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1. Introduction

Flows through nanotubes and other nanostructures have many interesting peculiari-
ties. One of them is the viscosity variation (see, e.g., [1], [2], [3]). Flows in nano-channels are
influenced by local heterogeneity of molecular structure of the liquid if its size is compared
with the channel width. A hypothesis about the existence of locally-ordered structures in
liquid was put forward in [4]. Investigations of fluid flows in nano-sized domains show that
it is strongly influenced by local ordering of nano-sized scale. Experiments [5], [6] show that
the effective viscosity of water in nanochannel with hydrophilic walls is essentially greater
than the corresponding macroscopic value. Experimental and theoretical investigations of
water state in carbon nanotube [7], [8] show that there is an ice-like envelope with liquid
water inside in the nanotube. Increasing of effective fluid viscosity via channel diameter
was marked in [9] for channels of a few micrometers diameters. Thus, experiments confirm
high viscosity variations for the flow in a nanotube, which creates computational problems.
Namely, the convergence of the numerical algorithms in the case of strongly varying viscosity
is not good, and, moreover, is not guaranteed ( [10], [11]). Correspondingly, one need an
instrument to choose an appropriate numerical scheme. One can make a choice by using of
benchmark solutions (see, e.g., [12], [13], [14])

In present work, we suggest methods for algorithm checking. The scheme of the
algorithm testing is as follows. Consider a rectangular domain. Calculate the values of
the benchmark solutions at the rectangle’s boundary. Take these values as the boundary
conditions. Due to the uniqueness theorem the solution of the boundary problem should
coincide with our benchmark solution. So, we obtain a solution of the specific boundary
problem. Note that we derived the solution analytically. Next, we solve the same boundary
problem by a numerical algorithm, then we compare results and estimate the quality of the
numerical algorithm.

We have found exact analytical solutions of the Stokes and continuity equations in
the two-dimensional case for linearly varying viscosity. These solutions are convenient to
use as benchmarks for numerical algorithm testing. The efficiency of the approach was
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demonstrated on a numerical algorithm for calculations of the Stokes flow with varying
viscosity.

2. Formulation of Stokes and continuity equations with variable viscosity

Consider the plane flow. 2D Stokes equations for the case of varying viscosity has
the form:
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Here (vx, vy) is the flow velocity, η = η(x, y) is the viscosity, P is the pressure, ρ is the
density, (Gx, Gy) is the gravitational force. Note that (3) is the continuity equation.

Let us change the variables vx, vy, P in such a way that:
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The correctness conditions for such replacement are as follows:
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These conditions lead to the following correlations:
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All conditions give one the same characteristic equation:
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dx+
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dy = 0.

Evidently, η(x, y) = C is an integral of the equation. Hence, the solutions of our equations,
which predetermine the correctness of replacement suggested above, are

ux = Φ(η), uy = Ψ(η), P̃ = P̃ (η).
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After replacement, the Stokes equations (1), (2) and the continuity condition (3) transform
to the following form:
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Inserting the expressions for ux, uy into (7), (8), (9), one obtains the following equa-
tions:
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3. Exponentially varying viscosity

Let us construct the second benchmark solution. Next, we assume that the viscosity
is the exponential function of the Cartesian coordinates:

η = c exp (ax+ by). (13)

General consideration up to (10), (11), (12) is the same as earlier. By inserting (13) into
(10), (11), (12) and taking into account that:
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One can see that we obtain a linear algebraic system with respect to (Φ”η2 + Φ′η) and P̃ ′.
The solution is as follows:

P̃ ′ =
f1(η)

η2
, (15)

Φ”η2 + Φ′η = bf(η). (16)

Remark. It is interesting that these formulas contain the same functions f(η), f1(η).
Equation (16) is a well-known Euler ordinary differential equation. One can get its

solution for arbitrary function f :
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Taking into account (4), (5), one obtains vx, vy:
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Hence, we get the expression for vx and analogously, for vy:
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As for the pressure, we obtain it from (15) by taking into account (6):
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For a simple particular case (constant gravitational term), when f(η) = A = const, f1(η) =
A1 = const one has:
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A more complicated case is when the density is a linear function of the viscosity,
ρ = β1η + β2, i.e.

f(η) = a1η + a2, f1(η) = b1η + b2,

where constants a1, a2, b1, b2 are the same as in the previous section. It is simple to evaluate
integrals in (19), (20), (21). In such a way, one obtains:
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vy = −aa1 log η − a(a1 − a2 − c1)
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where c̃2 = c2 + bc1 + ba2 − ba1, c̃3 = c3 + aa1 − aa2 − ac1, c̃4 = c4 − b1.

4. Example problems and numerical convergence tests

The scheme of algorithm testing is as follows: initially, we have obtained particu-
lar solutions of the Stokes and continuity equations for the exponential type of viscosity
variation. Let us choose a domain, e.g., a rectangle in 2D case. We calculate values for
velocity and pressure given by our analytical solution and take these values as the boundary
conditions. Then, due to the uniqueness theorem, the solution of the boundary problem
in the domain should coincide with our analytical solution. Let us compute the solution
of the boundary problem by a numerical method. Comparison of the result with the exact
analytical solution shows the quality of the numerical algorithm.

4.1. Exponentially varying viscosity

Consider a simple example of such flow in a rectangle 0 6 x 6 xsize, 0 6 y 6 ysize.
We assume that η = ax + by + c. We will mark the exact solution obtained in Section 2 as
vx,a, vy,a, Pa. It is the solution of the boundary problem in the rectangle Ω with the following
conditions at the boundary ∂Ω = {x = 0, x = xsize, y = 0, y = ysize} :

vy|∂Ω = vy,a, vx|∂Ω = vx,a.

Let us compute the velocity and pressure using the finite-difference scheme. The
corresponding solution is marked as vx,n, vy,n, Pn. The deviation of these values from the
exact solution (vx,n − vx,a, vy,n − vy,a, Pn − Pa) is related with the error of the numerical
scheme. We calculate the relative errors of three types: L∞, L1, L2 for different viscosity
contrasts , i.e. different values of the coefficients a, b. We test the program Stokes2D-
variable-viscosity1 from [10]. The results are presented in Fig. 1-6. Namely, figures 1-3
correspond to low viscosity contrast, Figures 4-6 — to high viscosity contrast. Particularly,
Fig. 1 and Fig. 4 show pressure and velocity components distributions. Fig. 2 and Fig. 5
characterize the viscosity and the density distributions. Fig. 3 and Fig. 6 contain plots of
relative errors via the grid resolutions in logarithmic scale. The viscosity contrast, i.e. the
values of the coefficients in the expression for the viscosity, is determined by the given values
of the viscosity at three rectangle corners. The value of the viscosity at the initial rectangle
corner is 1, η2, η3 are the values of the viscosity at two adjacent corners. For all figures, “n”
means “numerical solution”, “a” means “analytical solution” (benchmark).

For the case of exponentially varying viscosity, we made calculations for the following
system parameters:

C = η1, a = (log(η3)− log(η1))/xsize,

b = (log(η2)− log(η1))/ysize,

η = C exp (ax+ by),

ρ = β1η + β2

xsize = ysize = 1,

Gx = 10, Gy = 10,

η1 = 1, β1 = 1, β2 = 3× 103,



396 A. I. Popov, I. S. Lobanov, I. Yu. Popov, T. V. Gerya

Fig. 1. Distribution of vx, vy and P ; 2D case, exponentially varying viscosity,
low viscosity contrast (η2 = η3 = 5).

Fig. 2. Distribution of viscosity η and density ρ; 2D case, exponentially vary-
ing viscosity, low viscosity contrast (η2 = η3 = 5).

One can see that there is rather high accuracy for the numerical approach. Figures
1-3 corresponds to the case of low viscosity contrast, figures 4-6 — to the case of high
viscosity contrast. We observe the conventional situation — L∞-error is the largest among
the considered errors norms, and L1-error and L2−error are similar. The calculations show
that one has good convergence of the numerical scheme for small viscosity contrast, but it
is not so for high viscosity contrast (compare Fig. 3 and Fig. 6).

5. Conclusion

Numerical analysis of geophysical flows presents many difficulties. It is related with
complex dependence of material parameters on spatial coordinates. Different schemes of
numerical calculations are suggested. To establish the quality of suggested approach it is
possible to compare the results of different numerical methods. More reliable examination of
the approach is given by the comparison with the exact solution of the problem, similar to
the considered one. For this purpose, one needs such a benchmark solution. In the present
paper, we suggest a benchmark solution for the Stokes equation coupled with the continuity
equation where the viscosity is exponentially dependent upon the spatial Cartesian coordi-
nates. Comparison of the numerical result with this exact solution allows us to determine
the order of convergence, the quality of discretization, etc.
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Fig. 3. Logarithm of the relative error via logarithm of the grid step; 2D case,
exponentially varying viscosity, low viscosity contrast (η2 = η3 = 5); blue line
- pressure, green - vx, black - vy; line - L1-error, dashed line - L∞-error, line
with dots - L2-error.

Fig. 4. Distribution of vx, vy and P ; 2D case, exponentially varying viscosity,
high viscosity contrast (η2 = η3 = 100).

Fig. 5. Distribution of viscosity η and density ρ; 2D case, exponentially vary-
ing viscosity, high viscosity contrast (η2 = η3 = 100).
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Fig. 6. Logarithm of the relative error via logarithm of the grid step; 2D case,
exponentially varying viscosity, high viscosity contrast (η2 = η3 = 100); blue
line - pressure, green - vx, black - vy; line - L1-error, dashed line - L∞-error,
line with dots - L2-error.
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