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1. Introduction

Let us consider the abstract Cauchy problem for the parabolic equation:

u′(t) + A(u(t)) = 0, t > 0, (1)

u(0) = u0. (2)

The solution for this problem can be considered in different meanings, for example, a
classical solution, strong solution, weak (or mild) solution, entropy solution, etc. This
paper is devoted to a strong solution for this problem.

If A is an unbounded linear operator in Hilbert space H, then it is proved that there
does not exist a strong solution for all u0 ∈ H (see [2, 11]). It is proved in [13] that
there exists a strong solution if and only if u0 ∈ [D(A), H]1/2, where [D(A), H]1/2 is an
interpolation space (see [9,15]).

If A is a nonlinear operator, the weak solutions of these problems is often investi-
gated. We consider the case where the operator A has the form:

A(u) = − div

[
Φ′(|∇u|)
|∇u|

∇u
]
,

with the Dirichlet and Neumann boundary conditions for the first and second initial-
boundary problem respectively. Here, Φ: R → R+ is an N -function that satisfies ∆2-
condition, therefore, it is natural to investigate these problems in Orlicz and Orlicz–Sobolev
spaces. For these problems, we obtain the necessary and sufficient conditions for the exis-
tence and uniqueness of the strong solution.

Non-uniformly parabolic equations are used in mechanics, glaciology, rheology, im-
age processing (e.g., see [4,6,8,12]) as well as for nanosystem modeling (see [14,16]).

Now, we consider some examples of the function Φ(ξ) and corresponding nonlinear
equations.
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If Φ(ξ) = ξp/p, p > 1, then the nonlinear equation has the form:

ut −∆pu = 0,

where ∆pu = div(|∇u|p−2∇u) is the p-Laplace operator. The p-Laplacian type equations
have many applications in fluid mechanics, glaciology, and rheology, etc. (see [4] and [8,
Chapter 2]).

If Φ(ξ) = ξ log(1+ ξ), then we obtain the equation related to image processing. This
special case has been investigated thoroughly in [17] as a model that developed Perona and
Malik’s concept in [12].

If Φ(ξ) = ξ log(1 + Lk(ξ)), where Li(ξ) = log(1 + Li−1(ξ)) (i = 1, 2, . . . , k) and
L0(ξ) = log(1 + ξ), for ξ ≥ 0, then we obtain the parabolic equation such that the cor-
responding elliptic problems are introduced in Prandtl–Eyring fluids and plastic materials
with a logarithmic hardening law (see [6]).

2. Functional Spaces

In this section, we introduce functional spaces that are called Orlicz spaces and
Orlicz–Sobolev spaces. The spaces LΦ(Ω), called Orlicz spaces, are studied in depth
in the monograph by Krasnosel’skii and Rutickii [7] and also in the doctoral thesis by
Luxemburg [10]. If the role played by Lp(Ω) in the definition of Sobolev space Wm

p (Ω) is
assigned instead to an Orlicz space LΦ(Ω), the resulting space is denoted by WmLΦ(Ω) and
called an Orlicz–Sobolev space. Many properties of Sobolev spaces have been extended to
Orlicz–Sobolev spaces, mainly by Donaldson and Trudinger [5].

Let φ be a real-valued function defined on [0,∞) and having the following properties:
(a) φ(0) = 0, φ(t) > 0 if t > 0, lim

t→∞
φ(t) =∞;

(b) φ is nondecreasing;
(c) φ is right continuous.

Then, the real-valued function Φ(ξ) is defined on [0,∞) by:

Φ(ξ) =

∫ ξ

0

φ(t)dt,

which is called an N -function. It can be proved that any N -function is continuous, strictly
increasing, and convex.

We set:
Φ∗(η) = max

ξ≥0
(ξη − Φ(ξ)).

If Φ is an N -function, then Φ∗ is also an N -function. The function Φ∗ is called the polar
function.

An N -function Φ is said to satisfy ∆2-condition near infinity if there exists ξ0 > 0
and a positive constant M such that for every ξ > ξ0:

Φ(2ξ) ≤MΦ(ξ). (3)

Let Ω be a bounded domain and Φ be an N -function. The Orlicz class is the set of
all (equivalence classes modulo equality a.e. in Ω of) measurable functions u(x) defined on
Ω and satisfying: ∫

Ω

Φ(|u(x)|)dx <∞.

If Ω is a bounded domain, then the Orlicz class is a linear space (under pointwise addition
and scalar multiplication) if and only if Φ satisfies ∆2-condition near infinity. Below, we
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consider only the case where Φ satisfies ∆2-condition near infinity. Note that the case
where Φ does not satisfy ∆2-condition near infinity is more complicated.

If the Orlicz class is a linear space, then we can consider it as the Orlicz space
LΦ(Ω) with the norm:

‖u‖LΦ(Ω) = inf

{
k :

∫
Ω

Φ

(
|u(x)|
k

)
dx ≤ 1

}
, (4)

(this norm is due to Luxemburg [10]). The space LΦ(Ω) is a Banach space.
We also introduce the space W 1LΦ(Ω) as completion of C∞(Ω) with respect to the

norm:
‖u‖W 1LΦ(Ω) = ‖u‖L2(Ω) + ‖|∇u|‖LΦ(Ω). (5)

By W̊ 1LΦ(Ω), we denote completion of C∞0 (Ω) with respect to the norm (5). Here, C∞(Ω)
is the set of infinitely differentiable functions in Ω and C∞0 (Ω) is the set of infinitely
differentiable functions in Ω with compact support. The space W 1LΦ(Ω) can be called an
Orlicz–Sobolev space, but in our case, W 1LΦ(Ω) ⊂ L2(Ω). In the general case, it is not
true (for example, see [1, Chapter VIII]).

3. The First Initial-Boundary Problem

Let Ω be a bounded domain in Rn (n ≥ 2) with Lipschitz boundary ∂Ω and T > 0.
We denote ΩT = Ω × (0, T ) and Γ = ∂Ω × (0, T ). We consider the following parabolic
equation

ut − div

[
Φ′(|∇u|)
|∇u|

∇u
]

= 0 in ΩT , (6)

with the initial-boundary conditions

u
∣∣
Γ
= 0 on Γ, (7)

u(x, 0) = u0(x) in Ω. (8)

here Φ: R → R+ is an N -function, Φ′ : R → R is the derivative of the function Φ(ξ) with
respect to ξ, and ∇u is the gradient of the function u(x, t) with respect to the spatial
variables x. Problem (6)–(8) is called the first initial-boundary problem for a nonlinear
equation.

Our main assumption is that Φ(ξ) and Φ∗(ξ) satisfy the ∆2-condition. We study
the existence and uniqueness of a strong solution for problem (6)–(8). We assume that
u0 ∈ L2(Ω).

Definition 1. The function u(x, t) is called a strong solution of problem (6)–(8) if the
following conditions are met:

(1) u ∈ L2(ΩT ) ∩ L1(0, T ;W 1
1 (Ω)),∫ T

0

∫
Ω

Φ′(|∇u|)|∇u| dxdt < +∞,

and u
∣∣
Γ
= 0;

(2) ut ∈ L2(ΩT );
(3) for every v ∈ C1(ΩT ) such that v|t=T = 0 and v|Γ = 0, we have:∫ T

0

∫
Ω

[
Φ′(|∇u|)
|∇u|

∇u · ∇v − uvt
]
dxdt =

∫
Ω

u0(x)v(x, 0)dx. (9)
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Remark 1. If u(x, t) is a strong solution of problem (6)–(8), then:

div

[
Φ′(|∇u|)
|∇u|

∇u
]
∈ L2(ΩT )

as well and the function u(x, t) satisfies equation (6) a.e. in ΩT and the initial condition (8)
(in the sense of trace).

In [3], the uniqueness and existence of the weak solution were proven. In [18], the
uniqueness and existence of the entropy solution were proven. These results were obtained
if the function Φ satisfies weaker conditions than ∆2-condition.

Now we formulate the result concerning the strong solution.

Theorem 1. Let Φ(ξ) and Φ∗(ξ) satisfy the ∆2-condition near infinity. Then problem (6)–
(8) has a strong solution if and only if

u0 ∈ W̊ 1LΦ(Ω). (10)

The strong solution of problem (6)–(8) is unique.
Proof.

1. It is easy to show that the solution of problem (6)–(8) is unique (because the
function Φ(ξ) is convex).

2. To prove an existence of a strong solution, we use the Faedo–Galerkin method.
Let the system of functions {ek}∞k=1, ek ∈ C1(Ω), ek|Γ = 0 be linearly independent and full
in W̊ 1LΦ(Ω) (and in L2(Ω) respectively).

We set wN(x, t) =
N∑
k=1

cNk(t)ek(x) (N = 1, 2, . . .). The functions wN(x, t) are called

the Faedo–Galerkin approximations and the coefficients cNk(t) can be found from the
corresponding relations.

We obtain the following estimate for wN(x, t):∫
Ω

|wN(x, τ)|2dx ≤ ‖u0‖2
L2(Ω) (τ ∈ (0, T )), (11)∫ τ

0

∫
Ω

Φ′(|∇wN |)|∇wN | dxdt ≤
1

2
‖u0‖2

L2(Ω). (12)

Using (11), we also have:

‖wN‖2
L2(ΩT ) ≤ T‖u0‖2

L2(Ω). (13)

From (12), (13) it follows that we can choose a subsequence (we also denote it by wN for
simplicity) such that:

wN ⇀ u weakly in L2(0, T ; W̊ 1LΦ(Ω)).

Moreover:

‖u‖2
L2(ΩT ) ≤ T‖u0‖2

L2(Ω),∫ τ

0

∫
Ω

Φ′(|∇u|)|∇u| dxdt ≤ 1

2
‖u0‖2

L2(Ω).

We also have the following estimate for ‖wNt‖L2(ΩT ):

‖wNt‖2
L2(ΩT ) ≤

∫
Ω

Φ(∇wN(x, 0))dx.
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We have that wN(x, 0) ⇀ u0(x) as N →∞ weakly in L2(Ω). Therefore, ∇wN(x, 0) ⇀
∇u0(x) as N →∞ weakly in L2(Ω), i.e.:∫

Ω

∇wN(x, 0)η(x)dx→
∫

Ω

∇u0(x)η(x)dx,

as N → ∞ for an arbitrary function η ∈ C(Ω). Since the functions Φ(ξ) and Φ∗(ξ) satisfy
the ∆2-condition, we obtain that wN(x, 0) ⇀ u0(x) as N →∞ weakly in W̊ 1LΦ(Ω). Thus:∫

Ω

Φ(∇wN(x, 0))dx ≤ C,

where C does not depend on N , and:

‖wNt‖2
L2(ΩT ) ≤ C.

Therefore, we can choose a subsequence (we also denote it by wN for simplicity) such that:

wNt ⇀ ut weakly in L2(ΩT ).

3. Now we need to verify that u(x, t) is a solution for problem (6)–(8). This can be
done by using the standard technique for the Faedo–Galerkin method.

4. We need to prove that if there exists a strong solution u(x, t) of problem (6)–(8),
then the function u0(x) satisfies condition (10). It follows from these estimates:

‖u0‖2
L2(Ω) ≤ C

(
‖u‖2

L2(ΩT ) +

∫ T

0

∫
Ω

Φ′(|∇u|)|∇u| dxdt

)
, (14)

∫
Ω

Φ(∇u0(x))dx ≤ C

(
‖ut‖2

L2(ΩT ) + ‖u‖2
L2(ΩT ) +

∥∥∥∥div

[
Φ′(|∇u|)
|∇u|

∇u
]∥∥∥∥2

L2(ΩT )

)
, (15)

where the constant C does not depend on u(x, t).
Theorem 1 is thus proved. �

4. The Second Initial-Boundary Problem

Let Ω be a bounded domain in Rn (n ≥ 2) with Lipschitz boundary ∂Ω and T > 0.
We denote ΩT = Ω × (0, T ) and Γ = ∂Ω × (0, T ). We consider the following parabolic
equation:

ut − div

[
Φ′(|∇u|)
|∇u|

∇u
]

= 0 in ΩT (16)

with the initial-boundary conditions:

∂u

∂n

∣∣∣∣
Γ

= 0 on Γ, (17)

u(x, 0) = u0(x) in Ω. (18)

Here, Φ: R → R+ is an N -function, Φ′ : R → R is the derivative of the function Φ(ξ)
with respect to ξ, and ∇u is the gradient of the function u(x, t) with respect to the spatial
variables x, n is the unit normal vector of Γ. Problem (16)–(18) is called the second
initial-boundary problem for nonlinear equation.

Our main assumption is that Φ(ξ) and Φ∗(ξ) satisfy the ∆2-condition near infinity.
We study the existence and uniqueness of a strong solution for problem (16)–(18). We
assume that u0 ∈ L2(Ω).
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Definition 2. The function u(x, t) is called a strong solution of problem (16)–(18) if the
following conditions are met:

(1) u ∈ L2(ΩT ) ∩ L1(0, T ;W 1
1 (Ω)),∫ T

0

∫
Ω

Φ′(|∇u|)|∇u| dxdt < +∞;

(2) ut ∈ L2(ΩT );
(3) for every v ∈ C1(ΩT ) such that v|t=T = 0, we have:∫ T

0

∫
Ω

[
Φ′(|∇u|)
|∇u|

∇u · ∇v − uvt
]
dxdt =

∫
Ω

u0(x)v(x, 0)dx. (19)

Remark 2. If u(x, t) is a strong solution of problem (16)–(18), then:

div

[
Φ′(|∇u|)
|∇u|

∇u
]
∈ L2(ΩT ),

as well and the function u(x, t) satisfies equation (16) a.e. in ΩT and the initial condi-
tion (18) (in the sense of trace).

In [17], the uniqueness and existence of the weak solution were proven if the
function Φ(ξ) = ξ log(1 + ξ). This problem is related to image analysis.

Now, we formulate the results concerning the strong solution.

Theorem 2. Let Φ(ξ) and Φ∗(ξ) satisfy the ∆2-condition. Then problem (16)–(18) has a
strong solution if and only if:

u0 ∈ W 1LΦ(Ω). (20)

The strong solution of problem (16)–(18) is unique.
Proof.

1. It is easy to show that the solution of problem (16)–(18) is unique (because the
function Φ(ξ) is convex).

2. To prove an existence of a strong solution, we use the Faedo–Galerkin method.
Let the system of functions {ek}∞k=1, ek ∈ C1(Ω), ek|Γ = 0 be linearly independent and full
in W 1LΦ(Ω) (and in L2(Ω) respectively).

We set wN(x, t) =
N∑
k=1

cNk(t)ek(x) (N = 1, 2, . . .). The functions wN(x, t) are called

the Faedo–Galerkin approximations and the coefficients cNk(t) can be found from the
corresponding relations.

We obtain the following estimate for wN(x, t):∫
Ω

|wN(x, τ)|2dx ≤ ‖u0‖2
L2(Ω) (τ ∈ (0, T )), (21)∫ τ

0

∫
Ω

Φ′(|∇wN |)|∇wN | dxdt ≤
1

2
‖u0‖2

L2(Ω). (22)

Using (21), we also have:

‖wN‖2
L2(ΩT ) ≤ T‖u0‖2

L2(Ω). (23)

From (22) and (23) it follows that we can choose a subsequence (we also denote it by wN
for simplicity) such that:

wN ⇀ u weakly in L2(0, T ; W̊ 1LΦ(Ω)).
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Moreover:

‖u‖2
L2(ΩT ) ≤ T‖u0‖2

L2(Ω),∫ τ

0

∫
Ω

Φ′(|∇u|)|∇u| dxdt ≤ 1

2
‖u0‖2

L2(Ω).

We also have the following estimate for ‖wNt‖L2(ΩT ):

‖wNt‖2
L2(ΩT ) ≤

∫
Ω

Φ(∇wN(x, 0))dx.

We have that wN(x, 0) ⇀ u0(x) as N →∞ weakly in L2(Ω). Therefore, ∇wN(x, 0) ⇀
∇u0(x) as N →∞ weakly in L2(Ω), i.e.:∫

Ω

∇wN(x, 0)η(x)dx→
∫

Ω

∇u0(x)η(x)dx,

as N → ∞ for an arbitrary function η ∈ C(Ω). Since the functions Φ(ξ) and Φ∗(ξ) satisfy
the ∆2-condition, we obtain that wN(x, 0) ⇀ u0(x) as N →∞ weakly in W 1LΦ(Ω). Thus:∫

Ω

Φ(∇wN(x, 0))dx ≤ C,

where C does not depend on N , and:

‖wNt‖2
L2(ΩT ) ≤ C.

Therefore, we can choose a subsequence (we also denote it by wN for simplicity) such that:

wNt ⇀ ut weakly in L2(ΩT ).

3. Now we need to verify that u(x, t) is a solution of problem (16)–(18). This can
be done using the standard technique for the Faedo–Galerkin method.

4. We need to prove that if there exists a strong solution u(x, t) for problem (16)–
(18), then the function u0(x) satisfies condition (20). It follows from these estimates:

‖u0‖2
L2(Ω) ≤ C

(
‖u‖2

L2(ΩT ) +

∫ T

0

∫
Ω

Φ′(|∇u|)|∇u| dxdt

)
, (24)

∫
Ω

Φ(∇u0(x))dx ≤ C

(
‖ut‖2

L2(ΩT ) + ‖u‖2
L2(ΩT ) +

∥∥∥∥div

[
Φ′(|∇u|)
|∇u|

∇u
]∥∥∥∥2

L2(ΩT )

)
, (25)

where the constant C does not depend on u(x, t).
Theorem 2 is thus proved. �

5. The Initial Data Space

We define the initial data space as the space of the initial data such that there
exists a strong solution only for them.

Theorem 3 (Main Result). If Φ(ξ) and Φ∗(ξ) satisfy the ∆2-condition, then:

(1) W̊ 1LΦ(Ω) is the initial data space for the first initial-boundary problem (6)–(8);
(2) W 1LΦ(Ω) is the initial data space for the second initial-boundary problem (16)–

(18).

Proof. The proof clearly follows from Theorems 1 and 2. �
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