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We consider the one-dimensional photonic crystal composed of an infinite number of parallel alternating

layers filled with a metamaterial and vacuum. We assume the metamaterial is an isotropic, homogeneous,

dispersive and non-absorptive medium. We use a single Lorentz contribution and assume the permittivity and

permeability are equal. Using the time and coordinate Fourier transforms and the Floquet-Bloch theorem,

we obtain systems of equations for TE and TM modes, which ones are identical. We consider radiative

and evanescent regimes for the metamaterial and vacuum layers and find sets of frequencies, where the

metamaterial has the positive or negative refractive index. We use a numerical approach. As a result, we

obtained the photonic band gap structure for different frequency intervals and ascertain how it changes with

modification of the system parameters. We observe the non-reflection effect for any directions for a certain

frequency but this fails with the layer width modification.
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1. Introduction

Materials with a periodically modulated refractive index function of spatial coordi-
nates are known as photonic crystals (PCs). Photonic crystals occur in nature over millions
years. Biological systems were using nanometer-scale architectures, which are the natural
photonic structures, to produce striking optical effects [1].

Extensive studies on PCs began with these pioneering works [2, 3]. The propagation
of electromagnetic (EM) wave in the PC depends on its frequency and can be forbidden. The
forbidden frequencies make up the forbidden bands or so-called photonic band gaps (PBGs).
Analogously, the permitted frequencies make up the permitted bands [4, 5]. Forbidden
and permitted bands comprise the so-called PBG structure. The PBGs lead to various
applications of PCs such as perfect dielectric mirror [6], nonlinear effects [7], resonant cavities
[8], PC fibers [9], waveguides [10], and PC devices, e.g., ultra-fast, efficient and high power
nanocavity lasers, optical buffer and storage components [11].

The simplest model of a PC is the one-dimensional PC (1DPC). The 1DPC is a
system of alternating layers with different refractive indices. Using negative index materials
(NIMs) [12, 13] in 1DPCs can lead to unusual phenomena, such as spurious modes with
complex frequencies, discrete modes and photon tunneling modes [14]. Therefore, numerous
investigations of 1DPC composed of layers filled with positive index materials (PIMs) and
NIMs, have been performed recently [15-21]. But, most of these investigations consider
nondisperdive systems, i.e., the permittivity and permeability (and therefore, the refractive
index) are the same for all frequencies of EM waves.
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The goal of our work is to obtain the PBG structure for a system of alternating
layers filled with a metamaterial and vacuum. We assume the metamaterial is an isotropic,
homogeneous, dispersive and non-absorptive medium. We also assume the permittivity and
permeability have the identical expression. We use a single Lorentz contribution to describe
them [22, 23]. Therefore, for a certain frequency interval, the metamaterial has a negative
refractive index and behaves like a NIM (NIM case). For other frequencies, it has a positive
refractive index and behaves like a PIM (PIM case). We have a chance to compare the NIM
case with the PIM case. Also, we are interested in the dependence of the PBG structure
upon the system’s parameters.

2. Model

2.1. Maxwell’s equations

We consider the Maxwell’s equations in a differential form:

dD

dt
(x, t) = ∇×H(x, t), (1)

dB

dt
(x, t) = −∇× E(x, t), (2)

∇ · D(x, t) = 0, (3)

∇ · B(x, t) = 0, (4)

where x is the vector located in the {ei}3
i=1 Cartesian basis, ∇ is the Hamilton operator, ×

is a cross product symbol, · is an inner product symbol as well as a symbol for the matrix
product. Also, we consider the auxiliary field equations:

D(x, t) = ε0E(x, t) + P(x, t), (5)

B(x, t) = µ0 [H(x, t) + M(x, t)] , (6)

where

P(x, t) = ε0

∫ t

t0

χe(x, t− s) · E(x, s) ds,

M(x, t) =

∫ t

t0

χm(x, t− s) ·H(x, s) ds,

and ε0 and µ0 are the electric and magnetic constants (ε0µ0 = 1/c2, where c is the speed of
light in vacuum), χe(x, t) and χm(x, t) are the electric and magnetic susceptibility tensors.
We use the causality condition χe(x, t) = χm(x, t) = 0 for t < t0 and assume t0 = 0. We
also use the passivity condition [23]. Then, the electromagnetic energy,

Uem(t) =
1

2

∫ [
E2(x, t) + H2(x, t)

]
dx

,

is a non-increasing function of time. With the causality and passivity conditions and the
auxiliary field formalism (AFF), the system has a proper time evolution [23]. In case the
initial fields are square integrable they remain so for all later times.

We use the Fourier transform with t time,

f̂(ω) =

∫ +∞

−∞
f(t) e−iωtdt, f(t) =

1

2π

∫ +∞

−∞
f̂(ω) eiωtdω, (7)

to obtain the Maxwell’s equations (1)–(4) in relation on ω frequency

iωD̂(x, ω) = ∇× Ĥ(x, ω), (8)
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iωB̂(x, ω) = −∇× Ê(x, ω), (9)

∇ · D̂(x, ω) = 0, (10)

∇ · B̂(x, ω) = 0. (11)

The auxiliary field equations (5) and (6) after the Fourier transform (7) are expressed as
follows:

D̂(x, ω) = ε0ε(x, ω) · Ê(x, ω), (12)

B̂(x, ω) = µ0µ(x, ω) · Ĥ(x, ω), (13)

where
ε(x, ω) = 1 + χ̂e(x, ω),

µ(x, ω) = 1 + χ̂m(x, ω).

Substituting expressions for D̂(x, ω) and B̂(x, ω) from equations (12) and (13) into equations
(8), (9), (10), and (11), we obtain the following relations:

iωε0ε(x, ω)Ê(x, ω) = ∇× Ĥ(x, ω), (14)

iωµ0µ(x, ω)Ĥ(x, ω) = −∇× Ê(x, ω), (15)

∇ · Ê(x, ω) = 0,

∇ · Ĥ(x, ω) = 0.

We examine the system composed of infinite count of parallel layers. e1, e2 unit
vectors set the plane of the layer’s surfaces. e3 unit vector set the x axis. We assume a
translation invariance along the plane of layer’s surfaces. There are two types of layers. The
first one is ∆1 in width and filled with a metamaterial. The second one is ∆2 in width and
filled with a vacuum. Layers alternate with each other. Then, ∆1 + ∆2 is the period of the
system. Thus, the system is a 1DPC, and it is enough to consider only two layers, e.g., the
metamaterial layer located between x = 0 and x = ∆1 coordinates (let its index be j = 1)
and the vacuum layer located between x = ∆1 and x = ∆1 + ∆2 coordinates (let its index
be j = 2).

We assume that the metamaterial layers are isotropic and homogeneous media. There-
fore, the permittivity and permeability in all metamaterial layera are scalar functions only
of the one ω frequency variable, i.e., ε(x, ω) = ε(ω)U and µ(x, ω) = µ(ω)U. Also, we
assume the metamaterial layers are dispersive and non-absorptive media. In that case, the
susceptibilities consist of a sum of Lorentz contributions [22]. We deal with a single dis-
persive Lorentz contribution [23]. We assume that the permittivity and permeability of the
metamaterial stand equal and

ε(ω) = µ(ω) = 1− Ω2

ω2 − ω2
0

, (16)

where Ω and ω0 are constants, and ε(ω) = µ(ω) = 1 in vacuum. From equation (16) it
follows that for different ω frequencies the metamaterial behaves like a PIM or NIM (and we
have the PIM or NIM system). For every ω inside the (ω0, ω2) interval (NIM interval) the

ε(ω) and µ(ω) values are negative and the metamaterial is the NIM, where ω2 =
√
ω2

0 + Ω2,
ε(ω2) = µ(ω2) = 0, and ε(ω0 + 0) = µ(ω0 + 0) = −∞. For every ω inside the (0, ω0) or
(ω2,+∞) intervals (first and second PIM interval, correspondingly) the ε(ω) and µ(ω) values
are positive and the metamaterial is the PIM, where ε(ω0 − 0) = µ(ω0 − 0) = +∞. For

ω1 =
√
ω2

0 + Ω2/2 in the metamaterial ε(ω1) = µ(ω1) = −1, where ω1 is so-called NIM
frequency [23].
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Expressing the Ĥ(x, ω) value from equation (15), substituting it into equation (14)
and recalling ε0µ0 = 1/c2, we obtain the Helmholtz equation for j-th layer (j = 1, 2) as
follows:

∇×∇× Êj(x, ω) = (ω/c)2εj(ω)µj(ω)Êj(x, ω). (17)

Let k = {k1, k2, k3} be a three-dimensional wave vector with k length, where k =
k(ω) = (ω/c)2ε(ω)µ(ω), κ = {k1, k2, 0} = κeκ be a two-dimensional wave vector with
κ coordinate along the eκ unit vector, which is parallel to the plane of layer’s surfaces,
ζ = {0, 0, k3} = ζe3 is an one-dimensional wave vector parallel to the x axis with the ζ
coordinate, where ζ2 = ζ2(ω, κ) = k2(ω)− κ2 = (ω/c)2ε(ω)µ(ω)− κ2. Therefore, e3 × eκ is
a parallel to the plane of layer’s surfaces unit vector. The set of eκ, e3 × eκ, e3 unit vectors
forms the Cartesian basis.

The considered system is the 1DPC. Then, to obtain the following one-dimensional
expression of the Helmholtz equation (17), we use the Fourier transform with x1 and x2

coordinates of x⊥ = {x1, x2, 0} vector:

gκ(x) =

∫ +∞

−∞

∫ +∞

−∞
ei(k1x1+k2x2)g(x)dx1dx2 =

∫
R2

eiκ ·x
⊥
g(x)dx⊥, (18)

g(x) =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
e−i(k1x1+k2x2)gκ(x)dk1dk2 =

1

(2π)2

∫
R2

e−iκ ·x
⊥
gκ(x)dκ.

The Fourier transformed (18) Hamilton operator is

∇κ =

(
iκ+

∂

∂x3

e3

)
.

Then, [
∇×∇× Êj(x, ω)

]
κ

=

(
iκ+

∂

∂x3

e3

)
×
[(
iκ+

∂

∂x3

e3

)
× Êκ,j(x, ω)

]
,

and the Fourier transformed Helmholtz equation (17) is expressed as follows:(
iκ+

∂

∂x3

e3

)
×
[(
iκ+

∂

∂x3

e3

)
× Êκ,j(x, ω)

]
= (ω/c)2εj(ω)µj(ω)Êκ,j(x, ω),

or in a matrix form:

Mκ,j(ω, κ) · Êκ,j(x, ω) = 0, (19)

where

Mκ,j(ω, κ) =

 ∂2

∂x2
+ (ω/c)2εj(ω)µj(ω) 0 −iκ ∂

∂x

0 ∂2

∂x2
+ ζ2

j (ω, κ) 0

−iκ ∂
∂x

0 ζ2
j (ω, κ)


is presented in {eκ, e3 × eκ, e3} basis. Equation (19) has the following TE part:(

∂2

∂x2
+ ζ2

j (ω, κ)

)
Êκ,j(x, ω)

∣∣∣
e3×eκ

= 0, (20)

and the following TM part:(
∂2

∂x2
+ (ω/c)2εj(ω)µj(ω)

)
Êκ,j(x, ω)

∣∣∣
eκ

= iκ
∂

∂x
Êκ,j(x, ω)

∣∣∣
e3
, (21)

iκ
∂

∂x
Êκ,j(x, ω)

∣∣∣
eκ

= ζ2
j Êκ,j(x, ω)

∣∣∣
e3
, (22)
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where for a certain A vector, A|e notation means its projection on the e unit vector. Equa-
tions (21) and (22) are expressed as follows:(

∂2

∂x2
+ ζ2

j (ω, κ)

)
Êκ,j(x, ω)

∣∣∣
eκ

= 0, (23)

Êκ,j(x, ω)
∣∣∣
e3

= iκ
1

ζ2
j (ω, κ)

∂

∂x
Êκ,j(x, ω)

∣∣∣
eκ
. (24)

To obtain the Êκ,j(x, ω) value, it is enough to solve equations (20) and (23) and use equation
(24). Equations (20) and (23) have the same structure and can be written as follows:(

∂2

∂x2
+ ζ2

j (ω, κ)

)
Ej(x, ω) = 0, (25)

where Ej(x, ω) = Êκ,j(x, ω)
∣∣∣
e3×eκ

for TE mode or Ej(x, ω) = Êκ,j(x, ω)
∣∣∣
eκ

for TM mode.

2.2. Boundary conditions

Layers in the system are divided by plane unbounded surfaces. The general form
of standard boundary conditions for the surface located between considered layers at the
x = ∆1 coordinate, is presented as follows:

(E1 − E2)× e3 = 0, (26)

(H1 −H2)× e3 = 0, (27)

(D1 −D2) · e3 = 0, (28)

(B1 −B2) · e3 = 0, (29)

where Ej = Ej(x̃, t), Hj = Hj(x̃, t), Dj = Dj(x̃, t), and Bj = Bj(x̃, t) stand for the one-
sided limits with x → ∆1, x = x⊥ + xe3, and x̃ = x⊥ + ∆1e3 (left-sided ones are for j = 1
and right-sided ones are for j = 2). After the Fourier transform (7), equations (26)–(29) are
expressed as follows: x = ∆1 (

Ê1(x̃, ω)− Ê2(x̃, ω)
)
× e3 = 0, (30)(

Ĥ1(x̃, ω)− Ĥ2(x̃, ω)
)
× e3 = 0, (31)(

ε1(ω)Ê1(x̃, ω)− ε2(ω)Ê2(x̃, ω)
)
· e3 = 0, (32)(

µ1(ω)Ĥ1(x̃, ω)− µ2(ω)Ĥ2(x̃, ω)
)
· e3 = 0.

Let us consider the case of TM mode. It is enough to use the following coordinate represen-
tation of equations (30) and (32):(

Ê1(x̃, ω)− Ê2(x̃, ω)
)∣∣∣

eκ
= 0, (33)(

ε1(ω)Ê1(x̃, ω)− ε2(ω)Ê2(x̃, ω)
)∣∣∣

e3
= 0. (34)

After the Fourier transform (18), equations (33) and (34) are expressed as follows:(
Ê1,κ(x̃, ω)− Ê2,κ(x̃, ω)

)∣∣∣
eκ

= 0,(
ε1(ω)Ê1,κ(x̃, ω)− ε2(ω)Ê2,κ(x̃, ω)

)∣∣∣
e3

= 0.
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Recalling Ej(x, ω) = Êκ,j(x, ω)
∣∣∣
eκ

for TM mode and using equation (24), we obtain:

E1(∆1, ω) = E2(∆1, ω), (35)

∂E1

∂x
(∆1, ω) =

ε2(ω)

ε1(ω)

ζ2
1 (ω, κ)

ζ2
2 (ω, κ)

∂E2

∂x
(∆1, ω). (36)

Now we consider the case of TE mode. It is enough to use the following coordinate
representation of equations (30) and (31):(

Ê1(x̃, ω)− Ê2(x̃, ω)
)∣∣∣

e3×eκ
= 0, (37)(

Ĥ1(x̃, ω)− Ĥ2(x̃, ω)
)∣∣∣

eκ
= 0. (38)

From equation (15) we have

Ĥj(x, ω) = − 1

iωµ0µj(ω)
∇× Êj(x, ω).

Then, equation (38) is expressed as follows:(
∇× Ê1(x, ω)− µ1(ω)

µ2(ω)
∇× Ê2(x, ω)

)∣∣∣∣x=x̃

eκ

= 0.

Projecting on the eκ unit vector and using the fact that Êj (x, ω)
∣∣∣
e3

= 0 for TE mode, we

obtain
∂

∂x

(
Ê1(x, ω)− µ1(ω)

µ2(ω)
Ê2(x, ω)

)∣∣∣∣x=x̃

e3×eκ
. (39)

After Fourier transform (18), equations (37) and (39) are expressed as follows:(
Ê1,κ(x̃, ω)− Ê2,κ(x̃, ω)

)∣∣∣
e3×eκ

= 0,

∂

∂x

(
Ê1,κ(x, ω)− µ1(ω)

µ2(ω)
Ê2,κ(x, ω)

)∣∣∣∣x=x̃

e3×eκ
= 0,

Recalling Ej(x, ω) = Êκ,j(x, ω)
∣∣∣
e3×eκ

, we obtain:

E1(∆1, ω) = E2(∆1, ω), (40)

∂E1

∂x
(∆1, ω) =

µ1(ω)

µ2(ω)

∂E2

∂x
(∆1, ω). (41)

Now let us consider the surface located at the x = ∆1 + ∆2 coordinate between the
considered vacuum layer (j = 2) and the next metamaterial layer (we denote it with the
j = 3 index). The standard boundary conditions for this surface are presented by equations
(26)–(29), where j = 1 should be replaced with j = 3, x→ ∆1 + ∆2, and the field functions
are calculated as left-handed limits for j = 2 and right-handed limits for j = 3. Analogously
to the way we expressed equations (35), (36), (40), and (41) for the surface at the x = ∆1

coordinate, we obtain the following relations for the surface at the x = ∆1 + ∆2 coordinate
for the TM mode:

E3(∆1 + ∆2, ω) = E2(∆1 + ∆2, ω), (42)

∂E3

∂x
(∆1 + ∆2, ω) =

ε2(ω)

ε3(ω)

ζ2
3 (ω, κ)

ζ2
2 (ω, κ)

∂E2

∂x
(∆1 + ∆2, ω). (43)
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and for the TE mode:

E3(∆1 + ∆2, ω) = E2(∆1 + ∆2, ω), (44)

∂E3

∂x
(∆1 + ∆2, ω) =

µ3(ω)

µ2(ω)

∂E2

∂x
(∆1 + ∆2, ω). (45)

The considered system is periodic. Therefore, ε3(ω) = ε1(ω), µ3(ω) = µ1(ω), ζ3(ω, κ) =
ζ1(ω, κ), and we can use the Floquet-Bloch theorem [24, 25, 26]. This theorem states that if
E is a field in a periodic medium with periodicity ∆, then it has to satisfy

E(x+ ∆) = eiθ∆E(x),

where θ is a yet undefined wave vector, called the Bloch wave vector. Application of the
Floquet-Bloch theorem with ∆ = ∆1 + ∆2 leads to the following equations:

E3(∆1 + ∆2, ω) = E1(0, ω)eiθ (∆1+∆2),

∂E3

∂x
(∆1 + ∆2, ω) =

∂E1

∂x
(0, ω)eiθ (∆1+∆2),

where functions with j = 3 and j = 1 indices denote left- and right-sided limits respectively.
Thus, equations (42) and (43), which correspond to the TM mode, are expressed as follows:

E1(0, ω) = E2(∆1 + ∆2, ω)e−iθ (∆1+∆2), (46)

∂E1

∂x
(0, ω) =

ε2(ω)

ε1(ω)

ζ2
1 (ω, κ)

ζ2
2 (ω, κ)

∂E2

∂x
(∆1 + ∆2, ω)e−iθ (∆1+∆2). (47)

Equations (44) and (45), which correspond to the TE mode, are obtained as follows:

E1(0, ω) = E2(∆1 + ∆2, ω)e−iθ (∆1+∆2), (48)

∂E1

∂x
(0, ω) =

µ1(ω)

µ2(ω)

∂E2

∂x
(∆1 + ∆2, ω)e−iθ (∆1+∆2). (49)

Thus, we have two sets of equations: (35), (36), (46), and (47) for the TM mode and (40),
(41), (48), and (49) for the TE mode.

2.3. Solutions

Solutions of equation (25) are obtained through the fundamental solution system as
follows:

E1(x, ω) = Aeiζ1x +Be−iζ1x, (50)

E2(x, ω) = Ceiζ2x +De−iζ2x, (51)

where A, B, C, and D are unknown coefficients, ζj = ζj(ω, κ) for j = 1, 2. Using the solutions
(50) and (51), we obtain two algebraic systems of equations for the unknown coefficients A,
B, C, and D. The first one is composed of equations (35), (36), (46), and (47). The second
one composed of equations (40), (41), (48), and (49). To solve the first system, we the denote
corresponding matrix of the system coefficients in the following manner:

K1(ω, κ) =


eiζ1∆1 e−iζ1∆1 −eiζ2∆1 −e−iζ2∆1

eiζ1∆1 −e−iζ1∆1 − ε2
ε1

ζ1
ζ2
eiζ2∆1 ε2

ε1

ζ1
ζ2
e−iζ2∆1

1 1 −eiζ2(∆1+∆2)e−iθ(∆1+∆2) −e−iζ2(∆1+∆2)e−iθ(∆1+∆2)

1 −1 − ε2
ε1

ζ1
ζ2
eiζ2(∆1+∆2)e−iθ(∆1+∆2) ε2

ε1

ζ1
ζ2
e−iζ2(∆1+∆2)e−iθ(∆1+∆2)

 ,
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where εj = εj(ω) and ζj = ζj(ω, κ) for j = 1, 2, and compare the detK1(ω, κ) determinant
to zero. Then, we obtain the following relation:(

e−iθ(∆1+∆2)
)2 −

[
σ+
1,2σ

+
2,1

4

(
1 + ei2ζ1∆1ei2ζ2∆2

)
+

σ−1,2σ
−
2,1

4

(
ei2ζ1∆1 + ei2ζ2∆2

)]
×

×e−iζ1∆1e−iζ2∆2e−iθ(∆1+∆2) + 1 = 0,
(52)

where σ±k,l = εkζl±εlζk
εkζl

with k = 1 and l = 2, or k = 2 and l = 1, εj = εj(ω) and ζj = ζj(ω, κ)

for j = 1, 2.
To solve the second system, we also denote the corresponding matrix of the system

coefficients in the following manner:

K2(ω, κ) =


eiζ1∆1 e−iζ1∆1 −eiζ2∆1 −e−iζ2∆1

eiζ1∆1 −e−iζ1∆1 −µ1
µ2

ζ2
ζ1
eiζ2∆1 µ1

µ2

ζ2
ζ1
e−iζ2∆1

1 1 −eiζ2(∆1+∆2)e−iθ(∆1+∆2) −e−iζ2(∆1+∆2)e−iθ(∆1+∆2)

1 −1 −µ1
µ2

ζ2
ζ1
eiζ2(∆1+∆2)e−iθ(∆1+∆2) µ1

µ2

ζ2
ζ1
e−iζ2(∆1+∆2)e−iθ(∆1+∆2)

 ,

where µj = µj(ω) and ζj = ζj(ω, κ) for j = 1, 2, and compare the detK2(ω, κ) determinant
to zero. Then, recalling ε1(ω) = µ1(ω) and ε2(ω) = µ2(ω), we obtain the relation, which is
identical to equation (52). This means that we have the identical PBG structure for the TE
and TM modes.

3. Numerical results and discussion

3.1. PBG structure

We use a numerical approach to study the PBG structure of the considered 1DPC.
We search for ω and κ values where the equality (52) holds true with any θ value that
belongs to the (0, 2π/∆) interval. In the first part of our numerical investigation, we fix
the constants ∆1 = ∆2 = 10 ηm−1, ω0 = 30 THz, Ω = 90 THz, and intervals for ω values
from 0-240 THz (then the ω/cnormalized frequency has values from 0-0.8×106 m−1) and for
κ values from 0-0.8 ηm−1 (i.e., to 0.8×106 m−1).

In accordance with the investigation [23], the ζj(ω, κ) value in equation (52) can be
real or distinctly imaginary. If ζj(ω, κ) is real then in the j-th layer the radiative regime
is observed else the evanescent regime. Thus, we have four different areas for (ω, κ) values
(Fig. 1).

The PBG structure is presented in Fig. 2 and Fig. 3. In areas with numbers 1 and 3
for ω < ω2, where ω2 = 94.86 THz (Fig. 1) and the radiative regime for the metamaterial is
observed (see Fig. 2 and (a)-(d) in Fig. 3), there are a set of permitted bands, which ones
comprise one continuous band for κ = 0 and become narrower and converge to a linear bands
with ncreased κ values. Also, the permitted become narrower and more thickly located when
ω approaches ω0. For the NIM and first PIM intervals we observe different PBG structures.
Namely, with increased κ values, the linear permitted bands are bent in the left side for the
NIM interval and in the right side for the PIM interval (see (a)-(d) in Fig. 3 and Fig. 2,
respectively).

In both areas marked number 4 (Fig. 1), there are no permitted bands, except the
one band with ω values beside the ω1 = 70.35 THz NIM frequency (see (d) in Fig. 3). With
increased κ values, the permitted band becomes narrower and converges to the ω1 value, i.e.,
for the NIM frequency, there is no reflection effect for all κ values. This fact was discussed
for the finite periodic system, similar to that considered in [27], for the NIM single layer in
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Fig. 1. Areas of the radiative and evanescent regimes. Black unbroken lines
divide the (ω, κ) space into areas. Areas with number 1 correspond to cases
when the radiative regime is observed in the metamaterial and vacuum simul-
taneously. Area number 2 corresponds to the case when the evanescent regime
is observed in the metamaterial and the radiative regime is observed in the
vacuum. Area number 3 corresponds to the case when the radiative regime
is observed in the metamaterial and the evanescent regime is observed in the
vacuum. Areas with number 4 correspond to the cases when the evanescent
regime is observed in the metamaterial and vacuum simultaneously. The ver-
tical dotted line corresponds to the ω0 = 30 THz frequency. ω1 = 70.35 THz
is the NIM frequency, i.e., ε1(ω1) = µ1(ω1) = −1. For the ω2 = 94.86 THz
frequency ε1(ω2) = µ1(ω2) = 0

vacuum [28], and for the system, composed of two half spaces filled with NIM and vacuum
[23].

In the area with the number 1 for ω > ω2 (see Fig. 1 and (e) in Fig. 3), there are
no forbidden bands, except the narrow band that follows the boundary divided areas with
numbers 1 and 2. The PBG structure of the second PIM interval is different from the ones
for the first PIM and the NIM intervals (see (e) and (a)-(d) in Fig. 3 and Fig. 2, respectively).

The area with the number 2 (Fig. 1) has only two permitted bands. The first one
arises at ω2 and follows the boundary divided areas with numbers 2 and 4 (see (e) in Fig. 3).
The second permitted band is located near the ω1 NIM frequency (see (d) in Fig. 3).

3.2. Modification of Lorentz contribution parameters

Now, we examine the band gap structure of the considered system for the different
values of ω0 and Ω. We consider the following cases:

A) ω0 = 30 THz and Ω = 30 THz
B) ω0 = 30 THz and Ω = 60 THz
C) ω0 = 60 THz and Ω = 30 THz
D) ω0 = 30 THz and Ω = 75 THz
E) ω0 = 75 THz and Ω = 30 THz
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Dependences of PBG structure on the ω frequency and κ values for
TE and TM mode simultaneously. Permitted bands are gray, forbidden bands
are white. Dotted lines divide the (ω, κ) space into four different areas (see
Fig. 1). The metamaterial behaves like PIM

The D and E cases are as additional ones. We fix the constants ∆1 = ∆2 = 10 ηm−1

and the intervals for ω values from 0-90 THz (then the ω/cnormalized frequency has values
from 0-0.3×106 m−1) and for κ values from 0-0.3 ηm−1 (i.e., to 0.3×106 m−1). As we noted
above, (ω, κ) values comprise four different areas (Fig. 4).

Let us consider the doubling of the Ω constant, i.e., the A and B cases. It brings to a
broadening of the radiative regime area for the metamaterial layers. The ω2 value increases
from 42.42 to 67.08 THz and the NIM interval of the ω frequency becomes wider but the
first PIM interval of the ω frequency remains unchanged (see (a) and (b) in Fig. 4). The
permitted bands become narrower and more thickly located (see (a) and (b) in Fig. 5). The
permitted band, which contains the NIM frequency, redoubles along the ω axis (see (d) and
(e) in Fig. 5). For the A, B and D cases we consider the ω frequency intervals of the same 24
THz length with the beginning in ω2 (see (a), (b), and (c) in Fig. 6). With increasing of the
Ω constant, the permitted band in the 2 area (Fig. 4) becomes narrower and the adjacent
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(a) (b)

(c) (d)

(e)

Fig. 3. Dependences of PBG structure on the ω frequency and κ values for
TE and TM mode simultaneously. Permitted bands are grey, forbidden bands
are white. Dotted lines divide the (ω, κ) space into four different areas (see
Fig. 1). The metamaterial behaves like NIM (a)-(d), and PIM (e)

permitted band grows to the whole second part of the 1 area (Fig. 4). The forbidden band
between these permitted bands becomes wider along the κ axis.

Now, we consider the doubling of the ω0 constant, i.e., the A and C cases. As for the
A and B cases, it elicits a broadening of radiative regime area for the metamaterial layers.
The ω2 value also increases from 42.42 to 67.08 THz, but the NIM interval of the ω frequency
becomes narrower and the PIM interval of the ω frequency becomes wider (see (a) and (c) in
Fig. 4). With increased κ values, the permitted bands become narrower but not as quickly
as in the A case. The permitted band, which contains the NIM frequency, have lost about
half of its width along the ω axis (see (d) and (f) in Fig. 5). Analogously, with the A, B
and D cases, for the A, C and E cases we consider the ω frequency intervals of the same 24
THz length with the beginning in ω2 (see (a), (d), and (e) in Fig. 6). With increasing of
the ω0 constant, the permitted band in the 2 area (Fig. 4) becomes narrower. It seems that
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(a) (b)

(c)

Fig. 4. Areas of the radiative and evanescent regimes. Black unbroken lines
divide the (ω, κ) space into areas. Areas with number 1 correspond to the
cases when the radiative regime is observed in the metamaterial and vacuum
simultaneously. Area number 2 corresponds to the case when the evanescent
regime is observed in the metamaterial and the radiative regime is observed
in the vacuum. Area number 3 corresponds to the case when the radiative
regime is observed in the metamaterial and the evanescent regime is observed
in the vacuum. Areas with number 4 correspond to the cases when the evanes-
cent regime is observed in the metamaterial and vacuum simultaneously. The
vertical dotted line corresponds to the ω0 frequency. The A, B, and C cases
are presented in (a), (b), and (c), respectively

the forbidden band located between that permitted and the next band remains unchanged
in width along the κ axis.

3.3. Modification of layer’s width

The third our numerical investigation consists in changing of the ∆1 and ∆2 param-
eters. We fix ω0 = 30 THz, Ω = 90 THz and use the four following combinations:

a) ∆1 = ∆2 = 10 ηm (see (a) in Fig. 7-10)
b) ∆1 = 20 ηm and ∆2 = 10 ηm (see (b) in Fig. 7-10)
c) ∆1 = 10 ηm and ∆2 = 20 ηm (see (c) in Fig. 7-10)
d) ∆1 = 10 ηm and ∆2 = 100 ηm (see (d) in Fig. 7-10 and (e) in Fig. 8)
With the each combination, we obtain the PBG structure of the considered system

for different ω frequencies:
1) from 0 till 18 THz (Fig. 7)
2) from 36 till 42 THz (Fig. 8)
3) from 42 till 96 THz (Fig. 9)
4) from 90 till 120 THz (Fig. 10)
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(a) (d)

(b) (e)

(c) (f)

Fig. 5. Dependences of PBG structure on the ω frequency and κ values for
TE and TM mode simultaneously. Permitted bands are grey, forbidden bands
are white. Dot lines divide the (ω, κ) space on four different areas (see Fig. 4).
The A case is presented in (a) and (d). The B case is presented in (b) and (e).
The C case is presented in (c) and (f)

We obtain that doubling of the ∆1 parameter (the a and b combinations) results in
the approximately two-fold narrowing of the permitted and forbidden bands simultaneously
(see (a) and (b) in Fig. 7-10). The permitted band, which contains the NIM frequency, is
split into two bands (see and (b) in Fig. 9). There is no more absence of reflection for the
NIM frequency, which is observed with the a combination (see (a) in Fig. 9).

Increasing of the ∆2 parameter (a, c, and d combinations) results in a faster narrowing
of the permitted bands with increased κ values (see (c) and (d) in Fig. 7-10), than is observed
for the a combination (see (a) in Fig. 7-10). It seems that the permitted bands for small κ
values become narrower and shift to the zero ω value. Also, for the d combination we observe
conglutination of adjacent permitted bands (see (d) in Fig. 7 and (d) and (e) in Fig. 8). The
right 1 area and the 2 area (Fig. 1) are filled with narrow linear permitted bands, which ones
are bent approximately parallel to the bound between areas 1 and 2 (see (d) in Fig. 10).



Photonic crystal with negative index material layers 639

(a) (b)

(c) (d)

(e)

Fig. 6. Dependences of PBG structure on the ω frequency and κ values for
TE and TM mode simultaneously. Permitted bands are gray, forbidden bands
are white. Dotted lines divide the (ω, κ) space into four different areas (see
Fig. 4). The A, B, C, D, and E cases are presented in (a), (b), (c), (d), and
(e), respectively

The permitted band, which contains the NIM frequency, is split into two bands (see (c) and
(d) in Fig. 9). As with the b combination, there is no more absence of reflection for the NIM
frequency, which is observed with the a combination (see (a) in Fig. 9).

4. Conclusions

In this paper, we solved the problem of obtaining the PBG structure for a system
composed of an infinite number of alternating parallel layers filled with a metamaterial
and vacuum, i.e., for the 1DPC. We assumed the Fourier transformed permittivity and
permeability stood equal and were expressed through a singly dispersive Lorentz term (16).
This produced identical PBG structures for TE and TM modes. We considered combinations
for the radiative and evanescent regimes in metamaterial and vacuum layers.
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(a) (b)

(c) (d)

Fig. 7. Dependences of PBG structure on the ω frequency and κ values for
TE and TM mode simultaneously. Permitted bands are gray, forbidden bands
are white. Dotted lines divide the (ω, κ) space into four different areas (Fig. 1).
The a, b, c, and d combinations are presented in (a), (b), (c), and (d), respec-
tively

We obtained that for the radiative regime in metamaterial layers and both regimes in
vacuum layers, there is a set of forbidden and permitted bands, ones which become narrower
with the tending of the ω frequency to approach the ω0 constant of the single Lorentz term
expression (16). For the ω frequency intervals, where the metamaterial behaves like the NIM
or PIM, we observe the different PBG structures. For the NIM frequency we observe the no
reflection effect for any directions. This fact was discussed earlier for finite layered systems
[23, 27, 28].

With an increase in the Ω parameter, we observed the increasing of the ω frequency
interval, where the metamaterial behaves like NIM. The PBG structure became wider. With
an increase in the ω0 parameter, we observed a widening of the ω frequency interval, where
the metamaterial behaves like a PIM, but for decreasing values, the metamaterial behaves
like a NIM. The PBG structure became more extended along the κ axis.

With increased ∆1 metamaterial layer width, the PBG structure became wider. With
increased ∆2 vacuum layer width, the permitted bands were accumulated in the (ω, κ) area,
where the radiative regime for the metamaterial and vacuum is observed simultaneously. For
other (ω, κ) areas, the permitted bands converged to the lines. In both cases (grow of ∆1 or
∆2) the permitted band contained the NIM frequency was split into two bands, i.e., there is
no more absence of reflection for the NIM frequency, which was observed earlier. This fact
disagrees with results for finite layered systems [23, 27, 28] and thus, is cause for increased
interest.
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(a) (b)

(c) (d)

(e)

Fig. 8. Dependences of PBG structure on the ω frequency and κ values for
TE and TM mode simultaneously. Permitted bands are gray, forbidden bands
are white. Dotted lines divide the (ω, κ) space into four different areas (Fig. 1).
The a, b, c, and d combinations are presented in (a), (b), (c), and (d), respec-
tively
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