be both heterogenic, i.e. develop on already available vaporization centers
(structural inhomogeneities, charged particles and so on) and homogeneous, a process in
which a water droplet nucleus is borne by thermodynamic density fluctuations.
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In the regimes considered by us here, the necessary condition making possible spon-
taneous boiling-up of a liquid metal is metastability of its state, which can be reached by
overheating the liquid above the temperature of its quasistationary boiling in the given ambi-
ent conditions. The appearance in the liquid of a “critical” vapor nucleus capable of growing
as a center of volume vaporization is accompanied by overcoming a peculiar energy barrier.
It can be correlated with the work spent in formation of this vapor nucleus in a given ther-
modynamic state of the liquid Wcr. This work accounts for the probability of spontaneous
formation of a vapor nucleus in an overheated liquid and, eventually, for the frequency of
homogeneous vaporization, i.e., the number of critical vapor nuclei per unit volume and per
unit time [35,38,44,49,65,66]:

dNcr

dt
= B (T, P ) · exp

(
−Wcr

kT

)
· exp

(
−τp
t

)
where τp is the relaxation time in establishment of steady-state regime of nucleus formation
following instantaneous overheating of the liquid (estimates yield τp 6 10ns;) B (T, P ) ∼=
1023cm−3s−1 is a weakly temperature- and pressure-dependent function.

The work expended in formation of a viable vapor nucleus of volume υB of a metastable
liquid is [35,38,44,48,49,56,65,66]:

Wcr = αs+ (P ′ − P ′′)v′′ +WB

where α is the surface tension coefficient; s is the surface area of the forming vapor nucleus;
P ′P ′′ are the pressures in the liquid and the vapor nucleus, and WB is the work against the
electromagnetic forces, with the dominant contribution to it coming from the work spent on
the increase in the inductance of the system associated with formation in the liquid metal
of a vapor void [48,56]:

WB
∼=
µ0

8π

∫∫
[J(r)J(r′)− J0(r)J0(r′)]

dv′dv

|r − r′|
,

where J0, J are the currents flowing through the conductor before and after formation of the
vapor nucleus. The volume of the work spent in formation of the vapor void depends on
its shape. This accounts for the possibility of generating critical nuclei of various shapes.
The dimensions of the critical nucleus of a fixed shape correlates with the maximum value
of Wcr,while the actual shape of the nucleus is derived from the condition of minimum Wcr.

Close to the binodal, the work expended in formation of a critical vapor nucleus of a
critical shape in an overheated liquid can be estimated from the relation [20,32]:

Wcr
∼=

16

3
π
a3(v′′)2

Λvapε2
T

+
π3

4
µ0
a3(v′)3

Λ3
vapε

3
T

J2
0 ξ(l

2
B +R2

0) ln

(
εTΛvapR0

2av′′

)
Here, a = 2α/(P ′′ − P ′) is the nucleus radius; R0 is the characteristic size of the conductor

cross section; lB ∼= 2
√
τ/ (µ0 σ) is the distance the magnetic field has passed by diffusion

during the time τ the nucleus took to form (estimates yield τ ≈ 0.1−1 ns); εT = (T − Tb) /Tb
is the relative overheating of the liquid metal; Λvap (T ) , Tb are the latent heat of evaporation
and temperature at the binodal, and coefficient ξ = 2(σ′ − σ′′)/(2σ′ + σ′′), where σ′, σ′′ are
the values of electric conductivity of the liquid metal and of the vapor Significantly, as a
rule, R0 � lB � a.

Thus, Joule heating of a metal by electric current is characterized by an increase in
the work expended in the formation of a critical vapor nucleus and of the time one spends
in waiting for its appearance, compared with the case of other than Joule heating of liquid
metal, for instance, with laser or beam energy injection. For small overheatings, εT → 0,
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homogeneous creation of a viable nucleus is met with difficulties, Wcr → ∞ Increasing
the overheating brings about a sharp lowering of the activation barrier of Wcr and, hence,
increase of the probability of homogeneous nucleus formation and of development of homo-
geneous boiling-up of the liquid metal. The lowest value of Wcr corresponds to the highest
possible overheating of the condensed phase εT = εcrT , which for the given outer conditions is
determined by the temperature related to the spinodal, where the thermodynamic stability
coefficients pass through zero values.

Estimates of the metal overheating needed for the onset of homogenous vaporization,
(dN/dt)cr > 1cm−3s−1, suggest that the frequency of spontaneous vapor generation grows
strongly within a comparatively narrow temperature interval. For the first homogenous
nucleus to appear, after which their number grows in an avalanche, the metal should be
overheated close to the highest possible level, which corresponds to a very small environment
of the critical point.

Reaching conditions favorable to homogeneous boiling-up of the liquid phase can be
hindered by heterogeneous boiling developing on the already viable centers of vaporization,
which starts at temperatures only slightly exceeding the temperature of quasi-stationary
boiling. But if the specific power of heating of the liquid phase is high enough, it can be
overheated if it contains artificial viable centers of boiling. This can be realized if we provide
a specific energy input into the liquid which would exceed considerably the energy expended
for heterogeneous boiling on the already available centers. This heating regime received the
name “impact” regime. Its operating conditions are formulated by the relation [35,38]:

K =
Qv

Λvapϕ
1
k

(
3

4π

1

Ω0

ρ′

ρ′′

) 1
3k

· ε
1

3k−1

T � 1.

Here, Qυ is the specific power of the “impact” energy input, Ω0 is the given concentration
of heterogeneous boiling centers, and ρ′, ρ′′ are the densities of the liquid and vapor, re-
spectively. The growth of the heterogeneous nucleus is approximated by a power-law form

r (t) ∼= ϕ (t) tk, 〈ϕ〉 = 1
τk

τ

∫
0
ϕ (t) ktk−1dt, where ∆τ is the time taken by a heterogeneous

vapor nucleus to grow, and < ϕ > is the value of function ϕ(t) averaged over the tempera-
ture interval Tb 6 T 6 Tcr. The condition of “impact” heating can be presented in a more
compact way with the relation:

τ ′′

∆τ
ε

1
3k
T � 1,

where ∆τ = ΛvapεT
Qv

, τ ′′ = 1

ϕ
1
k

(
3

4π
1

Ω0

ρ′

ρ′′

) 1
3k

is the time needed for boiling out of all of the liquid

present on the heterogeneous centers. The law by which the nucleus radius grows in this case
can be adequately approximated in terms of the thermal approach, in which the penetration
of the liquid evaporation surface inside a nucleus is determined by the heat input:

r(t) ∼= 2

√
3

π

b′

Λvapρ′′
(T − Tb)

√
t,

where b′ =
√
ρ′λ′C ′, and λ′ and C ′ are the heat conductivity and heat capacity of the liquid,

respectively.
The above mechanism of metal boiling-up is realized at pressures P < Pcr and within

a specific range of metal heating power variation. The lower boundary of this range is defined
by the criterion of homogeneous boiling-up, and its higher boundary, by the condition of
steady-state homogeneous formation of vapor nuclei, τm > τc � τp. Here τm is the maximum
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time during which heterogeneous boiling can be neglected, τc is the time in which ultimate
overheating is reached at a given specific heating power, and τp is the time during which
steady-state homogeneous formation of vapor nuclei in overheating liquid sets in.

4.3.3. Attainable overheating and heterogeneous boiling of liquid metals. The metallic state
of a material is determined by the existence of free electrons; for normal metals there are not
less than one of them per atom. At high enough temperatures (T > 0.5 eV, the concentration
of charged particles close to the binodal becomes so high that they can become centers of
heterogeneous volume vapor generation. Such a mechanism of vapor formation in metals with
a low critical temperature (Tcr ∼ 1 eV, e.g. aluminum, copper etc.) can become realized in
isentropic conditions [102]. Under certain conditions specified below, heterogeneous vapor
formation on charged particles can proceed in a high-power pulsed heating of a liquid metal
as well.

The level of overheating of a liquid metal above which charged particles become
centers of volume heterogeneous vapor formation can be estimated from the relation [102]

εcT
∼=

3

2
√

2

α ω

ΛvapkBζ
,

where α is surface tension, and the coefficient ζ = e2/ 3
√

16πα. By substituting εcT into the
condition governing the onset of “impact” heating, we come to an estimate of the minimum
rate of heating of a liquid metal Ṫ , at which heterogeneous boiling of liquid metal on charged
particles cannot already resist development of homogeneous volume evaporation initiated by
fluctuations:

Ṫ �
(

3

4π

1

ϕΩ0

)− 1
3k εcT
Tb
.

Here, Ω0 is the concentration of centers of heterogeneous boiling, which in the case under
consideration coincides with that of charged particles.

The presence of charged particles close to the binodal shortens the time during which
metastable states of the liquid metal persist up to their breakup into equilibrium two-phase
states. Under the present conditions, it is primarily governed by the time a vapor nucleus
takes to grow to equilibrium size, for which numerical estimates yield ∼ 1 ns, with the time
of metastable state decay ∼ 0.1 − 1 ns. Significantly, the time the liquid metal spends
in metastable states before the first vapor nucleus born in fluctuations appears extends to
approximately τ > 1− 10 ns.

If the characteristic times of volume evaporation are shorter than the “sonic” expan-
sion time of a liquid metal, the above analysis suggests the following pattern for volume
vapor formation in liquid metals. At heating rates Ṫ 6 1010 K/s, liquid metal overheats
insignificantly in the heterogeneous boiling initiated by charged particles. Therefore the
conditions needed for the onset of homogeneous boiling-up are not met. To disperse a liquid
metal in the conditions supporting homogeneous formation of vapor nuclei, the heating rate
should be Ṫ > 1010 K/s.

5. EEC modeling based on similarity criteria

It is assumed that the EEW regimes most appropriate for the preparation of metal
nanopowders are those providing current pause and maximum energy injected into the con-
ductor by its beginning. Such regimes were defined in terms of the theory of dimension-
alities and similarity (Kotov Yu.A., Azarkevich E.I., Sedoy V.S., Krivitskij E.V. et al.)
[20,32,58,103]. The region of the initial conditions in which EEC develops in the regime
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with a current pause was identified by generalization of the available experimental data.
One employed for this purpose the similarity criteria derived from an analysis of the di-
mensionalities of the physical parameters of the phenomenon and phenomenological ideas
bearing on its mechanism. For wires of diameter d, the similarity criteria modeling EEC in
the stages preceding firing of the discharge have the form:

Π1 =
R0

Z0

, Π2 =
C0 U

2
0

d4ε0σ0Z0

, Π3 =
v0

√
L0C0

d
,

where ε0 and σ0 are the characteristic values of internal energy and electric conductivity
of the metal, v0 is the velocity of the rarefaction wave in the metal, and Z0 is the wave
resistance of the discharge circuit. In analysis of experiments performed with conductors
prepared from the same metal, its characteristics ε0, σ0 and v0 may be dropped, to transfer
instead to the generalized variables:

λ = l

(
nd2

√
L0

C0

)
, ε =

C0U
2
0

n2d4
√
L0/C0

, ν =

√
L0C0

d
.

These variables were employed in a quantitative description of the region of initial
conditions in the electric explosion of copper wires in the regime with current pause. In
particular, for the critical wire length we obtain:

λcr ≈ A
(
10−6ε ν

)b
,

where λcr is expressed in (mm−1.Ohm)−1, ε – in J/(Ohm.mm4); v – in mkc/mm; A =
(1, 35±0, 03) ·103; b = 0, 358±0, 014. For wires of critical length, the overvoltage coefficient
can be found from the relation:

Umax
U0

∼= 0.45
(
10−6ν

)−0.2
exp

[
−0.011

(
10−6ε

)
ν
]
.

Applying a similar approach to the problem of generalization of experimental results,
it was demonstrated that EEW regimes developing in conditions without the current pause
can be modeled with the use of the above similarity criteria Π1, Π2 and the criterion:

Π4 =
A0 l

3

U2
0

√
L0C0

.

Here, A0 is a constant characterizing the properties of the medium in which an EEW is
conducted; for an underwater EEC, for instance, A0 ≈ 104 Vcm−2. The magnitude of
overvoltage can be derived with the use of an approximate expression

Umax
U0

∼= 20 4
√

Π2
3
√

Π4.

While the criteria relations are certainly useful in practice, they are applicable only in
the ranges of variation of the working conditions for which they were derived. In view of the
area of applicability of any criterion relations being limited, one has to support activities in
the field of engineering EEC research based on the theory of the related dominant processes.

6. MHD modeling of physical processes involved in an electric explosion in a
metallic conductor

Complex numerical investigation of the main physical characteristics of dispersion
draws from the modified model of magnetic radiation hydrodynamics applicable within a
broad range of states (condensed, liquid, gaseous, plasma) [46, 104-162]. It encompasses the
critical point and the metastable region, as well as transport coefficients for various kinds
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of processes involved in electric- and thermal conduction. In contrast to the conventional
MHD model, this model takes into account the radiation component of energy exchange
and describes magnetic field diffusion into a conductor, Joule heating, heat transport by
electron and radiative heat conductivity, expansion and compression of the medium, includ-
ing formation of shock waves. A possibility is provided for using various equations of state
and of interpolation models for computation of transport coefficients. In a one-dimensional
single-temperature approximation and in the case of cylindrical symmetry, this computa-
tional model is described by the following system of equations expressed in mass Lagrangian
coordinates [33]:

dr

dt
= u;

du

dt
= −r∂P

∂s
+ F ;

d

dt

(
1

ρ

)
=

∂

∂s
(ru) ;

dε

dt
= −P ∂

∂s
(ru) +QJ −

∂W

∂s
;

W = −χρr ∂T
∂s

;

d

dt

(
B

ρr

)
=
∂E

∂s
; J =

ρ

µ0

∂

∂s
(rB) ;

F = −JB; J = σE; QJ =
σE2

ρ

Here, r is the radius (Eulerian spatial variable), s is the Lagrangean mass variable,
u is the mass velocity, t is the time, ρ and T are the density and temperature of the material,
E is the axial component of electric field strength, B is the azimuthal of magnetic field, J is
the axial component of current density, Qj is the specific power of Joulean heating, F is the
Lorentz force; P = P (T, ρ), ε = ε(T, ρ) are the pressure and specific internal energy of the
material, and σ = σ(T, ρ); χ = χ(T, ρ) are the electric conductance and heat conductivity of
the material. One considers here two regions separated by a moving boundary r(t). These
are the regions occupied by the material of exploded conductor and by the medium in which
the explosion takes place, accordingly.

The system of MHD equations is supplemented by the equations of the electric con-
tour, which describe the variation of the current and voltage in components of the discharge
circuit, with due account of their capacity, inductance and active resistance, as well as of
the characteristics of the source and environmental medium:

d

dt
[(L0 + L1)J ] + U1 +R0J = Uc,

dUc
dt

= − J

C0

.

Here, L0 and R0 are the intrinsic inductance and active resistance of the circuit, C0 and U0

are the capacity and charging voltage across the capacitor battery, LV is the inductance of
the conductor–return current lead, and U1 is the voltage at the exploding conductor. To
take into account the magnetic field in the environment, a variable inductance is included
into the circuit substituting the circuit with the conductor. These equations are solved for
the initial conditions J(t = 0) = 0, Uc(t = 0) = U0, combined with the system of MHD
equations.

Electric conductivities in single-phase regions are calculated with wide-range inter-
polation models [133-143, 149-162]. Significantly, these models describe in whatever approx-
imation one chooses, the variation of the electric conductivity for a continuous variation of
the density of material, from solid-state values to the levels characteristic of gases and the
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plasma. Thermal conductivity in single-phase regions was reduced from the Wiedemann–
Franz law. In the region of two-phase states, determination of effective transport coefficients
rests on the well-known model of the heterogeneous medium, which takes into account its
phase composition and structure (mutual phase arrangement) [163]. The extensive charac-
teristics of the material (specific volume, internal energy, enthalpy) in a two phase region are
related to the corresponding characteristics of individual phases through the expressions:

ρ = gρ1 + (1− g) ρ2; ε = gε1 + (1− g) ε2.

Here, g is the concentration of the first phase in the mixture, ρi, εi are the density and
specific internal energy of phases at the coexistence boundary (binodal), which depend on
one thermodynamic variable only, the temperature.

Numerical modeling (simulation) permits one, in particular, select a priori needed
EEC regime by properly matching the initial working conditions (physical properties and
dimensions of the conductor to be exploded, density of the environmental medium etc.), with
the pulsed system of accumulation and transport of energy into the conductor. Its specific
power and magnitude, combined with the homogeneity of distribution over the conductor
cross section, are dominant factors in reaching the required physico-chemical properties of
nanopowders as products of electrical explosion-based dispersion of a metal. Geometrical
characteristics of the conductors to be exploded also markedly influence the possibility of
developing instabilities, just as unfavorable effects of a dense environmental medium. In this
regard, various conditions involved in electric explosion of conductors in the form of wires,
plane plates and thin-walled cylindrical shells were modeled in rarefied gas and liquid water
medium, with the temperature and density of the material being varied within a broad range
of temperature and density of the material (from the condensed to plasma states), depending
on the specific density of injected energy.

Calculations revealed that the part played by MHD “waist”-type instabilities in an
electric explosion of a foil is insignificant. As for the uniformity of energy injection, however,
it is impaired because of the nonuniform distribution of current density over the width of
the foil as a result of edge effects. Edge effects can be eliminated by enclosing a plane foil
into an envelope. It is these considerations that account for our having chosen the exploding
conductor in the form of a thin-walled metallic shell encompassing a rigid dielectric cylinder,
with the return current conductor in the form of a massive metallic rod extended along the
cylinder axis (Fig. 3).

Such a configuration of the load has one more asset—indeed, it makes possible re-
ducing to a minimum the inductance of the “load—return current” element of the electric
circuit, an essential point in reaching high discharge current rise rates. In this case the
load may be placed into a chamber, a reactor of an arbitrary shape and size. Preliminary
estimates showed that a pulsed source of energy intended for experimental studies should
generate current pulses with a leading edge < 10 ns and amplitude of up to 100 kA. For
this purpose, one can use a high-voltage pulse generator, with pulse leading edges on the
order of 1 ns and amplitudes of up to 200 kV, which was developed at the Ioffe FTI for
an “Extreme-M” experimental facility. The basic diagram of the heavy-current electric dis-
charge circuit developed for this facility, complete with the equivalent electric circuit and
the corresponding diagram, which was employed in numerical studies of Z discharges, is dis-
played in Fig. 4. In the present work, the sharpening capacitance was not included, with the
shortening switch S and circuit breaker with a steeply growing resistance Rf (t) employed in
physical and numerical electric circuit switching experiments.
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Fig. 3. Diagram of a typical arrangement of exploding conductor in the dis-
charge chamber (a) and a version of its replacement with a thin-walled cylindri-
cal shell mounted on a rigid dielectric cylinder, with a return current conductor
– a massive metallic rod fixed on the cylinder axis (b). Notes: a: 1 - exploding
conductor; 2 - return current conductor. b: 1 - exploding thin-walled metal-
lic cylindrical shell; 2 - return current conductor; 3 - rigid dielectric cylinder;
4 - water medium; 5 - wall discharge chamber

MHD calculations of a thin-walled metallic shell suggest the possibility of building up
the required EEW regime in a water medium, which would provide uniform energy injection
into the metal and a current “pause”.

Indeed, Fig. 5 demonstrates the behavior with time of the discharge current, voltage
and energy injected into the conductor. We readily see that energy is injected into the mate-
rial predominantly in the stage of the “explosion as such”. Significantly, the main condition
of matching of the conductor with the power supply is fulfilled, namely, the energy of the
magnetic field stored in inductive elements of the electric circuit should be approximately
equal to that of metal sublimation.

The data displayed in Fig. 6 show that conductor heating in the initial stage (stage
of the conductor “waiting” for the explosion) preceding the stage of the explosion proper
is uniform. The nonuniformity of Joule heating of the metal caused by the diffusion of
electromagnetic field is seen to level off rapidly, with the distributions of current density and
Joule heating over the shell cross section becoming practically uniform in the time which is
shorter than the time the conductor is “waiting” for the beginning of the explosion proper,
i.e., for the beginning of the discharge current fall-off [33].

Besides calculation of the transition process in the circuit, distribution of the electro-
static field in the apparatus in the vicinity of the load was studied. The distribution of the
field in the regions where current and voltage are supplied to the load is shown in Fig. 7. The
data obtained in the calculations were employed to determine the probability of breakdowns
in the separating diaphragm when current is supplied to the operating inductive load.
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Fig. 4. Equivalent electric circuit (a) and the corresponding diagram (b) of
the heavy-current electric discharge circuit which was employed in numerical
studies of Z-discharges in the Extreme-M equipment

Fig. 5. Variation of discharge current, voltage and energy injected into the
conductor of a thin-walled metallic shell during EEW in a water medium. Here
I0 is the short circuit current, Em, Ws are the maximum values of voltage and
energy
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Fig. 6. Variation of the distributions of the relative electric field strength and
of the temperature over the shell cross section in the course of Joule heating
in the initial stage (conductor before explosion) preceding the stage of the
explosion proper at different moments of time (ns)

Fig. 7. Distribution of electrostatic field in the region of voltage supply to the load

Incidentally, approach to the critical point in metals is accompanied by a sharp drop
of electrical conductivity resulting from free electron scattering from small-scale density fluc-
tuations. For metals, however, whose critical temperature is comparable (in energy units)
to the thermal ionization potential (∼ 1 eV and higher) and which near the critical point
can be actually a metallic plasma, electrical conductivity grows again with heating. Because
ionization is one of the most energy-intensive processes (for aluminum, for instance, the melt-
ing heat is 10.8 kJ/mole, sublimation heat—327 kJ/mole, and the first ionization potential
is already 577.6 kJ/mole [164]), under pulsed energy supply conditions, equilibrium among
different energy dissipation channels does not set in. As a result, material can coexist simul-
taneously in different energy states. Also possible is repeated electric discharge, and, besides
density, temperature, pressure and entropy fluctuations, variations of charge involving a local
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violation of electric quasi-neutrality of the plasma can form as well. The ambipolar electric
field generated in these conditions should bring about a decrease of density fluctuations, in
this way compressing, as it were, the material and raising its critical temperature, and pre-
venting in this way the falloff of electrical conductivity. This could tentatively be assigned to
free electrons leaving high-density regions for more rarefied regions of material with density
fluctuations, as is the case of gaseous plasma supporting the characteristic phenomenon of
double electric layer formation [33].

7. Modeling of the physico-chemical processes involved in condensation of
products of an electric explosion of metallic conductors in a water
environment

Further development of fluctuations experienced by thermodynamic quantities of a
metal as it approaches the critical point by the described scenario, which culminates in a
phase explosion and condensation of its products in the environmental medium, may have
some aspects essential for the formation of condensing nanosized particles and stemming
from the properties both of this medium and of the explosion products proper. The above
results of the numerical analysis stress the importance of imposing limits on the rate of metal
expansion. It appears reasonable to invoke for this purpose high-power heating not of wires
but rather of thin-walled tubular conductors immersed in a dense liquid medium. In contrast
to a rarefied gas, a dense, in particular, an aqueous medium can intensify cooling of a melting
and boiling-up metal of the conductor, thus inhibiting its expansion in the electric explosion.
This medium, however, will experience itself the variations of the thermodynamic state up to
development of supercritical fluids generated by fast local heating, shock wave propagation,
collapse of cavitation bubbles and other similar phenomena described in considerable detail
in the literature [50].

In these conditions, the process of metal vapor condensation reveals its specific fea-
tures, which are associated not only with efficient cooling but with the presence of electric
charge on the particles of explosion products as a result of thermal ionization of the metal
close to the critical point, as well as with their interaction with supercritical water. The
active [(H2O)n(Me)m] complexes formed in the process can transform into nuclei of the new
phase – the metal oxide MemOn. Formation of oxide nanoparticles in the supercritical fluid
thus formed is supposedly governed by a chemical redox reaction accompanied by release of
hydrogen k(Me)+l(H2O)= g(MemOn)+l(H2), where k = gm, l = gn. Such a reactor, with a
proper choice of the metal to be exploded (Al, Ti, Zr etc.), can provide a highly productive
synthesis of oxide nanoparticles. Incidentally, the method of synthesis described above is
potentially capable of producing oxide nanoparticles differing from those of the same oxides
but prepared by electrical explosion of metals in air or other oxygen-containing gas media,
as was proposed in Refs. [43,65,159,165,166], or by hydrothermal synthesis in its classical
methodological approach [167]. The oxide nanopowders formed in the above conditions can
reveal, due to the reducing medium and the high-energy conditions characteristic of local-
hydrothermal synthesis, in particular, a still higher level of catalytic, sorptive and other
functional characteristics than, for instance, those obtained by the traditional hydrothermal
method of their synthesis [168-172].

Evaluation of the necessary nucleus formation energy (the free Gibbs energy) and of
the critical size of the nuclei corresponding to its maximum (Fig. 8), requires, in the condi-
tions considered here, taking into account the contribution not only of the surface tension
and of the difference between the “particle-environmental medium” chemical potentials but
of the difference between their electric potentials as well.
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Fig. 8. Dependence of the Gibbs energy and of its components involved in
formation of a nucleus on its radius

Spontaneous growth of a nucleus is known to be possible only under further de-
crease of the Gibbs free energy (Fig. 9). In the particular case of formation of a spher-
ical nanoparticle and of absence in the system of spatial constraints described in Refs.
[173,174], the Gibbs free energy can be conceived as a sum of its volume and surface com-
ponents ∆G = −(4/3)πR3∆µ/Va + 4πR2σ(R). Here, ∆µ > 0 is the difference between the
chemical (electrochemical) potentials of a nanoparticle and of the phase-forming medium,
V = (4/3)πR3 is the volume of the nucleus of a spherical nanoparticle, Va is the molar
volume of the material of the phase-forming medium, and σ = σ(R) is surface tension.
The critical size of the nucleus Rkp is found from the condition of maximum free energy
d(∆G)/dR = 0. It is Rkp = 2σ(∞)Va/∆µ if one disregards the dependence of surface ten-
sion on particle size, and Rkp = l0[1 − 2δ/l0 + (2δ/l0 + 1)1/2] – with its inclusion for small
particle radii with the relation σ(R) ≈ σ(∞)/(1 + 2δ/R) where l0 = σ(∞)Va/∆µ, and δ is
the “Tolman length” [175]. The critical Gibbs energy at the point of the maximum, derived
for the case of formation of homogeneous condensation nuclei on the surface of the nuclei
appearing spontaneously as a result of fluctuations of the density and concentrations of ma-
terial in the system, disregarding the dependence of surface tension on particle size, makes
up ∆Gkp = (4/3)πR2kp(σ − 2/3σ), or one third of the surface energy of a nucleus. The
remaining two thirds are canceled by the chemical component of the excess energy generated
in the phase transition. Incidentally, ∆µ = 2σ(∞)Va/Rkp.

Fig. 9. Variation of the characteristics of thermodynamic processes plotted
vs. size of the nanoformations: 1 - spontaneous design process is impossible,
2 - spontaneous design process is possible
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The applicability of the general thermodynamic approach to estimation of the ho-
mogeneous formation of particles of small size is limited by the condition in which the
specific surface energy σ(R) ≈ σ(∞)/(1 + 2δ/R) is higher by far than its RMS fluctuations
〈〈∆σ〉2〉 = (kT/8πR)(δσ/∂R)P,S = kTδ σ(∞)/[4πR(R + 2δ)2]. This condition is met for
R� [kTδ/σ(∞)]1/3. Estimates suggest that at a low condensation temperature, the critical
size of the nucleus can make up Rkp = (5÷ 10) · 10−10 m, which is the size of a few atoms.
In this case, adding the next atom will change ∆G in a discrete way, which is incompatible
with the principle of thermodynamic theory by which surface energy and the Gibbs free
energy vary continuously. One has to transfer to the statistical theory of nucleus formation
based on the parameters of interatomic interaction among individual atoms, with the spe-
cific features of their behavior governing the probabilities of growth and decay of clusters,
in which the relative fluctuations of the number of atoms and energy follow the standard
law ∼ N−1/2 [67]. At a high temperature, this condition of thermodynamic approach for
nanosized particles is met.

Because in supercritical conditions the main factor responsible for homogeneous ag-
gregation of particles associated with surface tension at the liquid—gas interface is inactive,
supercritical water is capable of dissolving substances which are practically insoluble in stan-
dard conditions; some oxides also belong here [176-178]. Subsequently, when the solution
reaches supersaturation, the solid crystalline phase of oxide nanoparticles of about the same
size and with a fairly well developed surface is precipitated. The critical degree of super-
saturation γ = c/cs can be evaluated by expressing the difference of the chemical potentials
obtained above, ∆µ = 2σ(∞)Va/Rkp of the critical nanoparticle nucleus and of the phase-
forming medium, through the concentration c of the material in the supersaturated solution
and its equilibrium solubility cs relative to the crystalline phase. For an ideal solution we
obtain ln γ = ln(c/cs) = ∆µ/RT = 2σ(∞)Va/Rkp RT . The parameters of the solid nuclei
forming in the liquid phase in a supercooled solution can likewise be derived from the above
expression using the relation ∆µ = ∆HΠ − T∆SΠ = ∆HΠ∆T/TΠ where ∆T = TΠ − T s the
supercooling, and ∆HΠ is the enthalpy of the process.

In a similar way, one can obtain quantitative estimates for heterogeneous conden-
sation in formation of a new phase on the already available surfaces (walls of the vessel,
particles of foreign substances acting as condensation nuclei). As follows from these esti-
mates, the work expended for the formation of solid nuclei in heterogeneous condensation
should be smaller than that spent in a homogeneous process by the same factor the volume of
the bubble nucleus on the surface of a condensation nucleus is smaller than the volume of the
sphere of the same curvature. The processes of adhesion and wetting, active in interaction
between the new phase and a foreign surface lower the energy of formation of nuclei, and
the stronger are the adhesion and wetting, the smaller is the degree of supersaturation that
will initiate condensation. The appearance of a charge in a metastable system will likewise
reduce the Gibbs energy of formation for nuclei. Therefore, nuclei carrying a charge form at
lower degrees of supersaturation, primarily because surface tension decreases with increas-
ing electric potential of the surface (as follows from Lippmann’s relation, dσ/dφ = −qs, the
effect being the stronger, the larger is the charge of the unit surface qs).

The above estimates relate to a single nucleus only and disregard the entropy compo-
nent of the energy involved in formation of a mass of nuclei. For low interface tensions, the
entropy component can cancel out the surface energy and initiate spontaneous dispersion.
Evaluation of the conditions governing formation of nuclei from materials residing in non-
autonomous state in media with spatial limitations, in particular, those resulting from the
presence of nanoparticles of another phase distributed in these media, becomes complicated
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significantly, by requiring inclusion of the structure, composition and properties of the lat-
ter. In the case of classically-shaped nuclei (cube, sphere, cylinder), one succeeds in deriving
analytical expressions relating their geometrical characteristics to the size of the nucleus of
the new phase [173,174].

By the theory of M. Volmer and Ya. I. Frenkel [100,179], the kinetics of condensation-
based formation of a new phase are determined by the rates both of generation of condensa-
tion centers I = A1 exp[−∆G1/(RT )], and of the supply of the material to the new conden-
sation centers U = A2 exp[−Eη/(RT )]. The first of them is proportional to the probability
of generation of condensation centers in accordance with the Gibbs energy ∆G1, and the
second, proportional to the probability of their “survival”, in accordance with the activation
energy Eη of the transition of material from the original phase to the surface of the nucleus.
The total rate is a product of these probabilities, and it can pass through an extremum,
depending on the relative values of the energies ∆G1, Eη, temperature T and coefficients of
proportionality A1, A2.

Besides the kinetic characteristics, one can readily use in evaluation of the degree of
thermodynamic non-equilibrium of the process involved and conditions of self-organization
of dissipative structures, entropy-based indices characterizing internal instability of the con-
version of energy, which should be assigned to the increasing part played by the entailed
thermodynamic fluxes and forces. It was shown [180,181] that in two-phase media, fluc-
tuations of their characteristics become energetically preferable to steady-state regimes, by
supporting lower energy dissipation (gain of entropy) with the coefficient of thermodynamic
nonstationarity ε = S̄nstat/Sstat < 1. Here, Sstat is the gain of entropy in a system with
steady-state thermodynamic fluxes and forces, and Snstat is its average value in nonstation-
ary regimes with fluctuations of fluxes and forces.

8. Modeling of integral characteristics of the phase-forming media

In all cases of outwardly random formation of such two-phase macroscopically strongly-
inhomogeneous media, they reveal elements of deterministic behavior (deterministic chaos
[182] and fractal self-similarity [183]). They are actually consequences of nonlinear interac-
tion among components of a dissipative system and become most prominent near a specific
value of phase concentration called the percolation threshold [184].

One of such characteristic effects in the field of consideration is the sharp drop in
the electric conductivity of metals caused by electrons scattering from small-scale density
fluctuations as they approach the critical point. At the same time, in metals whose critical
temperature is comparable to its first ionization potential and which close to the critical point
represent, as it were, a metallic plasma, the electric conductivity again increases. In these
conditions, electrodual phases, scattered chaotically in a randomly nonuniform medium,
assemble into a cluster of a conduction chain (or of its antipode—an insulation chain). One
can pass along it through the whole system, retaining or losing its electric conductivity,
respectively, as shown in this particular case. Although these effects are governed only by
the chain reaching the opposite boundaries of the system (percolation medium), the cluster
itself will contain other chains as well, which adjoin this conducting “skeleton” while not
maintaining the percolation of the system as a whole. Modeling of such phenomena in a
randomly inhomogeneous system was analyzed, in particular, in Ref. [185].

8.1. Effective conductance of electro-dual media

If the characteristic dimension of averaging exceeds by far that of the inhomogeneity,
some integral characteristics of the system, for instance, the effective electrical conductivity
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σe, which relates volume-averaged fields 〈E〉 and currents 〈j〉 in the expression 〈j〉 = σe〈E〉,
in the vicinity of the percolation threshold turn out not to depend on the specific geometry of
phase arrangement in the system. Above the percolation threshold, the effective conductivity
of the system will be determined only by the phase conductivities σ1 and σ2, concentration
p of phase 1 and concentration (1− p) of phase 2 in the form σe = [σ1σ2/p(1− p)]1/2 [185],
and below the percolation threshold the conductivity will be zero.

In the lattice model of the “percolation medium” [184,186,187] the phase conduc-
tances are identified as whole (conducting the electric current) or blocked (non-conducting)
connections among the lattice sites, and phase concentrations, as the probabilities of the cor-
responding bonds being whole or blocked. The percolation threshold in the bond problem
corresponds to the probability of connection of whole bonds into a cluster chain, which for
the first time brings the conductivity of a system as a whole to a non-zero value, and the per-
colation threshold in a site problem, to the probability of blocking of all connections leaving
a site and resulting in zero conductivity of the system. As follows from calculations, although
the percolation threshold for the problem of connections for any lattice does not exceed that
for the problem of sites for the same lattice, the thresholds themselves depend significantly
on the type of the problem considered [184,188]. To that end, it turns out that the number of
bonds per site, just as the average fraction of the volume occupied by unblocked sites around
each lattice site, does not depend on the lattice proper. It is determined by the dimension of
problem only, leaving 2 for two-dimensional lattices and 1.5 for the three-dimensional ones in
the first case, as well as 0.45 for two-dimensional lattices and 0.15 for three-dimensional ones
in the second case [184]. Another feature common for problems of all types is also the way in
which these thresholds are approached by such parameters as the fraction of the lattice sites
belonging to the cluster formed, the geometric size of the cluster (correlation radius) and
the effective electrical conductivity of the system expressed in the form of power functions
of a given phase concentration: Pj(x) = Bj(x − xc)βj for x > xc and Pj(x) = 0 for x < xc,
where Bj is a numerical coefficient, and βj is the critical index of the quantity Pj. Moreover,
it turns out that the values of all critical indices are universal for all percolation problems;
they do not depend on the specific choice of the model of the medium, and are determined
by the dimension of space only. Indeed, for two-dimensional problems the universal critical
index of correlation length is ν = 1.33, while for three-dimensional ones ν = 0.8 − 0.9, the
index of electrical conductance for three-dimensional problems t = 2ν, for two-dimensional
ones t = υ, and the mass ratio index for two-dimensional problems β = 0.14, while for
three-dimensional ones – β = 0.4 [184].

8.2. Fractal characteristics of media with scaling invariance

This can be used as a basis for the determination of the fractal dimension of the
conduction chain cluster formed. It is a specific characteristic of the self-organizing scaling
symmetry (hierarchical self-similarity) in all space scales in which a system is considered,
from the size of a few lattice cells to the characteristic size of fluctuations (correlation radius)
encompassing the whole metastable region as one approaches the critical point (percolation
threshold). Based upon the determination of fractal dimension as a power exponent D of
non-Euclidian expression Φ ∼ mD relating the rate of variation of the number Φ of elements
in the fractal and the variation of the scale m of their consideration [189], one can find the
relation connecting the fractal dimension of a percolation cluster with the critical indices in
the form D = d − β/ν The numerical values of the fractal dimension of the “percolation
medium” is D ≈ 1.895 for two-dimensional, and D ≈ 2.556 for three-dimensional problems
[188]. This is smaller than the topological (Euclidean) dimension of nested space and can be



284 A.N. Kovalenko, N.V Kalinin

identified with versions intermediate between the dimensions of a line and an area, as well
as between an area and a volume, so that the percolation skeleton reminds a lace cloth or a
sponge in the first and second cases, respectively.

The above figures were taken from one of particular versions of numerical evalua-
tion applied to such multifractal media. The Renji dimension serves as a general expres-
sion of their dimensions, used in the description of real dissipative objects [190] DRq =

lim
ε→0

lim
τ→0

lim
m→∞

[
1

1−q
ln IRq(q,ε)

ln(1/ε)

]
. Here, IRq(q, ε) = [

M(ε)∑
i=1

pqi (ε)] is the generalized Renji en-

tropy of order q; M(ε) is the minimum number of “measuring” cubes with an edge ε required
to cover the fractal in n-dimensional phase coordinate nesting space; pi are the probabili-
ties of contact of the i-th cube by the phase trajectory; and m is the number of points
employed in calculation of the dimension. This relation yields, as particular cases for differ-
ent q, the well-known relations for entropy of Kolmogorov-Sinay and of fractal dimension of
Kolmogorov-Hausdorff (q = 0), entropy of Shannon and for the corresponding information
dimension (q = 1), correlation entropy and correlation dimension (q = 2) [191]. The Renji
dimension being a monotonically decreasing function of q, mapping of the fractal in the
latter case for q = 2 requires the smallest dimension n of the nesting space, and it is this
dimension that is used in evaluation of the fractal dimension of a percolation cluster as the
most appropriate one for calculations.

Significantly, this fractal self-similarity for percolation clusters is met in the statistical
meaning only. It reflects elements of deterministic behavior (deterministic chaos) in an
externally chaotic formation of similar macroscopically inhomogeneous media as a product of
nonlinear interaction of components of a strongly inhomogeneous dissipative thermodynamic
system.

9. Conclusion

Dispersion of a metal driven by the development of thermodynamic instabilities of its
physical state in the vicinity of the critical point is of a pure and applied research interest in
the field of present-day nanotechnologies. This review offers an analysis of the possibility of
employing the approach outlined here in obtaining oxide nanoparticles up to a few nanome-
ters in size by electrical explosion of metallic conductors (EEC) in a chemically active dense
aqueous medium.

Various physical models were invoked to show that this would require constraining
the part played by non-thermodynamic mechanisms in destruction of a metal in the course
of varying the physical state of the conductor being exploded, so as to mediate its transi-
tion close to the limit of the nonequilibrium metastable state with the maximum possible
overheating and fast approach to the critical point through “explosive” boiling-up combined
with generation of homogeneous vaporization.

Estimates suggest that the rate of Joule heating by electric current required for
this purpose with a metal of the aluminum and copper type, performed with due account
of counteracting factors, should be not less than Ṫ > 1011 K/s. This requirement is met
for power densities generated in the material by injected energy in excess of > 1010 W/cm3

and supercritical temperatures (T > Tcr) reached in times τ < 100 ns. Among the natural
factors which plague reaching the highest possible metastable states of the melting metal
and the onset of homogeneous vaporization are the evaporation wave propagating inside the
overheating metal and formation of plasma in the vicinity of the critical point, which drives
heterogeneous boiling on charged particles. To limit the part played by non-thermodynamic
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instabilities driven by surface tension forces, magnetohydrodynamic (MHD) instabilities of
the waist and convective types, current skinning and development of barocapillary instability,
it is proposed to employ a geometric configuration of electric explosion of conductors new for
the problem considered here. It is the explosion of a thin-walled cylindrical shell positioned
on a rigid dielectric cylinder, with the return current conductor stretched axially inside the
shell. Significantly, the reactor being of a fairly arbitrary shape and size, the load can be
placed into a water chamber.

Experimental studies prepared in accordance with the corresponding calculations
require development of a pulsed source of energy which would provide a high rate of growth
for the discharge current and a high power of electric discharge through the shell, QV > 1
TW/cm3, by generating current pulses with the leading edge less than < 10 ns and amplitude
of up to 100 kA. Present-day technology of accumulation and switching of energy offers
adequate possibilities for injection of the required specific powers into a material.

Of a particular significance for realization of optimum regimes of energy input into
a conductor is matching its physical properties and size with the characteristics of the en-
ergy source used. To solve this problem, one can conveniently use MHD calculations of EEC,
which demonstrate the possibility of development of the desired EEC regime of a thin-walled
metallic shell in a water medium, which would provide uniform power input into the metal
and a current “pause”. These calculations involve equations of state, which take into account
single-phase and equilibrium two-phase states of the material in mean-field approximation
bounded by binodal branches. The fairly few attempts undertaken in investigation of EEC-
based metastable states by MHD modeling and application of statistical approaches of the
theory of macroscopic invariance to description of critical phenomena in the vicinity of the
critical point of metals are still far from completion. At the same time, one succeeds in
estimating within this framework some integral characteristics of such systems, of the type
of their effective electrical conductivity and fractality. They show up as elements of deter-
ministic behavior (deterministic chaos and fractal self-similarity) in all cases of outwardly
chaotic formation of such two-phase, macroscopically strongly nonuniform media as a result
of nonlinear interaction of components of a dissipative system.

The conclusive stage of nanoparticle formation in an electric explosion of metallic
conductors in a water medium encompasses flying apart and condensation of its products.
These processes are complicated by the presence on particles of an electric charge produced in
thermal ionization of the metal near the critical point, as well as by their chemical interaction
with the supercritical fluids forming as a result of fast local heating, shock wave propagation,
collapse of cavitation bubbles and other similar phenomena. Because the main reason of
homogeneous aggregation of particles, which is surface tension at the liquid—gas interface, is
not realized in supercritical conditions, supercritical water is capable of dissolving substances
practically insoluble under normal conditions, including some oxides. After the solution had
reached subsequently supersaturation, a solid crystalline phase of oxide nanoparticles of
about the same size and a fairly developed surface precipitates.

The method of synthesis considered here is potentially capable of producing oxide
nanoparticles differing from nanoparticles of the same oxides but synthesized in electric ex-
plosion of metals in air or other oxygen-containing gaseous media, as well as in hydrothermal
synthesis in its classical methodological form. The oxide nanopowders, formed in EEC of
metals in water, can possess, in particular, due to the reducing medium employed and high-
energy conditions mediating the locally hydrothermal synthesis in the supercritical fluid
nanoreactor, a still higher level of catalytic, sorption and other functional characteristics.
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reticheskoi Fiziki (Journal of Experimental and Theoretical Physics), 29(3), P. 333–338 (1955), (in
Russian).

[136] Keldysh L.V. Ionization in the Field of a Strong Electromagnetic Wave. Soviet Physics JETP, 20,
P. 1307–1314 (1965).

[137] Yermakov V.V., Kalitkin N.N. Electronic transport in dense plasma. Fizika Plazmy (Plasma Physics
Reports), 5(3), P. 650–658 (1979), (in Russian).

[138] Volkov N.B. Plasma conductivity model of metal. Zhurnal Tekhnicheskoi Fiziki (Technical Physics),
49(9), P. 2000–2002 (1979), (in Russian)

[139] Burtsev V.A., Kalinin N.V. On electric conduction in the stage of proper explosion of conductors.
Proceeding of 15th International Conference on High-Power Particle BEAMS St Petersburg, Russia,
2004 July 18-23, Efremov Scientific Research Institute of Electrophysical Apparatus, 830-833.

[140] Burtsev V.A., Kalinin N.V. On electrical conductivity at the stage of the actual explosion of conductors.
In: Physics of Extreme States of Matter. Chernogolovka city, 2005, 156-158 (in Russian).

[141] Lee Y.T., More R.M. Electron conductivity model for dense plasmas. Phys. Fluids, 27(5), P. 1273–1286
(1984).

[142] Likal′ter A.A. Conductivity degenerate gas quasi-atomic. Teplofizika Vysokikh Temperatur (High Tem-
perature), 25(3), P. 424–429 (1987), (in Russian).

[143] Likal′ter A.A. Gaseous metals. Sov. Phys. Usp., 35(7), P. 591–605 (1992).
[144] Rolader G.E., Batteh J.H., Desai P.V. Comparison of partition function calculation for metal plasmas.

J. Appl. Phys., 64(3), P. 1101–1107 (1988).
[145] Vorobiev V.S., Rachel A.D. Numerical study of some modes of electric explosion of conductors.

Teplofizika Vysokikh Temperatur (High Temperature), 28(1), P. 18–23 (1990), (in Russian).
[146] Vorobiev V.S. Study of equilibrium liquid-vapor using interpolation equations of state. Teplofizika

Vysokikh Temperatur (High Temperature), 33(4), P. 557–564 (1995), (in Russian).
[147] Vorob′ev V.S., Malyshenko S.P. Phase equilibrium in a current-carrying liquid conductor in Z-pinch

geometry. Journal of Experimental and Theoretical Physics. 84(6), P. 1098–1105 (1997).



292 A.N. Kovalenko, N.V Kalinin

[148] Vorobiev V.S. On model description crystalline or liquid state. Teplofizika Vysokikh Temperatur (High
Temperature), 34(3), P. 397–406 (1996), (in Russian).

[149] Tkachenko S.I. Simulation of an early stage of a conductor’s electrical explosion. Technical Physics,
45(7), P. 950–952 (2000).

[150] Rinker G.A. Systematic calculation of plasma transport coefficients for the Periodic Table. Phys. Rev.
A, 37A(4), P. 1284–1297 (1988).

[151] Bobrov V.B., Allahyarov E.A. To the calculation of the electrical conductivity of fully ionized plasma
with arbitrary electron degradation. II. Liquid metal plasma. Teplofizika Vysokikh Temperatur (High
Temperature), 31(3), P. 352–356 (1993), (in Russian).

[152] Perrot F., Dharma-Wardama M.W. Equation of state and transport properties of multispecies plasma:
Application to multiply ionized Al plasma. Phys. Rev. E, 52, P. 5352 (1995).

[153] Silverstrelli P.L. No evidence of a metal–insulator transition in a dense aluminum: a fist principle
study. Phys. Rev. B, 60(II), P. 16382 (1999).

[154] Redmer R., Kuhbolt S. Transport coefficients for dense metal plasma. Phys. Rev. E. 62, P. 7191 (2000).
[155] Apfelbaum E.M., Ivanov M.F. Calculation of transport coefficients with allowance for the chemical

composition of a low-temperature high-density metal plasma. Plasma Physics Reports, 27(1), P. 76–81
(2001).

[156] Apfelbaum E.M. Calculation of the electrical conductivity of liquid aluminium, copper and molybde-
num. High Temperature, 41(4), P. 466–471 (2003).

[157] Fortov V.E., Leontjev A.A., Dremin A.N. Parameter estimation of the critical point. Teplofizika
Vysokikh Temperatur (High Temperature), 13(5), P. 1072–1080 (1975), (in Russian).

[158] Fortov V.E., Leontiev A.A. Kinetics of evaporation and condensation on metal expansion by uniform
entropy conditions. Teplofizika Vysokikh Temperatur (High Temperature), 14(4), P. 711–717 (1976), (in
Russian).

[159] Romanov G.S., Smetannikov A.S. Numerical simulation of layer pulsed discharge. Pis′ma v Zhurnal
Tekhnicheskoi Fiziki (Technical Physics Letters), 51(4), P. 678–685 (1981), (in Russian).

[160] Bushman A.V., Romanov G.S., Smetannikov A.S. Theoretical Modelling of the initial layer of pulse
discharge in the light of the State equation of Explorer. Teplofizika Vysokikh Temperatur (High Tem-
perature), 22(5), P. 849–856 (1984), (in Russian).

[161] Romanov G.S., Smetannikov A.S. Numerical simulation of pulsed discharge with the layer of energy
transfer radiation. Zhurnal Tekhnicheskoi Fiziki (Technical Physics), 52(9), P. 1756–1761 (1982), (in
Russian).

[162] Romanov G.S., Smetannikov A.S. Modeling of flat high current digits. Calculation of discharge in the
MHD approximation. Teplofizika Vysokikh Temperatur (High Temperature), 28(2), P. 209–215 (1990),
(in Russian).

[163] Dul′nev G.N., Novikov V.V. Thermal mode of a lamp operating in the pulse. Journal of Engineering
Physics and Thermophysics, 41(1), P. 757–762 (1981).

[164] Grigoriev I., E.Z. Mejlihova (editors). Physical Quantities. Guide. Energoatomizdat, oscow (1991).
1232 p.(in Russian)

[165] Kotov Y.A., Azarkevich E.I., Medvedev A.I., Murzakaev A.M., Kuznetsov V.L., Samatov O.M., Dem-
ina T.M., Timoenkova A.K., Stoltz A.K. Nanopowders of oxides of iron, the electric wire explosion.
Inorganic Materials, 43(6), P. 633–637 (2007).

[166] Kotov Yu.A. Electric wire explosion-method of obtaining weal agregated powders. Rossiiskie Nan-
otekhnologii (Nanotechnologies in Russia), 4(1-2), P. 40–51 (2009), (in Russian).

[167] Pozhidaeva O.V., Korytkova E.N., Drozdova I.A., Gusarov V.V. Phase state and particle size of ultra-
dispersed zirconium dioxide as influenced by conditions of hydrothermal synthesis. Russian Journal of
General Chemistry, 69(8), P. 1219–1222 (1999).

[168] Almjasheva O.V., Gusarov V., Danilevich Ya.B., Kovalenko A.N., Ugolkov V.L. Nanocrystals of ZrO2

as sorption heat accumulators. Glass Physics and Chemistry, 33(6), P. 587–589 (2007).
[169] Almjasheva O.V., Ugolkov V.L, Gusarov V.V. Thermochemical analysis of desorption and adsorption

of water on the surface of zirconium dioxide nanoparticles. Russian Journal of Applied Chemistry, 81(4),
P. 609–613 (2008).

[170] Almjasheva O.V., Vlasov E.A., Khabenskii V.B., Gusarov V.V. Thermal stability and catalytic prop-
erties of the composite amorphous Al2O3-nanocrystals ZrO2. Russian Journal of Applied Chemistry,
82(2), P. 217–221 (2009).



Thermodynamic instability of compound and formation of nanosized particles... 293

[171] Almjasheva O.V., Antonov U.F., Gusarov V.V., Danilevich Y.B., Didenko A., Kovalenko A.N. Disper-
sion of powdered coal with an oxide catalysts in water, as the liquid fuel. Proceedings of Photonics and
Optoinformatike. SpbSU ITMO, St. Petersburg, 2010, P. 168–186 (in Russian).

[172] Almjasheva O.V., PostnovA.Yu., Maltseva N.V., Vlasov E.A. Thermostable catalysts for oxidation of
hydrogen based on ZrO2–Al2O3 nanocomposite. Nanosystems: Physics, Chemistry, Mathematics, 3(6),
P. 75–82 (2012), (in Russian).

[173] Almjasheva O.V, Gusarov V.V. Nucleation in media in which nanoparticles of another phase are
distributed. Doklady Physical Chemistry, 424(2), P. 43–45 (2009).

[174] Almjasheva O.V., Gusarov V.V. Features of the phase formation in the nanocomposites. Russian
Journal of General Chemistry, 80(3), P. 385–390 (2010).

[175] Rekhviashvili S. Sh., Kishtikova E. V. On the size dependence of the surface tension. Technical Physics,
56(1), P. 143–146 (2011).

[176] Galkin A.A., Lunin V.V. Subcritical and supercritical water: a universal medium for chemical reactions.
Rus. Chem. Rev., 74(1), P. 21–35 (2005).

[177] Valyashko V.M. Phase equilibrium with supercritical fluids. Supercritical Fluids. Theory and practice,
1(1), P. 10–25 (2006), (in Russian).

[178] Gorbaty J.E., Bondarenko G.V. Overcritical State water. Supercritical Fluids. Theory and practice,
2(2), P. 5-19 (2007), (in Russian).

[179] Volmer M. Kinetics of new phase formation. Nauka, Moscow (1986), 208 p. (in Russian).
[180] Kovalenko A.N. Limit possibilities of process intensification of energy conversion in nonequilibrium

thermodynamic systems. Procceding of Two-phase Flow in Power Machines and Apparatus. Leningrad,
Nauka (1991) (in Russian).

[181] Kovalenko A.N. Regulation and thermodynamic stability of non-equilibrium processes of energy con-
version of speed. Trudy CKTI, JSC, 281(2), (1996),(in Russian).

[182] Schuster H.G. Deterministic Chaos. An Introduction. WILEY-VCH Verlag GmbH & Co. KGaA, Wein-
heim, 1985.

[183] Feder J. Fractals. Plenum Press, New York (1988).
[184] Shklovskii B.I., Efros A.L. Percolation theory and conductivity of strongly inhomogeneous media. Sov.

Phys. Usp., 18, P. 845–862 (1975).
[185] Dykhne A.M., Snarskii A.A., Zhenirovskii M.I. Stability and chaos in randomly inhomogeneous two-

dimensional media and LC circuits. Phys.Usp. 47, P. 821–828 (2004).
[186] Ziman J.M. Models of Disorder. Cambridge Univ. Press, Cambridg (1979), 592 p.
[187] Aranson I.S., Gaponov-Grekhov A.V., Rabinovitch M.M., Rogalsky A.V., Sagdeev R.Z. Lattice models

in nonlinear dynamics of non-equilibrium environments. (Preprint of IAP AS USSR 163). Gorkij, 1987
(in Russian).

[188] Sokolov I.M. Dimensionalities and other geometric critical exponents in percolation theory. Sov. Phys.
Usp., 29, P. 924–945 (1986).

[189] Mandelbrot B.B. Fractals: Form, Chance and Dimension. Freeman, San Francisco (1977), 365 p.
[190] Rénji A. On a new axiomatic theory of probability. Acta Mathematica Hungaria, 6(3-4), P. 285–335

(1955).
[191] Klimontovich Yu.L. Entropy and information of open systems. Phys. Usp., 42, P. 375–384 (1999).


