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The effective equation for few cycle optical pulse dynamics was obtained by virtue of the Boltzmann collision-less

equation solution for conduction band electrons of semiconductor carbon nanotubes in the case when medium

with carbon nanotubes has spatially-modulated refractive index. The pulse retardation effect, in comparison to an

unmodulated medium, was derived. The evaluation was carried out depending on task options.
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1. Introduction

One of the basic problems of modern optics is medium creation, thanks to which, we
can process and control a signal. Among such media, the Bragg media (in which the refractive
index is periodically spatially-modulated) is of great interest [1–3]. As much as the medium
has a periodically variable refractive index, the light pulse propagates more slowly in it, than
in a medium with any fixed refractive index. This makes it possible to construct optical delay
lines based on such media, which are useful for femtosecond spectroscopy for example. Such
behavior can be understood in essence, providing that the light pulse is reflected and then
interferes at the interface of media with different refractive indices. Additional introduction of
nonlinearity into that sort of media leads to qualitatively new effects [4–6]. Particularly, Bragg
solitons can be formed in such systems. They are revealed as a specified counter assembly of
waves, banded in such a manner to move collectively with reduced speed. At the same time,
rising interest in carbon nanotube (CNT) physics and particularly heightened attention to the
study of CNT nonlinear properties leads to the conclusion that carbon nanotubes, with their
characteristic nonlinear optical properties, can be non-conventional material for the nonlinear
Bragg media formation [7–9]. Note that carbon nanotube usage perspectives in nonlinear optics
in particular for optical bullet formation have been mentioned in some research accounts. All
the above-mentioned facts gave impetus for this investigation.

2. Basic equations

Research of carbon nanotube electronic structure is done using the tight-binding approx-
imation within the framework of p electron dynamics. Dispersion expression for zigzag carbon
nanotubes (m, 0) has the form [10]:

E(p) = ±γ
√

1 + 4 cos (apz) cos (πs/m) + 4 cos2 (πs/m), (1)
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where γ = 2.7 eV, a = 3b/2h̄, b = 0.152 nm is a distance between carbon neighbor atoms and
quasimomentum p is defined by (pz, s), s = 1, 2 . . .m.

We will describe the pulse electromagnetic field by virtue of Maxwell equations in
Coulomb calibration [11] E = −1∂A/c∂t while constructing the model of few-cycle optical
pulse propagation in the Bragg media with allowance for nanotube system in the case of
geometry presented in the Fig. 1. The vector-potential has the form A = (0, 0, Az(x, t)):

∂2A

∂x2
− n2(x)

c2
∂2A

∂t2
+

4π

c
j = 0, (2)

where n(x) defines a spatial variation of a refraction index, i.e. the Bragg grating, j is the
current resulting from the electric pulse field exposure on conduction band electrons of carbon
nanotubes. Here, we neglect the diffractive blooming of laser beam in directions orthogonal to
the distribution axis. The electric field of a template is also disregarded. Within the framework
of our model interband transitions are neglected, this fact limits the laser pulse frequency,
which belongs to the near-infrared region. Note that since typical CNT dimension and distance
between nanotubes much less than the size of typical spatial domain wherein a few cycle pulse is
localized, we can use the continuous medium approximation and suppose a current apportioned
by volume.

FIG. 1. Theproblem geometry. j(x, t) is the current along the CNT axis, E(x, t)
is the pulse electric field

A typical length when the Bragg medium refractive index changes essentially turned out
to be greater and dispenses additional constraints.

Since the typical relaxation time for CNT electrons can be estimated by 3 · 10−13A [12],
then the electron ensemble at a time peculiar to few cycle optical pulse dynamics problems
(around 10−14 c) can be described by collision less kinetic Boltzmann equation [13]:

∂f

∂t
− q

c

∂Az
∂t

∂f

∂p
= 0, (3)

where f = f (ps, s, t) is a distribution function, implicitly dependent on coordinate. Moreover,
the distribution function f at the initial moment aligns with the equilibrium distribution Fermi
function F0 as follows:
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F0 =
1

1 + exp {E (p) /kbT}
,

where T is a temperature, kb is the Boltzmann constant.
For the current density j = (0, 0, jz):

jz =
q

πh̄

∑
s

∫
dpzvzf, (4)

where vz = ∂E(p)/∂pz is the group velocity. By characteristics method [14] from the equa-
tion (3), we can obtain the following:

jz =
q

πh̄

∑
s

∫ q0

−q0
dpzvz

[
p− q

c
Az (t)

]
F0 (p) . (5)

Integration in (5) is over the first Brillouin zone and q0 = 2πh̄/3b. The group velocity
can be expanded to Fourier series, the dispersion law taken into account:

vz (s, x) =
∑
m

ams sin(mx),

where

ams =
1

π

π∫
−π

vz(s, x) sin(mx)dx

are expansion coefficients decreasing with increase in m.
Finally the effective equation can be represented in the form [15]:

∂2Az
∂x2

− n2(x)

c2
∂2Az
∂t2

+
q

πh̄

∑
m

cm sin
(maq

c
Az (t)

)
= 0,

cm =
∑
m

amsbms, bms =

q0∫
−q0

dpz cos (mapz)F0 (p) . (6)

Since the coefficients cm decrease with increase in m, then in the sum (6) for esti-
mation it is possible to confine to the first two summands and obtain the double equations
sin-Gordon [16]. Study of this equation gives us the fact that the character of single pulse
break-up depends heavily on its velocity. With an increase in velocity the pulses interact more
elastically and minority of their energy goes to vibrational modes [17].

3. Results of numerical modelling

Equation (6) was solved numerically by applying the explicit finite-difference leap-frog
scheme [18].The time and coordinate steps are chosen according to standard stability criterion,
and then were reduced until the solution changed in the eighth significant character. The initial
conditions for vector potential were chosen in the form:

At=0 = A0 exp

{
−x

2

γ2

}
,

dA

dt

∣∣∣∣
t=0

=
2vx

γ2
A0 exp

{
−(x− vt)2

γ2

}
. (7)

The refractive index of medium in process was simulated as

n (x) = n0 (1 + α cos (2πx/χ)) .
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The first outcome, depicted in Fig. 2, relates to the fact that in presence of the Bragg
grating few cycle pulse propagates steadily and, as it follows from the linear analysis, more
slowly than in the case of no grating.

FIG. 2. Few cycle optical pulse evolution at the fixed moment of time T without
Bragg grating (3); with Bragg grating present (2); and at the moment of time
2T (1) and 3T (4) with Bragg grating present. The dimensionless time is along
the x-axis, the dimensionless amplitude is along the y-axis

Note that the presence of a lattice predictably leads to pulse shape deformation due to
the interference of waves which have a partial reflection. The running pulse delay is correlated
with the same interference.

Numerical modeling results, in terms of the lattice constant χ, are represented in Fig. 3.
As expected, a few cycle pulse propagates faster with an increase in the lattice constant. It is
evident that the pulse will propagate at full throttle under the infinite lattice constant, due to
lack of interference processes. This was confirmed as a consequence of numeric computation.
Note also that the pulse shape has significant disturbance.

The following result relates to dependence of both form and few cycle pulse velocity on
modulation depth of the refraction index α, which is depicted in Fig. 4

Conspicuously, an increase in the modulation depth α leads to both a pulse delay (by
the reasons mentioned above) and a change in its shape due to strong interference. Particularly,
the most significant change is at the pulse front and its asymptotic form, in our opinion, this
is due to reflection at lattice process and further interference. The obtained results may be also
useful for predictions of pulse spread value under pulse delay by means of the Bragg grating in
a carbon nanotube medium.
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FIG. 3. The pulse shape evolution with various period χ (1), 2χ (2), 3χ (3) at
the fixed moment of time under propagation in CNT system. The dimensionless
time is along the x-axis, the dimensionless amplitude is along the y-axis

FIG. 4. The pulse shape evolution with various modulation depth α (1), 3α (2),
5α (3) under the propagation in CNT system. The dimensionless time is along
the x-axis, the dimensionless amplitude is along the y-axis
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4. Summary

This study allows to make the following observations:
1. Few cycle optical pulse propagation in the Bragg medium with carbon nanotubes is

steady. As expected, the presence of Bragg grating deforms pulse shape, and also delays
its propagation by virtue of counter wave interference.

2. It is stated that the lattice constant affects the velocity of few cycle pulse propagation.
The increase in the lattice constant causes the pulse to less reflect from the lattice sites
whereupon its velocity increases. Thus, we can manage the pulse propagation velocity by
varying the lattice constant, which is important for solution of applied optics problems.

3. Both the pulse delay and its shape change come with the refractive index modulation
enhancement by virtue of strong interference. Particularly strong changes in shape can
be seen at the front of few cycle optical pulse.
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