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A full asymptotic series for low eigenvalues and eigenfunctions of a stationary Schrödinger operator with a

nondegenerate well was constructed in [29]. This allowed us to describe the tunneling effect for a potential with

two or more identical wells with sufficient accuracy. The procedure is described in the following discussion. Some

formulae are obtained and corresponding problems are discussed.
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1. Introduction

Consider the Schrödinger equation:

−h
2

2
4u+ V u = Eu, (1.1)

where ∆ =
∑d

i=1 ∂
2/∂xi

2 is the Laplace operator, V is a real valued function defined on Rd

having nondegenerate minima (wells) with some mode of symmetry.
If V has a finite number of identical wells which differ only by space translations and

V (x) > C beyond the region of the wells where C exceeds the value of V at minimum,
the lower part of the spectrum of the corresponding Schrödinger operator is organized in the
following way. There is a set of finite groups of eigenvalues (each connected with some
quantum vector n ∈ Nd), the distance between the groups being of the order h, and the distance
between eigenvalues in each group, the splitting, being exponentially small with respect to h.

It is possible to find explicit formulae for the widths of these splittings using semiclas-
sical asymptotics for each well. The problem was considered in different ways by different
authors and almost completely solved in the one dimensional case [1–11]. The case d > 1
seems much more complicated. There are many results obtained in this area (see [11–20] and
the list is far from complete). Still, the picture is not so complete as when d = 1. The semi-
classical asymptotics of the discrete spectrum and strict estimates of the splittings are described
in [11–13] and other works of these authors (using the theory of pseudo differential operators).
The semiclassical expansion for the eigenfunctions and the rigorous asymptotics for the splitting
widths in the lowest levels (n = 0) were obtained in [18–20] (with the use of a Maslov’s
canonical operator). Still, there are no effective (as when d = 1) splitting asymptotic formulae
in terms of the potential for a set of arbitrary levels (|n| = 1, 2, 3, . . .). The possibility of solving
this problem in that case was discussed on the Diffraction Day Conference this spring in the
talk of A. Anikin and M. Rouleux. These results have not been published yet.

My approach to this problem is different. In order to write down strict asymptotic
formulae for splittings in the d-dimensional case, one has to develop methods of [9]. To do
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so, it is necessary to find a sufficiently accurate semiclassical approximation to eigenstates for
a single well in some vicinity of a minimum, independent of h. Such an approximation was
constructed in [29]. The formal series on powers of h was obtained. Coefficients in all terms
were found in some domain independent of h. Terms for eigenfunctions are analytic for analytic
potential. If we truncate the series at the N -th term, the remaining sums satisfy the equation
(1.1) with an error on the order of hN+1 exp (−S/h) , where S is a nonnegative function
defined in [29]. They give us so called quasi-modes [21]. The possibility to take N as large
as we like and exponential decreasing of all terms beyond some vicinity of a minimum allows
one, with the help of quasi-modes, to find real eigenfunctions and eigenvalues approximately,
with exponentially small errors, smaller than the widths of the splittings. (The program was
realized in [9] for d = 1.) The constructed series allow us to investigate the set of zeros for the
eigenfunctions. The latter is interesting by itself and may be essentially used while finding the
splitting asymptotics for |n| > 1.

2. Asymptotic expansions for the eigenstates in one well

We look for eigenfunctions un and eigenvalues En of (1.1) where V is a real valued
function defined on Rd having a nondegenerate minimum at the origin in the form of the
following series:

En =
∞∑
j=1

Enjh
j, (2.1)

un = exp

{
−S
h

} ∞∑
j=0

unjh
j, (2.2)

where Enj ∈ R, n = (n1, n2, . . . , nd) ∈ Nd is a quantum vector, S = S (x), x = (x1, x2, . . . , xd) ∈
Rd, unj = unj(x), j = 0, 1, 2, . . . , are functions independent of h.

One can find un0 in the following form:

un0 = ψnePn(x), (2.3)

where:

ψ = ψ (x) = (ψ1 (x) , ψ2 (x) , . . . , ψd (x)) , ψn =
d∏
i=1

ψni
i ,

the functions ψi (x), i = 1, 2, . . . , d, and S(x) satisfy the following equations:

S (x) = S0 (x) =
1

2

d∑
i=1

ψ2
i , (2.4)

SJ =
1

2

d∑
i=1

(1− 2δij)ψ
2
i , j = 1, . . . , d, δij =

{
1, if i = j,

0, if i 6= j.
(2.5)

(
∇Sj

)2
= 2V, j = 0, 1, . . . , d, (2.6)

〈∇ψi,∇ψj〉 = δij(∇ψj)2. (2.7)

Symbols ∇ and 〈·, ·〉 denote a gradient and a scalar product in Rd respectively.
We put the series (2.1) and (2.2) into the Schrödinger equation (1.1) and equate coeffi-

cients of each power of h to zero. The equation for power 0 is satisfied automatically because
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of (2.6). The requirement for the coefficient of first degree in h to be equal to zero, gives us
the following equation for the function Pn and the number En1:

〈
∇S0,∇Pn

〉
=En1−

∆S0

2
−

d∑
i=1

ni(∇ψi)2. (2.8)

The analogous requirement for the coefficient of h2 gives the equation for un1 and En1:

〈
∇S0,∇un1

〉
+

(
4S0

2
−En1

)
un1=

{
F1+ψn

[
4Pn+(∇Pn)2

2
+En2

]}
ePn , (2.9)

where

F1 =
d∑
i=1

ni(ni − 1)

2
ψni−1
i (∇ψi)2

∏
j 6=i

ψni
j +

d∑
i=1

ni
2
ψni−1
i ∆ψi +

d∑
i=1

niψ
ni−1
i 〈∇ψi,∇Pn〉

∏
j 6=i

ψni
j .

So on, for each j ≥ 2 we obtain the equation:

〈
∇S0,∇unj

〉
+

(
4S0

2
− En1

)
unj =

− 4un,j−1

2
+

j−1∑
l=1

En,l+1un,j−1 + ψnePn(x)En,j+1. (2.10)

In [29], a procedure of constructing solutions for these equations was described and the
following theorems were proven.

3. The phase theorem for the analytic potential

Let V be analytic with the following Taylor series:

V (x) =
1

2

d∑
i=1

ω2
i x

2
i +

∑
|k|≥3

vkx
k, k = (k1, k2, . . . , kd) ∈ Nd, |k| =

d∑
i=1

ki , (3.1)

convergent in a polydisk |xi| ≤ r, i = 1, 2, . . . , d with the numbers ωi > 0, i = 1, 2, . . . , d.
We search for solutions for equation (2.6) in the form of a power series:

Sj (x) =
1

2

d∑
i=1

ωi (1− 2δij)x
2
i +

∑
|k|≥3

(
Sj
)
k
xk, j = 0, 1, . . . , d, (3.2)

and comparing coefficients of xk , we find the following recurrent formulae for (Sj)k:(
Sj
)
k

=
ṽk

〈k, Ijω〉
, (3.3)

where ω = (ω1, ω2, . . . , ωd); I0 is a unitary matrix of order d; Ij , j = 1, . . . , d, is a diagonal
matrix of the order d with −1 standing at the j-th place of the diagonal and 1 at the others,
ṽk = vk for |k| = 3 and ṽk = vk + terms, depending on (Sj)l, |l| < |k|, for |k| ≥ 4.

It is easy to see that for the positive numbers ωi, i = 1, 2, . . . , d, the denominators in
expressions (3.3) for j = 1, 2, . . . , d, can be equal to zero. So, even to formally construct these
series, we have to impose some additional conditions on the potential V .
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Simultaneously, we construct a change of variables:

Φj : yj = (yj1, . . . , yjn) 7→
(
x1 = Φj

1 (yj) , . . . , xd = Φj
d(yj)

)
, (3.4)

which transforms the vector field 〈∇Sj, ∇·〉 into the normal form:

Lj0 =
d∑
i=1

ωi (1− 2δij) yij
∂

∂yij
. (3.5)

We search the functions Φj
i (y), i = 1, 2, . . . , d, in the following form:

Φj
1 (yj) = yij +

∑
|k|≥2

(
Φj
i

)
k
ykj ,. (3.6)

In order to find the coefficients
(
Φj
i

)
k
, we replace xi, i = 1, 2, . . . , d, in 〈∇Sj, ∇·〉 by

Φj
1 (yj) of the form (3.6) and equate the obtained series (in variables y) to Lj0. Hence, we find

the following expressions for the coefficients:

(
Φj
i

)
k

=
S̃i,j,k

〈k − orti , Ijω〉
, j = 0, 1, .., d, |k| ≥ 2, (3.7)

where:

S̃i,j,k = (ki + 1)
(
Sj
)
k+orti

+ terms, depending on (Φj
l )m , l = 1, 2, . . . , d, |m| < |k| ,

orti is an element of a standard basis {orti}d1 having all components equal to 0 except of the
i-th one, which is equal to 1.

We see here that some denominators are equal to zero for some values of ω. We have
to exclude these values.

Let us make the following definitions:

(1) we say, that the positive numbers ω1, ω2, . . . , ωd are nonresonant- if they are linearly
independent over integers;

(2) positive numbers ω1, ω2, . . . , ωd are said to be Diophantine if there exist positive numbers
α and C such that for any k ∈ Zd, k 6=0,

|〈k, ω〉| ≥ C

|k|α
; (3.8)

(3) we denote the set of vectors ω = (ω1, ω2, . . . , ωd) with positive components by Ω, the set
of ω with nonresonant components by Ωnr, the set of ω with Diophantine components
by ΩD.

Theorem A. Let the potential V be analytic, represented by a series of the form (3.1) convergent
in the vicinity of the origin.

(1) If ∈ Ωnr, then there exists a pair: a unique positive analytic function S0 which can
be represented by convergent series of the form (3.2) for j = 0 in some vicinity of the
origin and satisfies the equation (2.6); and a unique analytic diffeomorphism Φ0 which
transforms the vector field 〈∇Sj, ∇·〉 to the normal form L0

0 given by (3.5).
(2) If ∈ ΩD, then for each j ∈ {1, 2, . . . , d} there exists a pair: a unique analytic function

Sj which can be represented by convergent series of the form (3.2) in some vicinity of
the origin and satisfies the equation (2.6); and a unique analytic, diffeomorphism Φj

which transforms the vector field 〈∇Sj, ∇ 〉 to the normal form Lj0 given by (3.5).
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The proof of this theorem is published in [29].
Remark 3.1. Normal forms of the vector fields (i.e. of Hamiltonian systems of differential
equations) are described in literature on classical mechanics e.g. [22–25]. A typical situation
there is that given a vector field, one has to find the simplest form for it in suitable variables.
Here, we have no given vector fields. We are looking for vector fields which are solutions for
the nonlinear Eiconal equation (2.6). The normal forms (3.5) are used as an auxiliary tool.

Remark 3.2. In case (1), the nonresonance condition is necessary to construct Φ0 (not S0).
There are no small denominators in (3.3) for j = 0. The existence of analytic S0 was established
in [26] in a more general situation.

Remark 3.3. One can give the following geometrical interpretation for the results of the
Theorem A. The functions Sj are the generating functions for Lagrangian manifolds, which are
invariant with respect to the classical dynamical system with the potential −V (x). The potential
−V (x) has a ‘hunch’ at the origin (instead of a ‘well’ of V (x)). So our quantum mechanical
problem ‘at the bottom of a well’ is equivalent to a classical problem ‘near the top of a hill’.
The origin is a point of singularity in this problem, a point of infinite time in classical dynamics,
a point of vanishing energy of the Lagrangian manifolds. The theorem gives the existence of
the generating functions SJ for the invariant Lagrangian manifolds in a small vicinity of that
point.

The geometrical aspects of the problem were considered in [27]. In addition to the proof
of Theorem A, the following lemma was proven.

We denote by Br a Banach space of analytic functions in B (r) = y ∈ Cd : |yi| < r,
i = 1, 2, . . . , d with the norm ‖f‖ = supy∈B(r) |f(y)| , by Br,M,n,0 the subspace of Br which
is the set of functions having the Taylor series, which contains only the terms with power
|k| ≥M ≥ 0 and coefficient at power n equal to zero, by ω0 = mini∈{1,...,d}ωi.
Lemma 1. Given r′ < r, there exists a bounded operator {Ljn}

−1: Br,M,n,0 → Br′,M,n,0 which
solves the equation Ljn = f |B(r′), u ∈ Br′,M,n,0, f ∈ Br,M,n,0, in the following cases:

(1) for any ω ∈ Ω, j = 0, n = (0, . . . , 0);
(2) for ω∈ Ωnr, j = 0, n arbitrary;
(3) for ω∈ ΩD, j = 1, . . . , d, n arbitrary,

and there exists a positive constant c1 = c1 (M,d, ω, r) such that in both cases (1), (2):∥∥∥{L0
n

}−1
∥∥∥ ≤ c1

(r − r′)d−1
,

in case (3) there exists a positive constant c2 = c2 (α,M, d, ω, r) such that:∥∥∥{L0
n

}−1
∥∥∥ ≤ c2

(r − r′)α+d
.

4. Constructing the series (2.1), (2.2)

In order to construct the whole series (2.1) and (2.2), we have to find at first (after
solving (2.6)) all the functions ψj(x) which satisfy the following equations:

ψ2
j (x) = S0 (x)− Sj (x) , j = 1, 2, . . . , d . (4.1)

Lemma 2. Let Sj (x), j = 0, . . . , 1, d, be taken from Theorem A.
Then, the right hand sides in the formulae (4.1) are the full squares, i.e. there exist

d unique analytic functions ψj , j = 1, 2..., d, which satisfy the equations (4.1) and have the
following convergent series:
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ψj =
√
ωjxj +

∑
|k|≥2

(ψj)kx
k, j = 1, 2, . . . , d, (4.2)

in some vicinity of the origin.
After changing the variables of (3.4), the equation (2.8) satisfies the conditions of

Lemma 1, case (1), M = 1, if we choose En1 in the following way:

En1 =
d∑
i=1

(
ni +

1

2

)
ωi. (4.3)

According to Lemma 1, there exists an analytic solution, which after returning back to
coordinates x, gives us in some polydisk an analytic solution for (2.8) which vanishes at the
origin.

Each of the equations (2.9) and (2.11) has the following form:

〈
∇S0,∇un1

〉
+

(
4S0

2
− En1

)
un1= F . (4.4)

We search for the solution of (5.7) in the form of the product:

u = UeP0 , (4.5)

where P0 is a solution of equation (2.8) for n = 0. This means that:

〈
∇S0,∇eP0

〉
+

(
4S0

2
− E01

)
eP0 ≡ 0. (4.6)

After putting (4.5) into (4.4) we obtain the following equation for the unknown func-
tion U :

L0Ũ − 〈n, ω〉 Ũ = F̃ e−P̃0 , (4.7)

where L0 = L0
0 is the normal form of the operator 〈∇S0,∇·〉 in coordinates y, ‘tilde’ means

the change of variables: F (x) = F̃ (y). Now the left hand side operator is that of Lemma 1,
case (2).

The condition of solvability for equation (4.7) is the following:(
F̃ e−P̃0

)
n

= 0, (4.8)

(F )n is noting the Taylor coefficient at yn of the function F .
Hence, we obtain the following expressions for all the terms of the series (2.1), i.e.:

En2 = −1

2

([
4P̃n +

(
∇P̃n

)2
])

0

− ω−
n
2

(
F̃1e

P̃n−P̃0

)
n
, (4.9)

Enj = ω−
n
2

([
4ũj−1

2
−

j−1∑
l=1

En,l+1ũn,j−1

]
e−P̃0

)
n

, j ≥ 2; (4.10)

and find all the functions unj , j = 1, 2, . . . in form (4.5).
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5. Main theorem and concluding remarks

Results from paper [29] are summarized in the following theorem.
Theorem B. Let the potential V in Schrödinger equation (1.1) be analytic, represented in a
vicinity of the origin by Taylor series (3.1) with positive Diophantine numbers ω1, ω2, . . . , ωd.

Then for any ∈ Nd, 0 ≤ |n| ≤ n∗, N ∈ N, one can construct the following pair:
a number:

En =
N∑
j=1

Enjh
j,

and an analytic function:

un = exp

{
−S

0

h

} N−1∑
j=0

unjh
j,

which satisfies the Schrödinger equation (1.1) up to terms of the order hN+1exp {−S0/h} in
some vicinity of the origin independent of h. Here: S0(x) is the positive analytic solution of
(2.6) with Taylor series (3.2) (see Theorem A), analytic functions unj(x) (j = 0, 1, ..., N − 1)
and numbers unj(x) (j = 1, 2, ..., N ) have the form given by formulae (2.3), (4.2), (4.5) and
(4.3), (4.9), (4.10).
Remark 5.1. One can lengthen the functions SJ analytically onto a larger domain by the
formulae Sj =

∫ ∑d
i=1 p

j
idx

j
i , j = 1, 2, . . . , d, where for each j the integral is taken along the

trajectory of the corresponding Hamiltonian system. Hence, one can lengthen the functions
ψj (x), j = 1, 2, . . . , d, and unj , j = 0, 1, 2, . . . in a similar way. Thus, one can construct
sufficient quasi-modes in a rather large domain containing the point of a minimum. Then, in
the problem with many identical wells, situated so that the distances between the points of
the minima are finite, one can do the following. Construct quasi-modes for each well in such
a domain, that the two neighboring domains intersect. Then multiply those quasi-modes on
the cutting functions equal to zero beyond the mentioned domains. The approximation for the
eigenfunctions of the problem can be taken as a linear combination of these cut-off quasi-modes.
It is then possible to write the rigorous splitting formulae following the ideology of [9] for an
arbitrary n ∈ N in the form as it was obtained in [18–20] for n = 0.

Thus, one can find:

∆En = ane
−bn/h (1 +O(h)) ,

where, in the case d = 1, bn =
∫ x2
x1

√
2V (x)dx,

in the case d ≥ 2, bn =
∫

˘M1M2

√
2V (x)dl,

the last integral is taken along the extreme line of the functional in the right hand side of the
last formula.

It is important to note that to find the pre-exponential coefficient in the splitting formula
for |n| > 0, one has to be sure that on the trajectory of the corresponding Hamiltonian system
the corresponding eigenfunction is not equal to zero. Hence, one has to investigate the zero-sets
of the eigenfunctions. Some examples in a one-dimensional case were considered by my student
N. Homchenko and published in [30].
Remark 5.2. In order to find the zero-sets of the eigenfunctions, one can also use expansions
of the form (2.2). It is more convenient, however, to construct for this purpose an ansatz with
Hermite polynomials, namely:
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un =

[
ePn

d∏
i=1

Hni

(
ψi√
h

)
+
∞∑
j=1

hjGj

]
exp

{
−S

0

h

}
, (5.1)

where S0 and ψi, i ∈ (1, . . . , d), are the above-described functions, Hni
(t) = (−1)niet

2
(
e−t

2
)(ni)

are Hermite polynomials which satisfy the following differential equation:

H ′′ni
(t)− 2tH ′ni

(t) + 2niHni
(t) = 0. (5.2)

If we put series (5.1) and (2.1) into the Schrödinger equation (1.1) and equate coefficients
at each power of h to zero (taking into account (5.2)), we will obtain problems for Gj quite
similar to those described in Section 4. Solving them, we will construct all the functions Gj . In
zero approximation the eigenfunction un has the form of an exponent multiplied by a product of
Hermite polynomials. Hence, in the zero approximation, we find a set of zeros of the function
un as a net of intersecting surfaces Σi : ψi (x) = tij , i = 1, 2, . . . , d, tij ∈ Ri, Ri is a set of roots
of Hni

(t). The first term of (5.1) depends on third and fourth derivatives of the potential V at
the origin. It does not vanish if they are not equal to zero. In this case, one can already find in
the first approximation, that Σi do not intersect. They have quasi-intersections. A more detailed
description of this ansatz and some examples were published in [31] and [32].
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