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1. Introduction

Coherent excitation of levels belonging to a particular state, can lead to a number of in-
teresting phenomena, for example – coherent population trapping (CPT) and electromagnetically-
induced transparency, which have been extensively studied for decades. Continuing interest in
these phenomena is related not so much to the phenomena themselves, but rather their applica-
tions – lasing without inversion [1], laser cooling [2] and stored light [3]. If the system under
consideration is not in the CPT state, the polarization characteristics of its radiation can be used
for the diagnostics of the anisotropy of the processes occurring in that system. Previously, these
characteristics have been used for diagnostics of ions drift velocities in gas discharge plasma [4],
the proton and electron beams of the sun’s chromosphere and the earth’s atmosphere [5], [6],
the magnetic fields of Z-pinch [7] and tokamak [8] hot plasma and cold plasma of the upper
layers of Earth’s atmosphere [9].

In general, for the investigation of CPT phenomena, the lower superfine levels of alkali
atoms are used. According to the our viewpoint the polarization characteristics of other atoms
for instance helium are of interest. The emission of helium can be observed in the solar
atmosphere and if the observation take place nearby the sun spots strong magnetic field should
be imposed on the system of observation [10].

Due to the fact that the considered phenomena are associated with coherent processes,
a satisfactory description of these processes is only possible using the apparatus of the density
matrix, allowing one to take into account correlation in the initial conditions.

Polarization characteristics of the system’s radiation are related to its internal ordering,
which can be changed by an external magnetic field. Studies of the effect of the magnetic
field on the system can be done in two ways, for the first one, the field is turned on during
registration of systems radiation [11], [12], in the second , as it will be assumed in this paper,
the system is constantly under the influence of the field. In the latter case, the role of the
constant magnetic field is reduced to the splitting of the fine or hyperfine structures levels, and
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to changing the symmetry of the problem in question. The result of these two factors will be
discussed below.

2. Description of polarization phenomena

To describe the polarization phenomena, it’s convenient to expand the system density
operator over the irreducible tensor operators:

ρ =
∑
k,q

ρkqT
k†
q . (1)

The coefficients of this expansion are known as a polarization moments and can be
defined by the following formula:

ρkq (j) =
∑
m,m′

(−1)j−m
′

[
j j k

m −m′ q

]
(ρ)m,m′ , (2)

where j denotes the magnitude of the angular momentum of the system under consideration,
m is the magnetic quantum number and the expression in square brackets is known as the
Clebsch-Gordan coefficients [13].

The physical meaning of the polarization moments is that they determine the ordering
of the angular momenta of the ensemble of particles, i.e. the ensemble average of the linear
combinations of the components of the tensor, which is comprised of the components of the
angular momentum. For example, such averages of first and second rank tensors can be
implied [10]:

〈jz〉 =

√
2j(2j + 1)(2j + 2)

2
√

3
ρ10,

〈j±〉 = ±
√

2j(2j + 1)(2j + 2)√
6

ρ1∓,

〈
3j2z − j2

〉
=

√
(2j − 1)2j(2j + 1)(2j + 2)(2j + 3)

2
√
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√

(2j − 1)2j(2j + 1)(2j + 2)(2j + 3)

2
√

15
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〈
j2±
〉

=

√
(2j − 1)2j(2j + 1)(2j + 2)(2j + 3)√

30
ρ2±2.

(3)

Conversely, the polarization moments define intensity of the radiation polarized along
the unit vector −→e λ emitted by the transition from the excited level with angular momentum j
to the lower-lying state with angular momentum j0

Iλ = I0Sp (dλρd
∗
λ) = I0

∑
k,q

(−1)k |〈j0 ‖1‖ j〉|2
{

1 1 k

j j j0

}
Φk,q (−→e λ) ρk−q (j) , (4)

where I0 is a factor that depends on fundamental constants and frequency, dλ is the projection
of the atomic dipole moment on the direction of the oath −→e λ, 〈j0 ‖1‖ j〉 – reduced matrix
element, an expression in the figure braces 6j-symbol [13], and Φk,q (−→e λ) denotes the so-
called polarization tensor, which is determined by observation conditions and depends on s(λ)q –
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expansion coefficients of the unit vector of the polarization direction of detected radiation by
circular unit vectors:

Φk,q(
−→e λ) =

∑
q1,q2

(−1)1−q1s(λ)∗q1
s(λ)q2

[
1 1 k

−q2 q1 q

]
. (5)

In particular, if Ix, Iy, Iz would denote the intensities of the radiation polarized in three
mutually perpendicular directions defined by the axes OX , OY and OZ respectively , from
formula (4) can be obtained:

Ix + Iy + Iz = I0 |[j0 |1| j]|2
1√

2j + 1
ρ00(j). (6)

In the same manner, for the difference between the intensities of radiation polarized in
two mutually perpendicular directions (e.g., OZ and OY ) and observed along the third direction
(in this case OX), we have:

(Iz − Iy)x = I0 |[j0 |1| j]|2 (2j + 1)(−1)j+j0+1

{
1 1 2

j j j0

}[
3√
6
ρ20(j) +Re

(
ρ22(j)

)]
. (7)

For the difference between the intensities of radiation polarized along the right and left
circle when observed along the axis OZ, we have:

(I+ − I−)z = I0 |[j0 |1| j]|2 (2j + 1)(−1)j+j0+1

{
1 1 1

j j j0

}
ρ10(j). (8)

From the last three expressions, it can be seen, that the sum of the intensities of radiation
polarized in three mutually perpendicular directions is defined by polarization moment of zero
rank, the anisotropy of the radiation which is linearly polarized in two mutually perpendicular
directions is determined by the components of the moment of the second rank, and, finally,
the anisotropy of the circularly polarized radiation - by the components of the moment of the
first rank. The polarization moment of the second rank is called alignment tensor, while the
polarization moment of the first rank, which has three components – the orientation vector.
Components ρ20 of the alignment tensor is often named as longitudinal, whereas components ρ21
and ρ22 are known as uncleaned alignment and transverse ones. Based on the above, one can
say that the polarization moments define the ordering of the angular momenta of the ensemble
of particles and the anisotropy of the dipole radiation of that ensemble.

3. Statement of the problem and discussion of the results of the numerical calculations

In this paper, we consider the time dependance of 33S1 state of the atom He, the
excitation of which is performed from 23P multiplet of this atom. It is assumed that the system
is placed into a strong magnetic field sufficient to break the thin bond of P-multiplet under
consideration. We will also assume that state 23P is populated from the ground state of this
atom by a proton or electron impact or other axially symmetric excitation sufficient to tear up the
fine bound, and which the symmetry axis makes an angle θ with the axis OZ of the laboratory
frame of reference. As a result of this excitation in the frame of reference associated with the
anisotropy axis, on the 23P – levels, ordering of the angular moments of the population T 0

0

and longitudinal alignment T 2
0 will be induced. Then, by introducing a parameter α = T 2

0 /T
0
0 ,

which may be called the anisotropy parameter, for efficiencies of populations of the magnetic
sublevels of 23Pj state in the laboratory frame of reference XY Z, one can write the following:
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σj,m;j′,m′ =
1

2j + 1
A(0)(j, j′, l, s) + α

∑
q

(−1)j
′+m′

[
j j′ 2

m −m′ q

]
D

(2)
0,q(θ)A

(2)(j, j′, l, s), (9)

where l and s are the orbital and the spin moments, D2
m,m′(θ) elements of three-dimensional

rotation [13], and A(k)
j depends on coefficients of vector addition of moments:

A(k)(j, j′, l, s) = (−1)j
′+s+k+l

√
(2j + 1)(2j′ + 1)

{
l l k

j j′ s

}
. (10)

The Hamiltonian operator of the atomic system placed in a strong magnetic field of
strength H is defined by the orbital l̂ angular momenta and ŝ the spin ones

Ĥ = ĤF + Ŵ , (11)

where ĤF = Ĥ0 + µ0Ĥ(l̂ + 2ŝ) depends on the value of the moments, µ0 – the Bohr magneton
and on the value and direction of magnetic field. Furthermore, we expect that the direction of
magnetic field makes an angle χ with the OZ axis of the laboratory frame of reference.

Operator Ŵ describes the interaction of the system with the electromagnetic field, per-
forming the excitation from 23P state to 33S ones (hereafter referred to as the state of ‘a’ and
‘b’, respectively (see Fig. 1)). Then, if we assume that the exciting field is linearly polarized
along the axis OZ of the laboratory frame of reference, in the basis of eigenfunctions of the
square momentum and its projection for the matrix element of operator Ŵ , it can be written as
follows:

(Wab)ja,ma;jb,mb
= 〈jama |dz| jbmb〉 =

= h̄Ω(−1)la+s+jb+lb+1
√

(2lb + 1) (2jb + 1)

[
jb 1 ja
mb 0 ma

]{
lb la 1

ja jb s

}[
lb 1 la
0 0 0

]
,

(12)
where Ω = E 〈ja ‖ r ‖ jb〉 /h̄ is the Rabi frequency, which depends on the electric field intensity
E and irreducible matrix element of operator r. The evolution of the density matrix for a system
of two states is described by the Liouville equation, which for the blocks of the density matrix
ρ̃i,j i, j = a, b may be written in form:

d

dt
ρ̃aa(t) = Γρ̃bb(t)− i(Wab(t)ρ̃ba(t)− ρ̃ab(t)Wba(t)),

d

dt
ρ̃bb(t) = −Γρ̃bb(t)− i(Wba(t)ρ̃ab(t)− ρ̃ba(t)Wab(t)),

d

dt
ρ̃ab(t) = −Γ

2
ρ̃ab(t)−

i

h̄
(Ea − Eb)ρ̃ab(t)− i(Wab(t)ρ̃bb(t)− ρ̃aa(t)Wab(t),

ρ̃ba(t) = ρ̃†ab(t),

(13)

where Γ is a matrix that describes relaxation processes.The solution of this system should
be found according to initial conditions ρ̃bb(0) = 0, ρ̃ab(0) = 0, ρ̃ba(0) = 0. As to density
matrix of the state ‘a’, in the base of the eigenfunctions of the square of the momentum
and its projection this matrix is proportional to the matrix σj,m;j′,m′ , which is specified by
relation (9). In order to reduce the system (13) to a more convenient form for numerical
computation, first, it is necessary to introduce dimensionless time τ = t/τ0, where τ0 – the
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lifetime of the excited 33S1 state, and secondly, to move from the basis of eigenfunctions of
the square of the momentum and its projection to the basis on which operator HF of (11) is
diagonal (M -basis). Then, if we introduce density matrices ρi,j(t) (i, j = a, b), connected with
the similar matrices introduced earlier with the help of relations (ρij(τ))M,M1

= (ρ̃ii(τ))M,M1

(i = a, b), (ρba(τ))M,M1 = (ρ̃ba(τ))M,M1 exp[−iτ((Eb)M − (Ea)M1/h̄)] (ρi,j(τ) = (ρj,i(τ))†),
then the dimensionless energy levels (Ea)M = Ea + (εa)M and (Eb)M = Eb + h̄ω + (εb)M are
expressed through (εi)M (i = a, b) – the eigenvalues of operator ĤF and ω = (Eb − Ea)/h̄ –
transition frequency between the levels of b and a with the energies Eb and Ea respectively (see
Fig. 1) and, at last the laser frequency ωex = ω + δ̃/h̄. The eigenvalues (εa)M and (εb)M here
possess the values ±nµ0H, whereas (n = 0, 1, 2, 3) and (n = 0, 2) for the states ‘a’ and ‘b’
respectively. It should be mentioned that eigenvalue n = 1 of the state ‘a’ is twice degenerate.

Using these new notations, the system (13) takes the form:

d

dτ
ρaa(τ) = γaρbb(τ) +

i

2h̄
e−iτδρab(τ) (Wba)I (τ)− i

2h̄
eiτδ (Wab(τ))I ρba(τ),

d

dτ
ρbb(τ) = −γρbb(τ)− i

2h̄
e−iτδ(Wba)Iρab(τ) +

i

2h̄
eiτδρba(τ)(Wab)I ,

d

dτ
ρab(τ) = −γ

2
ρab(τ) +

i

2h̄
eiτδρaa(τ)(Wab)I −

i

2h̄
eiτδa(Wab)Iρbb(τ),

d

dτ
ρba(τ) = −γ

2
ρba(τ)− i

2h̄
e−iτδ(Wba)Iρaa(τ) +

i

2h̄
e−iτδaρbb(τ)(Wba)I ,

(14)

where the subscript ‘I’ indicates that this operator is recorded in the interaction representation
((Wab)I)M,N = (Wab)M,N exp[i((εa)M − (εb)N)τ ] and δ is the dimensionless laser detuning

δ = δ̃τ0/h̄.
It should be noted that the 23P state, owing to the transition from the level with

j = 1 (when level with j = 2 is metastable one [15]), is characterized by the finite value of
the lifetime. This leads an exponential decrease in the value σj,m;j′,m′ (9) and for additional
exponential decreasing of the solution of the system (13), that did no connect with the coherence
process. Therefore, one can say that the decrease in the population of the 23P state is connected
with the presence of magnetic field, that mixes the levels of this multiplet. This exponential
decay will not be considered in this article.

With regard to the integration of the system of matrix equations, the left side of which
contains a matrix of order n, it should be noted, that the universal method in this case is a
method of reducing this system to the system of ordinary differential equations of order n2. In
the case when the matrix coefficients of the right part do not depend on the time, the system
can be integrated using the Laplace transform or the transition from the matrix ρ̃i,j i, j = a, b
, to the matrix ρ = U †ρ̃U [16], where the matrix U – is the matrix of the eigenvectors of
the Hamiltonian operator (11). In the present paper, system (13) was integrated by the series
expansion, the implementation of which may be briefly described as following. Due to the
fact that the density matrix does not depend explicitly on the time, the derivative of the matrix
ρ̃i,j of order n, can be obtained from the derivative of order n − 1 of this matrix by using
the commutation of the latter matrix with the Hamiltonian operator (11). After this, for the
derivative of ρ̃(n)i,j , expressions similar to (13), with the difference that the right side contains

derivatives of ρ̃(n−1)i,j will be obtained. After this, performing replacements similar to those
mentioned above, leads to expressions for the derivatives of the matrix ρi,j i, j = a, b, that are
similar to (14). Using such procedure, at a fixed time, one can calculate the first four derivatives
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FIG. 1. Splitting scheme of 33S and 23P states of the He atom in a strong
magnetic field (M− base). (Eigenvalues ±1 of state ‘a’ are doubly-degenerate).

of the matrix ρi,j , and then determine the value of this matrix at the incremented point using
the Taylor formula. As for the relaxation terms, they were considered in accordance with the
Pauli equation [15]: as the level 33S1 decays incrementally into multiplet levels of 23P , a term
describing the relaxation of state ‘b’ has the form of 1

3
I3ρbb, where I3 is the identity matrix of

the third order. (The time is measured in units of the time of life of 33S1 state and therefore
the time interval equal to the lifetime of this state is equal to one). As for the density matrix of
the multiplet 23P (state ‘a’), because of the proposed isolation of the 33S1 and 23P states, the
term in equation (14) describing the relaxation of the state ‘a’ has the form 1

9
I9ρaa, where I9 is

the identity matrix of the ninth order. With regards to the correlation density matrices, in this
paper it is assumed that their relaxation constants are γ/2.

At Fig. 2 the dependency of the population of 33S1 state of He atom on the dimensionless
time for several values of the detuning of the laser frequency δ = 0, 1, 2, 3, the intensity of
magnetic field H = 5000 G and the angle of inclination of magnetic field direction χ = π/4 is
represented. From this picture, it can be inferred that the CPT state is achieved for sufficiently
large frequency deviations (δ ≥ 2). The latter fact is clear from the above, since the entire chain
of Λ− schemes ‘opens’ only for sufficiently high δ.
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FIG. 2. The dependence of the 33S state population of the He atom on dimen-
sionless time at H = 5000 G and χ = π/4 for δ = 0, 1, 2, 3 (lines 1− 4 respec-
tively)

We note further, that under the axially symmetric impact excitation of 23P multiplet,
at the 3S1 level, alignment is not at all induced for all values of the angles χ and θ. This
result seems complex: the 33S1 state is populated from levels of the 23P multiplet, where the
impact alignment is induced, and therefore, the anisotropy of the lower state population should
be transferred to the upper states.

Such a situation is shown in Fig. 3, where the dependence of the alignment induced
in the 33S1 state while separate isotropic population of the 23P1 and 23P2 levels when δ = 2
is illustrated. The last figure shows that alignment, which is induced on the 3S1 state, is of
different sign when population of the 23P2 or 23P1 state is occurring. Dependence of the
alignment induced from the 3P2 state on time changes sign from negative to positive, however,
the case is reversed for the 3P1 state. It is interesting that for each population mean, the sign
will change at the very same instant. From the above, it can be concluded that the signal of
alignment becoming zero is due to both the symmetry of the impact-excited 23P state and that
of the Wab matrix, which describes the excitation process of the upper 33S1 level. It should be
mentioned, that the above-represented reasoning only illustrates the inputs of states with j = 1
and j = 2 of multiplet 23P into alignment induced on the33S1 state: in the presence of a strong
magnetic field, states with different j are mixed and separate excitation from these states is
impossible.

Figure 4, shows the dependency of the 33S1 state population on dimensionless time at a
fixed detuning, intensity of the magnetic field and for the several values of angle χ. The figure
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FIG. 3. The dependence of the alignment induced on 33S1 state, when population
happens individually for the 23P2 (curves 1 and 2) and 23P1 (curves 3 and 4)
levels (δ = 1, 2, H = 5000 G and χ = π/4).

shows that the population increases with the angle χ increasing from 0 to π/4, but then begins
to decrease. This decreasing becomes faster the closer the angle χ is to the value of π/2. When
χ = π/2, the population turns to zero. Note that a similar result was obtained in [17] in the
framework of approximate solutions for the Schrodinger equation with the use of perturbation
theory over the Rabi frequency. Using a similar method for the approximate solution of system
(14) has led to the following expression for the matrix elements ρbb:

(ρbb)M,M1
= h̄2

∑
ξ,µ

(Wba)M,ξ (ρaa (0))ξ,µ (Wab)µ,M1exp

(−γh̄− 2i
(
δ + (εa)ξ − (εb)M

)
2h̄

t

+ exp

(−γh̄+ 2i
(
δ + (εa)µ − (εb)M1

)
2h̄

t

−
exp

(−γh̄+ 2i
(

+ (εa)µ − (εa)ξ + (εb)M − (εb)M1

)
2h̄

t

 ,
(15)

which, due to cumbersome analytical expressions for Wab and ρaa(0) in M−basis, is rather
short at only χ = π/2, when for the population of level b one can write the following:
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FIG. 4. The dependence of the population of 33S He atom on the dimensionless
time at H = 5000 G, δ = 2 and χ = 0, π/6, π/4, π/2 (lines 1− 4 respectively).

(ρbb)
0
0 (t) =

h̄2

288
√

3 (Ω2
L − δ2)

2

[
−11δ2 − 17Ω2

L + 4
(
5Ω2

L + 2δ2
)

cos

(
δt

h̄

)
cos

(
ΩLt

h̄

)
+

3
(
δ2 − Ω2

L

)
cos

(
2ΩLt

h̄

)
+ 28δΩL sin

(
δt

h̄

)
sin

(
ΩLt

h̄

)]
.

(16)
From the last expression, where, for brevity, we set γ = 0, one can see that for large

values of the magnetic field intensity (ρbb)
0
0 ∼ 1/Ω2

L, which is consistent with the results of
numerical calculation, which, let us recall, provides the populations turning to zero at χ = π/2.
Regarding the alignment, the approximate calculation according to equation (16) shows that at
the point χ = π/2, it has the highest infinitesimal order than 1/Ω2

L, which is also consistent
with the results of numerical calculations.

We further note that when χ 6= 0, the magnetic field reduces the symmetry of the prob-
lem, resulting in the possibility of induction at the 33S level, the ordering of types different from
the populations and longitudinal alignment discussed above. Numerical calculations showed that
the character of the of the uncleaned and transverse alignment dependencies, (ρbb)

2
1 and (ρbb)

2
2,

respectively are the same: they first increase and then decrease while remaining positive over
the 0 < χ < π/2 interval, and are equal to zero at the ends of this interval. An example of
an uncleaned alignment depending on the time for several values of the detuning of the laser
frequency is shown in Fig. 5. As for orientation, it also becomes zero at the ends of said
interval, whereas on the inside it is about two orders of magnitude smaller than the alignment.
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FIG. 5. The dependence on the uncleaned alignment of dimensionless time at
H = 5000 G, χ = π/4 and δ = 0, 1, 2, 3 (lines 1− 4 respectively)

4. Conclusion

In this paper, the helium atom is used as an example for investigation of the influence
of a strong magnetic field on the polarization characteristics of the radiation of a multi-level
system, a set of lower levels of which are populated from the ground state by an axially
symmetric excitation, while the upper levels are populated from lower levels in a coherent
manner. With the help of numerical solutions of the Liouville equation, it has been shown
that the system achieves the CPT state for large enough detunings of the laser frequency. For
lower detunings at the excited state of the system, angular momenta ordering of population type
is induced, whereas the ordering of alignment type is absent. In cases when the direction of
the excitation processes anisotropies are orthogonal to the magnetic field direction, the system
reaches a state of CPT, i.e. population, and hence the alignment of the system turns to zero.
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