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The Stokes approximation is used for the description of flow in nanostructures. An algorithm for Stokes flow

computation in cases when there is great variation in the viscosity over a small spatial region is described.

This method allows us to overcome computational difficulties of the finite-difference method. The background

of the approach is using the Woodbury formula - a discrete analog of the Krein resolvent formula. The

particular example of a rectangular domain is considered in detail. The inversion of the discrete Stokes

operator is made in analytic form for the case of constant viscosity.
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1. Introduction

Flow in nanostructures have many peculiarities which are not explained by the con-
ventional theory of fluid flow [1, 2]. At present, there is no general theory of nanoflows.
We can only mention a few specific models [3–5]. Experiments show that nano-sized con-
finement leads to strong variation of liquid viscosity within the nanostructure [6–8]. One
observes a similar situation when dealing with flow with nanoparticles or with singularities
(see, e.g., [9, 10]). Additionally, there is a fraction separation effect [11]. This is an indirect
confirmation of the crystalline model of nanoflow which is based on assumption that nano-
liquid contains solid-like inclusions. To describe such flow in the framework of the model
it is necessary to solve the Stokes equation with strong variation in viscosity. This creates
difficulties for computations, particularly for the finite difference scheme [12–15]. To over-
come these obstacles an approach based on the Woodbury formula was suggested [16]. The
formula reduces the inversion of the discrete Stokes operator with small inclusions having
strong viscosity contrast to the inversion of the operator with constant (or slowly varying)
viscosity and the inversion of small rank operator. In the present paper, we consider in detail
the first step.

In more detail, the governing equations in d-dimensional (d=2,3) case (i.e. the Stokes
and continuity equations for velocity v and pressure p under the action of force F ) can be
written as follows:

∂

∂xj

(
η

(
∂vi
∂xj

+
∂vj
∂xi

))
− ∂p

∂xi
= Fi,

∂vi
∂xi

= 0. (1)
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We assume that the viscosity η has strong variation in small spatial domain and is constant
outside of it. We use finite-difference discretization on non-staggered grid:{

h−1
j ∆j(η(h−1

j ∇jvi + h−1
i ∇ivj))− h−1

i ∇ip = Fi,

h−1
i ∆ivi = 0,

(2)

where hi is a mesh size, ∆i is a forward difference, ∇i is a backward difference,

∆jf(x1, . . . , xd) = f(x1, . . . , xi + hi, . . . , xd)− f(x1, . . . , xi, . . . , xd),

∇jf(x1, . . . , xd) = f(x1, . . . , xi, . . . , xd)− f(x1, . . . , xi − hi, . . . , xd).
The Woodbury formula allows us to improve the procedure of solving equations (2) in the
case of strong viscosity variation.

2. Woodbury formula

Let us briefly describe the finite-difference approach based on the Woodbury formula
(as for details, see [16]). Consider the discrete Stokes operator S on the lattice:

SVi = 4j(η(∇jVi +∇iVj)),

where V is the liquid velocity, η is the viscosity. Symbols ∆p and ∇p are used, correspond-
ingly, for the forward and the backward finite differences for coordinate p where we assume
for simplicity (it is not a limitation) that the lattice has a unit step. We use the following
operator representation:

S = Sa + ST
p , Sa := ηS0,

where S0 is the Stokes operator with the viscosity equals one:

S0Vi =
∑
j

(4j∇jVi +4j∇iVj),

and:

ST
p Vi = (4jη)Tj(∇jVi +∇iVj).

Here Ti is the translation operator:

Tif(x1, . . . , xd) = f(x1, . . . , xi + hi, . . . , xd).

Note that the operator Sp has small rank due to the property of the viscosity η, i.e. the
corresponding matrix has many zero entries. We would like to solve the following equation:

SV = G,

where G is preassigned vector. To find a solution in our case it is convenient to use the
Woodbury formula:

Vi = S−1Gi = (ηS0 + Sp)
−1G = [1− (ηS0)

−1(1 + ST
p (ηS0)

−1)−1ST
p ](ηS0)

−1G

One can see that we have real computational improvement (due to small rank of ST
p ) if we

can find the inverse operator (ηS0)
−1 without high computational complexity. It is really

so. We can find the inverse operator for the case of constant viscosity, e.g., by using of the
discrete Fourier transform. Namely, let:

X = (ηS0)
−1G = S−1

0 η−1G.

To find X one should solve the equation:

ηS0X = G.



142 A. I. Popov, I. S. Lobanov, I. Yu. Popov, T. V. Gerya

After the Fourier transformation we obtain:

Ŝ0X̂ = ˆη−1G⇔ X̂ = (Ŝ0)
−1 ˆη−1G

These operations are not associated with high complexity.
In the next section we consider in detail how to use the discrete Fourier transform in

a particular case.

3. Discrete Stokes operator inversion for the case of constant viscosity in a
rectangle

To find the inverse matrix we use the discrete Fourier transform. To introduce it we
need the corresponding system of eigenfunctions. Let us choose the system.

Consider the discrete Stokes equations coupled with the discrete continuity equation
for the case of constant viscosity η = 1:

−2∆1∇1V1 −∆2(∇2V1 +∇1V2) +∇1P = F1,

−2∆2∇2V2 −∆1(∇1V2 +∇2V1) +∇2P = F2,

∆1V1 + ∆2V2 = 0.

(3)

We deal with vector fields V and F and scalar field P , determined on a two-dimensional
lattice with N = L2 nodes. The nodes are numbered by vectors with integer terms x =
(x1, x2), xk ∈ D = [0, L]∩Z. Symbols ∆p and ∇p are used, correspondingly, for the forward
and the backward finite differences for coordinate p:

∆1f(x) = f(x1 + 1, x2)− f(x), ∇1f(x) = f(x)− f(x1 − 1, x2),

∆2f(x) = f(x1, x2 + 1)− f(x), ∇2f(x) = f(x)− f(x1, x2 − 1),

where we assume for simplicity (it is not a limitation) that the lattice has a unit step. We
will solve the system (3) with the free slip boundary condition:{

Vk
∣∣
xk=±L

= 0

∇jVk
∣∣
xj=±L

= 0, j 6= k.
(4)

Consider a one-dimensional lattice D and the family of functions φn, n = 1..L − 1
determined on the lattice by the following expressions:

φn(t) = sin
πnt

L
, t ∈ D.

One can verify that the functions φn form a basis in the space of functions on the lattice D,
satisfying the conditions:

φj(0) = φj(L) = 0. (5)

Consider the operator:

∆∇f(t) = ∇f(t+ 1)−∇f(t) = f(t+ 1)− 2f(t) + f(t− 1).

It is simple to verify that ∆∇ = ∇∆). Direct calculation gives us:

∆∇φj(t) = ∆∇ sin
πjt

L
= sin

πj(t+ 1)

L
− 2 sin

πjt

L
+ sin

πj(t− 1)

L
= 2 sin

πjt

L
(cos

πj

L
− 1),

hence,

∆∇φj = ∇∆φj = αjφj, αj = 2

(
cos

πj

L
− 1

)
. (6)

We introduce the notation:
θj = ∆φj. (7)
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Then,

∇θj = ∇∆φj = αjφj. (8)

Particularly,

∇θj(d) = αjφj(d) = 0, ∇θj(0) = 0. (9)

One can verify that θj is also the eigenvector of the operator of second symmetric finite
difference corresponding to the same eigenvalue as φj. Actually,

∆∇θj = ∆∇∆φj = ∆αjφj = αjθj. (10)

We additionally determine θ0 ≡ 1 and φ0 ≡ 0, which satisfy all the above-described proper-
ties.

Consider the family of functions Ψj, where the vector index j = (j1, j2) has coordi-
nates jp = 0..L− 1:

Ψj(x) = θj1(x1)θj2(x2).

Let us seek the solution of equation (3) in the form:

Vk(x) =
∑
j

V j
k∇kΨj(x), k = 1, 2, P (x) =

∑
j

P jΨj(x), (11)

for some real coefficients V j
k , P j. One can see that the expression of such type satisfies the

boundary conditions (4). One can show that any vector field V satisfying the conditions (4)
can be represented in the form of (11). But arbitrary pressure field P , generally speaking,
can not be presented in such form. Now we consider the component related to the velocity
field only.

Substituting (11) into the Stokes equation from (3), one obtains:

−
2∑

p=1

∆p

(
∇p

∑
j

V j
k∇kΨj +∇k

∑
j

V j
p∇pΨ

j

)
+∇k

∑
j

P jΨj =
∑
j

F j
k∇kΨj, k = 1, 2,

where F j
k is the projection of Fk on Ψj. Changing the order of summation, one gets:∑

j

[
P j∇kΨj − F j

k∇kΨj −
N∑
p=1

(
V j
k ∆p∇p∇kΨj − V j

p ∆p∇k∇pΨ
j
)]

= 0.

Using the commutativity ∆n∇m = ∇m∆n and the property ∆p∇pΨ
j = αjpΨj, One finds

that ∑
j

[
P j − F j

k −
2∑

p=1

αjp

(
V j
k − V

j
p

)]
∇kΨj = 0.

Due to linear independence of the vectors ∇kΨj, the Stokes equation is equivalent to a set
of systems:

P j −
2∑

p=1

αjp

(
V j
k − V

j
p

)
= F j

k , k = 1, 2,∀j.

Substituting (11) into the continuity equation from (3), we come to the equation:

2∑
p=1

∆p

∑
j

V j
p∇pΨ

j(x) = 0.
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After simplification one gets: ∑
j

2∑
p=1

αjpV
j
p Ψj(x) = 0.

Due to linear independence of Ψj, the system is equivalent to the following one:
2∑

p=1

αjpV
j
p = 0 ∀j.

Finally, the problem (3) with the boundary conditions (4) is reduced to the set of
systems: {

P j −
∑2

p=1 αjp

(
V j
k − V j

p

)
= F j

k k = 1, 2,∀j,∑2
p=1 αjpV

j
p = 0 ∀j.

Using the second equation, one can simplify the first one:{
P j − V j

k

∑2
p=1 αjp = F j

k k = 1, 2,∀j,∑2
p=1 αjpV

j
p = 0 ∀j.

Multiplying the first equation by αjk and making a summation by k, one gets:

P j

(∑
k

αjk

)
−

(∑
k

αjkV
j
k

)(
2∑

p=1

αjp

)
=

(∑
k

αjkF
j
k

)
∀j,

Due to the second equation of the system, one has:

P j =

∑2
p=1 αjpF

j
p∑2

p=1 αjp

∀j.

Hence, the first equation gives us the velocity field:

V j
k =

P j − F j
k∑2

p=1 αjp

k = 1, 2,∀j.

Thus, for this particular case we obtained the solution in an explicit form. As for more
complicated domain, one can follow the suggested procedure if the system of eigenfunctions
is known. In this case the approach described allows one to obtain essential acceleration and
guaranteed convergence of the computations for strongly varying viscosity.
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