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1. Introduction

There are several cases when real experimental data is non-harmonic, contains noise, and
is non-stationary in time range. This leads to difficulties in using the most popular method —
the Fourier transform. The finding of quasiharmonic components is a very important problem in
data analysis because this information could quite precisely show the repeatability of processes
that occur in a studied system.

The wavelet transform has been recognized for the analysis of experimental data as a
method that gives information about process that is not available for the Fourier transform. But
there still exists no criteria for the selection of which method should be used for the analysis of
experimental data.

Here, we tried to compare results of applying three methods to model signal that (as
we know) contains or does not contain (quasi)harmonic components — as the first part, and
applying to experimental data — as the second part. Results of such comparison give us
information about the ‘harmonic sensitivity’ of each method and could give some criteria for
selecting the appropriate method for analysis.

Let’s look at the formulation of a problem. We have some signal that changes over time:

x = f (t) .

This signal could contain both harmonic components and random noise. The purpose of
analysis is to find quasi-harmonic components independently of noise.

The first method, coming from classical spectral analysis, is the Fourier transform. This
method could be defined just using the formula of the transform (1):
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F (w) =
1√
2π

+∞∫
−∞

f (t) e−iwtdt. (1)

The result of this transform shows the spectral (frequency) content of the signal. We
can get the best result for this transform if the signal is harmonious on all time axes. But, if we
apply this method to the signal, which apart the harmonic components also has the noise, the
result will be less unambiguous.

In addition, a more significant problem is the fact that the Fourier transform of two
completely different signals can be very similar — for example, for a sum of two sine waves
and the signal from two successive sine waves. This problem could be partly solved using
the second method — the Short-time Fourier transform (STFT). It is defined by the following
formula:

F (t, w) =
1√
2π

+∞∫
−∞

f (τ)W (τ − t) e−iwτdτ. (2)

There is function W (t) that is called window function. A definite property of this

function is that it has a norm that equals 1:

+∞∫
−∞

W (τ) dτ = 1.

Insertion of the window function into the formula for the Fourier transform gives us a
chance to explore signal in short-time area — the window function is defined at compact with
fixed width of the support and product of the window function and the signal cuts a small
part of the signal. Applying of the Fourier transform formula to this product then gives us
the spectral components corresponding exactly to this part of signal. As soon as the window
‘slides’ over the signal, this gives us information about the spectral components of each such
small part of the signal. But, as soon as this method is based on the first method, we still have
a lot of difficulties with the detection of quasiharmonic components in a non-stationary signal.

The last method is the wavelet transform. This method is based on absolutely different
premises, unlike the previous methods, and because of that, it has other properties and results
of its application.

The wavelet transform is defined by the following formula:

T (a, b) =
1√
|a|

+∞∫
−∞

f (t) Ψ∗
(
t− b
a

)
dτ. (3)

As the ‘mother wavelet’ can be different functions, the selection of this function will
give different properties to the resulting transform. These functions could be complex-valued
or real-valued, could be defined as a compact set or as the whole real axis. It may or may not
be based on quasi-harmonic functions. In this article, we used Morlet wavelet as the ‘mother
wavelet’ for the transform. [1–5].

2. Model signals

Let’s apply these methods to model signal.
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2.1. Analysis of ‘pure’ signal

‘Pure’ signal — the signal which has two harmonics with different frequencies. There is
a plot of this signal on Fig. 1.

FIG. 1. Model ‘pure’ signal – the signal which has two harmonics with different frequencies

As described before, our purpose is to select method that gives us the most information
about the quasiharmonic components of a signal.

The Fourier transform is shown in Fig. 2 as frequency characteristics. There are two
peaks at two frequencies that correspond to two harmonic components in the signal. But even
having information about the harmonic components, we have no information about true form of
the signal.

Short-time Fourier transform with window height equals 200 ticks is shown in Fig. 3.
STFT of model ‘pure’ signal detects two harmonics with frequencies equal ∼ 0.09

arbitrary unit (a.u.) and ∼ 0.245 a.u.
The wavelet transform and its cross-sections are shown in Fig. 4(a–c). Dashed lines in

Fig. 4a show positions of the cross sections.
Analysis of the obtained results shows us that the wavelet transform allows us to pre-

cisely detect harmonic components of the signal and gives us good representation of analyzed
signal.

2.2. Analysis of ‘pure’ signal with a noise

In this section we add ‘white noise’ with an amplitude that almost equals the amplitude
of the ‘pure’ signal. Our purpose is also to find two harmonic components using three methods.
The plot of this signal is available in Fig. 5, its Fourier transform is in Fig. 6, short-time Fourier
transform is given in Fig. 7 and its wavelet transform is in Fig. 7(a–c).

The Fourier transform of the ‘noised’ signal gives us precise information about the
harmonic components in the signal, as for the ‘pure’ signal.
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FIG. 2. Fourier transform of model ‘pure’ signal

FIG. 3. Short time Fourier transform of model ‘pure’ signal and its cross-sections
at t = 30 ticks and t = 140 ticks

STFT of model ‘noised’ signal (Fig. 7) allows us to detect two harmonic components
with frequencies ∼ 0.09 a.u. and ∼ 0.245 a.u. that are very close to true values of these
components.

Figures 8(a–c) shows the wavelet transform of the model ‘noised’ signal and its harmonic
components (along dashed lines) that the signal contains.
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(a)

(b) (c)

FIG. 4. (a) – Wavelet transform of model ‘pure’ signal. Dashed line shows
harmonic components that form the signal; (b, c) – Cross-section of harmonic
component along a dashed line A (b) and B (c) (fig. 4(a))

So, the wavelet transform of the ‘noised’ signal gives precise information about values
of components’ frequencies and common image of signal.

3. Experimental signal

This section refers to the application of these methods to the experimental result by
analogy with signals from the first paragraph.

The experimental result is dynamics of the integrated intensity of Nuclear Magnetic
Resonance (NMR) from water protons in magnetic field of Earth. There is a plot of this signal
on Fig. 9.

Results of data fromy the Fourier transform analysis show us that the detection of the
harmonic components in this signal is ambiguous (Fig. 10).

Using STFT (Fig. 11), we could suppose that the signal contains only one harmonic
component with frequency equals ∼ 0.02 a.u.
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FIG. 5. Model ‘noised’ signal

FIG. 6. Fourier transform of model ‘noised’ signal
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FIG. 7. Short-time Fourier transform with cross-sections of ‘noised’ signal

In contrast with the Fourier methods, the Wavelet transform allows us to detect the
existence of quasi-harmonic components in the signal (Fig. 12(b,c)) with the periods equal
∼ 20 a.u. and ∼ 50 a.u. (frequencies ∼ 0.05 and ∼ 0.025 a.u. respectively). Wavelet analysis
in this case gives us adequate description of the dynamics of quasi-harmonic processes that take
place in the system.

The two-dimensional scan of one-dimensional process, where frequency and time are
considered as two independent variables, allows us to analyze the properties of the studied
process simultaneously in frequency- and in time-fields, which is very important for the analysis
of many experiments.

4. Conclusion

As a result of the comparison of these three methods, we can say that the wavelet trans-
form at least gives us some information that could be compared with the results of conventional
Fourier methods. The application of this method to the experimental data shows us that the
Wavelet transform:

– allows us to claim the hypothesis about existence of quasi-harmonic components in
non-stationary (in time-field) signals with some frequencies (periods);

– gives us a full and precise image of the quasi-harmonic components’ dynamics in signal.
So, almost all fields of science where the Fourier transform is a conventional method

for analyzing experimental data, the Wavelet transform can be used as a higher quality method
for finding quasi-harmonic components in any signals [6–9].
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(a)

(b) (c)

FIG. 8. (a) – Wavelet transform of ‘noised’ signal with dashed lines at harmonic
components; (b, c) – Cross-section of harmonic component at line A (b) and B (c)
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FIG. 9. Plot of experimental signal (the integrated intensity of Nuclear Magnetic
Resonance signal from water protons in magnetic field of the Earth)

FIG. 10. Fourier transform of the experimental signal
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FIG. 11. Short-time Fourier transform of the experimental signal with its cross-sections
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(a)

(b) (c)

FIG. 12. (a) – Wavelet transform of the experimental signal. Dashed lines show
harmonic components that have been found in the experimental signal; (b, c) –
Cross-section of harmonic component along dashed line A (b) and B (c)

References

[1] I. Daubechies. Ten lectures on wavelets. Philadelphia: S.I.A.M. (1992).
[2] N.M. Astaf’eva. Wavelet analysis: basic theory and some applications. Phys. Usp., 39, P. 1085–1108 (1996).
[3] A.N. Pavlov. Wavelet-analysis and samples of usages. Proceedings of Higher Education. Applied Nonlinear

Dynamics, 17 (5), P. 99 (2009).
[4] I.M. Dremin, O.V.Ivanov, V.A.Nechitailo. Wavelets and their uses. Phys. Usp., 44, P. 447–478 (2001).
[5] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, Third Edition, San Diego, California (2008).
[6] G. Bachman, L. Narici and E. Beckenstein. Fourier and Wavelet Analysis. Springer-Verlag, Berlin (2000).
[7] J.F. Muzy, E. Bacry, A. Arneodo. Wavelets and multifractal formalism for singular signals: Application to

turbulence data. Phys. Rev. Lett., 67, P. 3515–3518 (1991).
[8] G. Kaiser. A friendly guide to wavelet. Boston, Basel, Berlin: Birkhauser (1994).
[9] S.G. Krantz. A panorama of harmonic analysis. The mathematical association of America, Washington, D.C.

(1999).


