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An algorithm for the approximation of relationship pluralities is set by linear combinations of functions with

unknown coefficients, which in part coincides in all relationship pluralities having been built using ordinary least

squares. Examples of the algorithm’s realization, when finding particular solutions plurality of linear nonhomoge-

neous differential equations, have been given.
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1. Introduction

During experimental data processing, there arises a problem of analytical dependence
recovery being a linear combination of basic functions with unknown coefficients. It is possible
to face this situation when the data obtained in the experiment is not for one relationship, but
for several of such equations of curves, that for instance describe the same physical process at
different values of external parameters. We assume that these differences in the context of the
experiment provide data that lead to analytical dependences, differing from each other by values
of some linear combination of coefficients; all other coefficients for relationship pluralities are
the same. In this case we shall talk about dependences plurality approximation.

In order to evaluate relationship pluralities, we may face approximation of the solution
of linear nonhomogeneous differential equation (LNDE) of N -th order with constant coefficients
with special right-hand side:

dNy

dxN
+ bN−1

dN−1y

dxN−1
+ . . .+ b0y =

M∑
m=1

amfm(x). (1)

Let R plurality of particular solutions be built when working out R various Cauchy
problems for LNDE (1):

yr = yr(x) =
N∑

n=1

C(r)
n ϕn(x) +

M∑
m=1

Amfm(x), (2)

where r is a serial number of a particular solution, r = 1, 2, . . . , R; functions ϕ1(x), ϕ2(x),
. . ., ϕN(x) are linearly independent solutions of homogeneous equation, the second summand
is LNDE particular solution. Coefficients A1, A2, . . ., AM are calculated by finding a particular
solution for the nonhomogeneous differential equation and they are the same for all solutions.
Coefficients C

(r)
1 , C(r)

2 , . . . , C(r)
N are calculated from the initial conditions of the Cauchy

problem or from boundary conditions and determine LNDE particular solution.
Function (2) is the expansion of yr(x) functions on a given basis, consisting of a plurality

of linearly independent functions {ϕn(x)}N1 and {fm(x)}M1 .
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The set of equations given by representation of function (3) shall be called the rela-
tionship plurality, if some of the coefficients of linear functions combination — here they are
A1, A2 , . . ., Am coefficients — are equal for all relationships of the plurality, and the other
coefficients C(r)

1 , C(r)
2 , . . ., C(r)

N for varied relationships differ in at least one value. The number
of coefficients in function (2) equals NR = M +RN .

We have R equations of dependences plurality for type (2). For each equation of this
plurality, we know several pairs of x argument and y(x) function values, however, the function
values are known approximately. For the r-th relationship, we have Sr > 0 of xrs argument
values with s = 1, 2, . . . , Sr and approximate yrs function values. For each relationship
argument, values may not match, as well as the number of these values.

In total, we have S values for the entire relationship plurality, S =
R∑

r=1

Sr, while

S > NR.
We pose the task to determine all NR of analytical dependence coefficients (2) with the

help of these data. Briefly, we shall name the task as (M, N, R) task, where M is the number
of coefficients whose relationship plurality values are the same, N — number of coefficients
whose values are different and R is the number of relationships in the plurality.

To solve the problem, we shall use ordinary least squares (OLS) [1–4]. For the s-th
curve of the plurality, with every xrs argument value, we shall calculate a deviation square
δ(xrs) function preset value yrs of the set function (2) value, while argument value equals:
δ(xrs) = yrs − yr(xrs. Then, we shall calculate F value — mean square deviation δ(xrs) for all
argument values:

F =
1

S

R∑
r=1

Sr∑
s=1

δ2(xrs) =
1

S

R∑
r=1

Sr∑
s=1

(
yrs −

N∑
n=1

C(r)
n ϕn(xrs)−

M∑
m=1

Amfm(xrs)

)2

. (3)

The F function depends on NR arguments: A1, A2, . . ., AM coefficients, as well as on
all C(r)

1 , C(r)
2 , . . ., C(r)

N coefficients with r = 1, 2, . . . , R.
For brevity, we shall use the designation for two types of function G(x) averaging:

data averaging for r-th dependence Gr =
1

Sr

Sr∑
s=1

G(xrs) and averaging over all data 〈G〉 =

1

S

R∑
r=1

Sr∑
s=1

G(xrs) =
1

S

R∑
r=1

SrGr. In this designation, it will be F =
〈
δ2
〉

function.

According to ordinary least squares, values of unknown coefficients can be obtained from
minimum F function condition. Setting all the partial derivatives of all function arguments to
zero is a necessary condition for the function’s minimum.

Calculating partial derivatives gives:

1

2Sr

∂F

∂Ai

=

〈
N∑

n=1

C(r)
n ϕn(xr)fi(xr)

〉
+

M∑
m=1

Am

〈
fm(xr)fi(xr)

〉
−
〈
yrfi(xr)

〉
,

when i = 1, 2, . . . ,M ,

S

2Sr

∂F

∂C
(r)
j

=
N∑

n=1

C(r)
n ϕj(xr)ϕn(xr) +

M∑
m=1

Amϕj(xr)fm(xr)− yrϕj(xr),
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when j = 1, 2, . . . , N .
Equating partial derivatives ∂F/∂Ai and ∂F/∂C(r)

j to zero, and performing elementary
transformations for every r value, we obtain a nonhomogeneous system of linear equations
(SLE), which we write in matrix form:

〈
Q(r) C(r)

〉
+
〈
P(r)

〉
A =

〈
B

(r)
1

〉
,

R(r) C(r) + T(r)A = B
(r)
2 , r = 1, 2, . . . , R ,

(4)

where matrix columns are introduced C(r) =
(
C

(r)
1 , C

(r)
2 , . . . , C

(r)
N

)T
, A = (A1, A2, . . . , AM)T ,

B
(r)
1 =

(
yrf1(xr), yrf2(xr), . . . , yrfM(xr)

)T
, B

(r)
2 =

(
yrϕ1(xr), yrϕ2(xr), . . . , yrϕN(xr)

)T
,

T is the operation of matrix transposition, Q(r) = (qmn)M,N =
(
fm(xr)ϕn(xr)

)
M,N

– matrix of

M×N size with qmn = fm(xr)ϕn(xr), P(r) =
(
fm(xr)fj(xr)

)
M,M

, R(r) =
(
ϕn(xr)ϕj(xr)

)
N,N

,

R(r) =
(
ϕn(xr)ϕj(xr)

)
N,N

elements, in this designations it is believed that during matrix aver-

aging, the averaging of its elements also takes place.
In order to solve SLE (4), C(r) column matrices shall be excluded from its first matrix

equation with the help of other R matrix equations. Taking into account the nonsingularity
of Q(r) matrix, at all r = 1, 2, . . . , R , we obtain:

C(r) =
(
R(r)

)−1
B

(r)
2 −

(
R(r)

)−1
T(r)A. (5)

Substitution of proportion (5) into the first matrix equation in SLE (4) gives a linear
matrix equation for the unknown A matrix, which can be rewritten as(〈

P(r)
〉
−
〈
Q(r)

(
R(r)

)−1
T(r)

〉)
A =

〈
B

(r)
1

〉
−
〈
Q(r)

(
R(r)

)−1
T(r)

〉
.

Assuming nondegeneracy of this equation, we find the required A matrix whose elements
are Am coefficients in function (2)

A =

(〈
P(r)

〉
−
〈
Q

(r)
1

(
R(r)

)−1
T(r)

〉)−1(〈
B

(r)
1

〉
−
〈
Q(r)

(
R(r)

)−1
T(r)

〉)
.

After finding A column matrix by means of formulas (7) we shall calculate C(r) column
matrices.

Let us consider the implementation of this technique for solving of some particular
(M, N, R) tasks. It is necessary to note that the solution of (1, 1, R) task at approximation of
R linear function pluralities yr = C(r)x+ A is given in [2].

2. Function plurality approximation in (1, 1, R) task

Let’s define the relationship plurality yr = yr(x) = C(r)ϕ(x) + Af(x).
SLE (4) takes the form of:

〈
f 2(xr)

〉
A+

〈
ϕ(xr)f(xr)C

(r)
〉

=
〈
yr f(xr)

〉
,

f(xr)ϕ(xr)A+ ϕ2(xr)C
(r) =

〈
yr ϕ(xr)

〉
, r = 1, 2, . . . , R.

(6)
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C(r) values shall be excluded from the first equation by means of solving of the follow-
ing R equations:

C(r) =
1

ϕ2(xr)

(
yr ϕ(xr)− Af(xr)ϕ(xr)

)
, (7)

with r = 1, 2, . . . , R. Exclusion of C(r) values leads to a linear equation for the A value. The
solution of this equation has the following form: A = ∆1/∆, where

∆1 =
〈
yrf(xr)

〉
−

〈
yr ϕ(xr)

ϕ2(xr)
f(xr)ϕ(xr)

〉
,∆ =

〈
ψ2(xr)

〉
−

〈
f(xr)ϕ(xr)

2

ϕ2(xr)

〉
.

After finding A value, we shall calculate C(r) coefficients using function (7).

3. Functions plurality approximation in (2, 1, R) task

Having the relationship plurality, yr = yr(x) = C(r)ϕ(x) +A1 f1(x) +A2 f2(x), SLE (4)
takes the form:


〈
ϕ(xr)f1(xr)C

(r)
〉

+
〈
f 2
1 (xr)

〉
A1 +

〈
f1(xr)f2(xr)

〉
A2 =

〈
yr f1(xr)

〉
,〈

ϕ(xr)f2(xr)C
(r)
〉

+
〈
f1(xr)f2(xr)

〉
A1 +

〈
f 2
2 (xr)

〉
A2 =

〈
yr f2(xr)

〉
,

ϕ2(xr)C
(r) + ϕ(xr)f1(xr)A1 + ϕ(xr)f2(xr)A2 = yr ϕ(xr), r = 1, 2, . . . , R.

(8)

From the last R equations, we obtain the following:

C(r) =
1

ϕ2(xr)

(
yr ϕ(xr)− A1ϕ(xr)f1(xr)− A2ϕ(xr)f2(xr)

)
, (9)

with r = 1, 2, . . . , R. After exclusion of C(r) value from the first two equations in SLE (10) we
move to SLE of the second order for matrix A = (A1, A2)

T : VA = D, where V matrix and D
column matrix have the following elements:

Vij =
〈
fi(xr)fj(xr)

〉
−

〈
ϕ(xr)fi(xr)

ϕ(xr)fj(xr)

ϕ2(xr)

〉
, Di =

〈
yr fi(xr)

〉
−

〈
ϕ(xr)fi(xr)

yr ϕ(xr)

ϕ2(xr)

〉
,

where i, j = 1, 2.
Let’s find the required A = V−1D matrix. With the help of A1 and A2 coefficients

obtained from the function (9), we shall find C(r) coefficients with r = 1, 2, . . . , R.

4. Second order LNDE partial solutions plurality approximation according to
experimental data for partial solutions (task (1, 2, R))

For a second order LNDE, we have a general solution in the form of:

yr(x) = C
(r)
1 ϕ1(x) + C

(r)
2 ϕ2(x) + Af(x). (10)

Coefficients C(r)
1 , C(r)

2 and A in function (10) shall be obtained from SLE (4):
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〈
C

(r)
1 ϕ1(xr)f(xr)

〉
+
〈
C

(r)
2 ϕ2(xr)f(xr)

〉
+ A

〈
f 2(xr)

〉
=
〈
yr(xr)f(xr)

〉
,

C
(r)
1 (ϕ1(xr))2 + C

(r)
2 ϕ1(xr)ϕ2(xr) + Aϕ1(xr)f(xr) = yr(xr)ϕ1(xr) , r = 1, 2, . . . R,

C
(r)
1 ϕ1(xr)ϕ2(xr) + C

(r)
2 (ϕ2(xr))2 + Aϕ2(xr)f(xr) = yr(xr)ϕ2(xr), r = 1, 2, . . . R.

(11)
From every r-th pair, consisting of the second and third equation of function (11), we

shall express the unknown C(r)
1 and C(r)

2 values, through the sought quantity A:

C
(r)
1 =

T12(xr)− AP12(xr)

∆(xr)
, C

(r)
2 =

T21(xr)− AP21(xr)

∆(xr)
, (12)

where
Tij(xr) = yr(xr)ϕi(xr) · ϕ2

j(xr)− ϕ1(xr)ϕ2(xr) · yr(xr)ϕj(xr),

Pij(xr) = fr(xr)ϕi(xr) · ϕ2
j(xr)− ϕ1(xr)ϕ2(xr) · fr(xr)ϕj(xr).

Using formulas (12), we shall exclude C(r)
1 and C

(r)
2 values from the first equation of

function (11). Thus we shall obtain a linear equation for A value, whose solution has the form:

A =
∆1

∆
, (13)

where

∆ =
〈
f 2(x)

〉
−
〈
ϕ1(xr)f(xr)

P12(xr)

∆(xr)

〉
−
〈
ϕ2(xr)f(xr)

P21(xr)

∆(xr)

〉
,

∆1 =
〈
y(x)f(x)

〉
−
〈
ϕ1(xr)f(xr)

T12(xr)

∆(xr)

〉
−
〈
ϕ2(xr)f(xr)

T21(xr)

∆(xr)

〉
.

5. Example

Figure 1 shows the result of LNDE partial solutions approximation

y′′ + y + 9.250y = −0.275 sin(4x).

Its general solution has the form:

y = C1e
−0.5x cos(4x) + C2e

−0.5x sin(4x) + 0, 3 sin(4x). (14)

In order to set the initial data, values of x arguments in function (14) have been obtained
using a generator of uniformly distributed random numbers in the interval [0,3] for curves
1 and 3, and in the interval [1,2] for curve 2. Initial data for approximation, simulating
experimental values were obtained after addition of calculated values, according to function
(14) with the values of normally distributed random variable with zero mean of distribution and
mean-square deviation σ = 0.1.

Initial data are marked at Fig. 1: crosses — for the first solution, points — for the
second, squares — for the third one. Solid lines — graphics of functions approximating initial
data, where the coefficients are calculated according to functions (12) and (13). Dashed lines
shows a dependence diagram of type (14) with coefficients C1 = 1, C2 = 1 (curve 1), C1 = −1,
C2 = 1 (curve 2), C1 = 0, C2 = 1 (curve 3).

Figure 2 compares the proposed OLS method of relationship plurality recovery and
a traditional OLS for one relationship. We approximate the data for curve No. 2 at Fig. 1.
Dashed and solid lines are taken from Fig. 1 and are constructed by method of relationship
plurality approximation. Dash-dot line is the reconstructed relationship of a private solution
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FIG. 1. Results of approximation of family of private solutions of LNDE

only according to data for curve No. 2. The calculated formulae are obtained by solving a SLE,
if we assume that there is only one relationship (R = 1). An unsatisfactory result on the last
relationship recovery at [0, 3] is explained by small data quantity for this curve, grouped near
the middle of the gap. However, curve approximation as a representative of curves plurality
gives quite a satisfactory result.

The proposed OLS usage for analytical relationship plurality approximation allows con-
sideration of a certain function feature, combining them into a plurality. Relationships are set
by a linear combination of known functions with the desired coefficients. Analytic plurality
properties are given by the fact that a part of linear combination coefficients are the same for all
the relationship pluralities. Coefficients are calculated using OLS, which provides a minimum
of the average of data deviation square for all functional relationship pluralities. Combining
data for all functional relationships leads to good results for their approximation, even when
only having a small amount of data for some of the relationships.

Practical application of the proposed approximation algorithm of function plurality
showed the recovery efficiency for the analytic dependence, included into the relationship
plurality, with insufficient quantity of measured values or with unsuccessful location of interpo-
lation point of some curves in this plurality. Availability of data for other plurality relationships
allows quite satisfactorily the approximation of the equation and these curves.
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FIG. 2. Comparison of two approximations of one of solutions of LNDE. The
first approximation (the continuous line) is received with use of all data for family
of curves. The second approximation (the dash-dotted line) — according to the
data noted by points, only for this decision. The shaped line — the exact solution
of LNDE
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