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Let Ω ⊂ R2 be the exterior of a convex polygon whose side lengths are `1, . . . , `M . For a real constant α, let
HΩ
α denote the Laplacian in Ω, u 7→ −∆u, with the Robin boundary conditions ∂u/∂ν = αu at ∂Ω, where

ν is the outer unit normal. We show that, for any fixed m ∈ N, the mth eigenvalue EΩ
m(α) of HΩ

α behaves
as EΩ

m(α) = −α2 + µDm + O(α−1/2) as α → +∞, where µDm stands for the mth eigenvalue of the operator
D1⊕· · ·⊕DM and Dn denotes the one-dimensional Laplacian f 7→ −f ′′ on (0, `n) with the Dirichlet boundary
conditions.
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1. Introduction

1.1. Laplacian with Robin boundary conditions

Let Ω ⊂ Rd, d ≥ 2, be a connected domain with a compact Lipschitz boundary ∂Ω.
For α > 0, let HΩ

α denote the Laplacian u 7→ −∆u in Ω with the Robin boundary conditions
∂u/∂ν = αu at ∂Ω, where ν stands for the outer unit normal. More precisely, HΩ

α is the
self-adjoint operator in L2(Ω) generated by the sesquilinear form:

hΩ
α(u, u) =

∫∫
Ω

|∇u|2 dx− α
∫
∂Ω

|u|2 dσ, D(hΩ
α) = W 1,2(Ω).

Here and below, σ denotes the (d− 1)-dimensional Hausdorff measure.
One checks in the standard way that the operator HΩ

α is semibounded from below.
If Ω is bounded (i.e. Ω is an interior domain), then it has a compact resolvent, and we denote
by EΩ

m(β), m ∈ N, its eigenvalues taken according to their multiplicities and enumerated
in the non-decreasing order. If Ω is unbounded (i.e. Ω is an exterior domain), then the
essential spectrum of HΩ

α coincides with [0,+∞), and the discrete spectrum consists of
finitely many eigenvalues which will be denoted again by EΩ

m(α), m ∈ {1, . . . , Kα}, and
enumerated in the non-decreasing order taking into account the multiplicities.

We are interested in the behavior of the eigenvalues EΩ
m(α) for large α. It seems

that the problem was introduced by Lacey, Ockedon, Sabina [11] when studying a reaction-
diffusion system. Giorgi and Smits [6] studied a link to the theory of enhanced surface su-
perconductivity. Recently, Freitas and Krejčiřı́k [10] and then Pankrashkin and Popoff [15]
studied the eigenvalue asymptotics in the context of the spectral optimization.
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Let us list some available results. Under various assumptions one showed the
asymptotics of the form:

EΩ
m(α) = −CΩα

2 + o(α2) as α tends to +∞, (1)

where CΩ ≥ 1 is a constant depending on the geometric properties of Ω. Lacey, Ockedon,
Sabina [11] showed (1) with m = 1 for C4 compact domains, for which CΩ = 1, and for
triangles, for which CΩ = 2/(1 − cos θ), where θ is the smallest corner. Lu and Zhu [13]
showed (1) with m = 1 and CΩ = 1 for compact C1 smooth domains, and Daners and
Kennedy [2] extended the result to any fixed m ∈ N. Levitin and Parnovski [12] showed
(1) with m = 1 for domains with piecewise smooth compact Lipschitz boundaries. They
proved, in particular, that if Ω is a curvilinear polygon whose smallest corner is θ, then for
θ < π there holds CΩ = 2/(1− cos θ), otherwise CΩ = 1. Pankrashkin [14] considered two-
dimensional domains with a piecewise C4 smooth compact boundary and without convex
corners, and it was shown that EΩ

1 (α) = −α2 − γα + O(α2/3), where γ is the maximum
of the signed curvature at the boundary. Exner, Minakov, Parnovski [4] showed that for
compact C4 smooth domains the same asymptotics EΩ

m(α) = −α2 − γα + O(α2/3) holds
for any fixed m ∈ N. Similar results were obtained by Exner and Minakov [3] for a
class of two-dimensional domains with non-compact boundaries and by Pankrashkin and
Popoff [15] for C3 compact domains in arbitrary dimensions. Cakoni, Chaulet, Haddar [1]
studied the asymptotic behavior of higher eigenvalues.

1.2. Problem setting and the main result

The computation of further terms in the eigenvalue asymptotics needs more pre-
cise geometric assumptions. To our knowledge, such results are available for the two-
dimensional case only. Helffer and Pankrashkin [9] studied the tunneling effect for the
eigenvalues of a specific domain with two equal corners, and Helffer and Kachmar [8]
considered the domains whose boundary curvature has a unique non-degenerate maximum.
The machinery of both papers is based on the asymptotic properties of the eigenfunctions:
it was shown that the eigenfunctions corresponding to the lowest eigenvalues concentrate
near the smallest convex corner at the boundary or, if no convex corners are present,
near the point of the maximum curvature, and this is used to obtain the corresponding
eigenvalue asymptotics.

The aim of the present note is to consider a new class of two-dimensional domains Ω.
Namely, our assumption is as follows:

The domain R2 \ Ω is a convex polygon (with straight edges).

Such domains are not covered by the above cited works: all the corners are non-convex,
and the curvature is constant on the smooth part of the boundary, and it is not clear how
the eigenfunctions are concentrated along the boundary. We hope that our result will be of
use for the understanding of the role of non-convex corners.

In order to formulate the main result, we first need some notation. We denote the
vertices of the polygon R2 \ Ω by A1, . . . , AM ∈ R2, M ≥ 3, and assume that they are
enumerated is such a way that the boundary ∂Ω is the union of the M line segments
Ln := [An, An+1], n ∈ {1, . . . ,M}, where we denote AM+1 := A1, A0 := AM . It is
also assumed that there are no artificial vertices, i.e. that An /∈ [An−1, An+1] for any
n ∈ {1, . . . ,M}.

Furthermore, we denote by `n the length of the side Ln, and by Dn the Dirichlet
Laplacian f 7→ −f ′′ on (0, `n) viewed as a self-adjoint operator in L2(0, `n). The main result
of the present note is as follows:



48 K. Pankrashkin

Theorem 1. For any fixed m ∈ N there holds:

EΩ
m(α) = −α2 + µDm +O

( 1√
α

)
as α tends to +∞,

where µDm is the mth eigenvalue of the operator D1 ⊕ · · · ⊕DM .

The proof is based on the machinery proposed by Exner and Post [5] to study
the convergence on graph-like manifolds. In reality, our construction appears to be quite
similar to that of Post [16], which was used to study decoupled waveguides.

We remark that due to the presence of non-convex corners the domain of the oper-
ator HΩ

α contains singular functions and is not included in W 2,2(Ω), see e.g. Grisvard [7].
This does not produce any difficulties, as our approach is purely variational and is entirely
based on analysis of the sesqulinear form.

2. Preliminaries

2.1. Auxiliary operators

For α > 0, we denote by Tα the following self-adjoint operator in L2(R+):

Tαv = −v′′, D(Tα) =
{
v ∈ W 2,2(R+) : v′(0) + αv(0) = 0

}
.

It is well known that:

specTα = {−α2} ∪ [0,+∞), ker(T + α2) = Cϕα, ϕα(s) :=
e−αs√

2α
. (2)

The sesqulinear form tα for the operator Tα looks as follows:

tα(v, v) =

∞∫
0

∣∣v′(s)∣∣2ds− α
∣∣v(0)

∣∣2, D(tα) = W 1,2(R+).

Lemma 2. For any v ∈ W 1,2(R+), there holds:
∞∫

0

∣∣v(s)
∣∣2ds−

∣∣∣∣
∞∫

0

ϕα(s)v(s)ds

∣∣∣∣2 ≤ 1

α2

( ∞∫
0

∣∣v′(s)∣∣2ds− α
∣∣v(0)

∣∣2 + α2

∞∫
0

∣∣v(s)
∣∣2ds

)
.

Proof. We denote by P the orthogonal projector on ker(Tα + α2) in L2(R+), then by the
spectral theorem, we have:

tα(v, v) + α2‖Pv‖2 = tα(v − Pv, v − Pv) ≥ 0,

for any v ∈ D(tα). As ϕα is normalized, there holds∣∣∣∣
∞∫

0

ϕα(x)v(x)dx

∣∣∣∣ = ‖Pv‖,

and we arrive at the conclusion. �

Another important estimate is as follows, see Lemmas 2.6 and 2.8 in [12]:

Lemma 3. Let Λ ⊂ R2 be an infinite sector of opening θ ∈ (0, 2π), then for any ε > 0
and any function v ∈ W 1,2(Λ) there holds:∫

∂Λ

|v|2ds ≤ ε

∫∫
Λ

|∇v|2dx+
Cθ
ε

∫∫
Λ

|v|2dx with Cθ =


2

1− cos θ
, θ ∈ (0, π),

1, θ ∈ [π, 2π).
(3)
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2.2. Decomposition of Ω

Let us proceed with a decomposition of the domain Ω which will be used through the
proof. Let n ∈ {1, . . . ,M}. We denote by S1

n and S2
n the half-lines originating respectively

at An and An+1, orthogonal to Ln and contained in Ω. By Πn, we denote the half-strip
bounded by the half-lines S1

n and S2
n and the line segment Ln, and by Λn we denote the

infinite sector bounded by the lines S2
n−1 and S1

n and contained in Ω. The constructions
are illustrated in Fig. 1. We note that the 2M sets Λn and Πn, n ∈ {1, . . . ,M}, are
non-intersecting and that Ω =

⋃M
n=1 Λn ∪

⋃M
n=1 Πn.

We deduce from Lemma 3:

Lemma 4. There exists a constant C > 0 such that for any ε > 0, any n ∈ {1, . . . ,M}
and any v ∈ W 1,2(Λn) there holds∫

∂Λn

|v|2dσ ≤ Cε
(∫∫

Λn

|∇v|2dx+
1

ε2

∫∫
Λn

|v|2dx
)
.

Furthermore, for each n ∈ {1, . . . ,M} we denote by Θn the uniquely defined isome-
try R2 → R2 such that:

An = Θn(0, 0) and Πn = Θn

(
(0, `n)× R+

)
:

We remark that due to the spectral properties of the above operator Tα, see (2), we have,
for any u ∈ W 1,2(Πn),

`n∫
0

∞∫
0

∣∣∣ ∂
∂s
u
(
Θn(t, s)

)∣∣∣2ds dt− α
`n∫

0

∣∣∣u(Θn(t, s)
)∣∣∣2dt+ α2

`n∫
0

∞∫
0

∣∣∣u(Θn(t, s)
)∣∣∣2ds dt

=

`n∫
0

( ∞∫
0

∣∣∣ ∂
∂s
u
(
Θn(t, s)

)∣∣∣2ds− α
∣∣∣u(Θn(t, 0)

)∣∣∣2 + α

∞∫
0

∣∣∣u(Θn(t, s)
)∣∣∣2ds

)
dt ≥ 0,

which implies, in particular, the following:

0 ≤
`n∫

0

∞∫
0

∣∣∣ ∂
∂t
u
(
Θn(t, s)

)∣∣∣2ds dt

≤
`n∫

0

∞∫
0

∣∣∣ ∂
∂t
u
(
Θn(t, s)

)∣∣∣2ds dt+

`n∫
0

∞∫
0

∣∣∣ ∂
∂s
u
(
Θn(t, s)

)∣∣∣2ds dt

− α
`n∫

0

∣∣∣u(Θn(t, 0)
)∣∣∣2dt+ α2

`n∫
0

∞∫
0

∣∣∣u(Θn(t, s)
)∣∣∣2ds dt

=

∫∫
Πn

|∇u|2dx− α
∫
Ln

|u|2dσ + α2

∫∫
Πn

|u|2dx. (4)

2.3. Eigenvalues and identification maps

We will use an eigenvalue estimate which is based on the max-min principle and is
just a suitable reformulation of Lemma 2.1 in [5] or of Lemma 2.2 in [16]:
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FIG. 1. Decomposition of the domain

Proposition 5. Let B and B′ be non-negative self-adjoint operators acting respectively in
Hilbert space H and H′ and generated by sesqulinear form b and b′. Choose m ∈ N and
assume that the operator B has at least m eigenvalues λ1 ≤ · · · ≤ λm < inf specess B and
that the operator B′ has a compact resolvent. If there exists a linear map J : D(b)→ D(b′)
(identification map) and two constants δ1, δ2 > 0 such that δ1 ≤ (1 + λm)−1, and that for
any u ∈ D(b) there holds:

‖u‖2 − ‖Ju‖2 ≤ δ1

(
b(u, u) + ‖u‖2

)
,

b′(Ju, Ju)− b(u, u) ≤ δ2

(
b(u, u) + ‖u‖2

)
,

then

λ′m ≤ λm +
(λmδ1 + δ2)(1 + λm)

1− (1 + λm)δ1

,

where λ′m is the mth eigenvalue of the operator B′.

3. Proof of Theorem 1

3.1. Dirichlet-Neumann bracketing

Consider the following sesqulinear form:

hΩ,D
α (u, u) =

M∑
n=1

∫∫
Λn

|∇u|2dx+
M∑
n=1

(∫∫
Πn

|∇u|2dx− α
∫
Ln

|u|2dσ

)
,

D(hΩ,D
α ) =

M⊕
n=1

W 1,2
0 (Λn)⊕

M⊕
n=1

W̃ 1,2
0 (Πn),

W̃ 1,2
0 (Πn) :=

{
f ∈ W 1,2(Πn) : f = 0 at S1

n ∪S2
n

}
,

and denote by HΩ,D
α the associated self-adjoint operator in L2(Ω). Clearly, the form hΩ,D

α is
a restriction of the initial form hΩ

α , and due to the max-min principle we have:

EΩ
m(α) ≤ EΩ,D

m (α),
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where EΩ,D
m (α) is the mth eigenvalue of HΩ,D

α (as soon at it exists). On the other hand, we
have the decomposition:

HΩ,D
α =

M⊕
n=1

(
−∆D

n

)
⊕

M⊕
n=1

GD
n,α,

where (−∆D
n ) is the Dirichlet Laplacian in L2(Λn) and GD

n,α is the self-adjoint operator in
L2(Πn) generated by the sesquilinear form:

gDn,α(u, u) =

∫∫
Πn

|∇u|2dx− α
∫
Ln

|u|2dσ, D(gDn,α) = W̃ 1,2
0 (Πn).

Consider the following unitary maps:

Un : L2(Πn)→ L2
(
(0, `n)× R+

)
, Unf := f ◦Θn, n ∈ {1, . . . ,M},

then it is straightforward to check that UnGD
n,αU

∗
n = Dn⊗1+Tα⊗1. As the operators (−∆D

n )

are non-negative, it follows that specessH
Ω,D
α = [0,+∞) and that EΩ,D

m (α) = −α2 + µDm,
which gives the majoration:

EΩ
m(α) ≤ −α2 + µDm, (5)

for all m with µDm < α2. In particular, the inequality (5) holds for any fixed m as α tends
to +∞.

Similarly, we introduce the following sesquilinear form:

hΩ,N
α (u, u) =

M∑
n=1

∫∫
Λn

|∇u|2dx+
M∑
n=1

(∫∫
Πn

|∇u|2dx− α
∫
Ln

|u|2dσ

)
,

D(hΩ,N
α ) =

M⊕
n=1

W 1,2(Λn)⊕
M⊕
n=1

W 1,2(Πn),

and denote by HΩ,N
α the associated self-adjoint operator in L2(Ω). Clearly, the initial form

hΩ
α is a restriction of the form hN,Ωα , and due to the max-min principle we have:

EΩ,N
m (α) ≤ EΩ

m(α),

where EΩ,N
m (α) is the mth eigenvalue of HΩ,N

α , and the inequality holds for those m for
which EΩ

m(α) exists. On the other hand, we have the decomposition:

HΩ,N
α =

M⊕
n=1

(
−∆N

n

)
⊕

M⊕
n=1

GN
n,α,

where (−∆N
n ) denotes the Neumann Laplacian in L2(Λn) and GN

n,α is the self-adjoint oper-
ator in L2(Πn) generated by the sesquilinear form

gNn,α(u, u) =

∫∫
Πn

|∇u|2dx− α
∫
Ln

|u|2dσ, D(gNn,α) = W 1,2(Πn).

There holds UnGN
n,αU

∗
n = Nn ⊗ 1 + Tα ⊗ 1, where Nn is the operator f 7→ −f ′′ on (0, `n)

with the Neumann boundary condition viewed as a self-adjoint operator in the Hilbert
space L2(0, `n), n ∈ {1, . . . ,M}. The operators (−∆N

n ) are non-negative, and we have
specessH

Ω,N
α = [0,+∞) and EΩ,N

m (α) = −α2 + µNm, where µNm is the mth eigenvalue of the
operator N1 ⊕ · · · ⊕NM . Thus, we obtain the minorations:

HΩ
α ≥ −α2 and EΩ

m(α) ≥ −α2 + µNm, (6)
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which holds for any fixed m as α tends to +∞. By combining the inequalities (5) and (6)
we also obtain the rough estimate:

EΩ
m(α) = −α2 +O(1) for any fixed m and for α tending to +∞. (7)

3.2. Construction of an identification map

In order to conclude the proof of Theorem 1, we will apply Proposition 5 to the
operators:

B = HΩ
α + α2, B′ = D1 ⊕ · · · ⊕Dn,

which will allow us to obtain another inequality between the quantities:

λm = EΩ
m(α) + α2, λ′m = µDm.

Note that for any fixed m ∈ N, one has λm = O(1) for large α, see (7). Therefore, it
is sufficient to construct an identification map J = Jα as in Proposition 5 with δ1 + δ2 =
O(α−1/2). Recall that the respective forms b and b ′ in our case are given by:

b(u, u) = hΩ
α(u, u) + α2‖u‖2, D(b) = D(hΩ

α) = W 1,2(Ω),

b ′(f, f) =
M∑
n=1

`n∫
0

∣∣f ′n(t)
∣∣2dt, D(b ′) =

{
f = (f1, . . . , fM) : fn ∈ W 1,2

0 (0, `n)
}
.

Here and below, by ‖u‖ we mean the usual norm in L2(Ω). The positivity of b ′ is obvious,
and the positivity of b follows from (6).

Consider the maps:

Pn,α : W 1,2(Πn)→ L2(0, `n), (Pn,αu)(t) =

∞∫
0

ϕα(s)u
(
Θn(t, s)

)
ds, n ∈ {1, . . . ,M}.

If u ∈ W 1,2(Ω), then u ∈ W 1,2(Πn) for any n ∈ {1, . . . ,M}, and one can estimate, using
the Cauchy-Schwarz inequality:

∣∣(Pn,αu)(0)
∣∣2 +

∣∣(Pn,αu)(`n)
∣∣2 ≤ ∞∫

0

∣∣u(Θn(0, s)
)∣∣2ds+

∞∫
0

∣∣u(Θn(`n, s)
)∣∣2ds

=

∫
S1
n

|u|2dσ +

∫
S2
n

|u|2dσ.

As S2
n−1 ∪S1

n = ∂Λn, we can use Lemma 4 with ε = α−1, which gives:

M∑
n=1

(∣∣(Pn,αu)(0)
∣∣2 +

∣∣(Pn,αu)(`n)
∣∣2) ≤ M∑

n=1

(∫
S1
n

|u|2dσ +

∫
S2
n

|u|2dσ
)

=
M∑
n=1

∫
∂Λn

|u|2dσ ≤ C

α

M∑
n=1

(∫∫
Λn

|∇u|2dx+ α2

∫∫
Λn

|u|2dx

)
. (8)

For each n ∈ {1, . . . ,M}, we introduce a map:

πn : (0, `n)→ {0, `n}, πn(t) = 0 for t <
`n
2
, πn(t) = `n otherwise,
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and choose a function: ρn ∈ C∞
(
[0, `n]

)
with ρn(0) = ρn(`n) = 1 and ρn

(`n
2

)
= 0.

Finally, we define:

Jα : W 1,2(Ω)→
M⊕
n=1

L2(0, `n), (Jαu)n(t) = (Pn,αu)(t)− (Pn,αu)
(
πn(t)

)
ρn(t).

We remark that (Jαu)n ∈ W 1,2
0 (0, `n) for any u ∈ W 1,2(Ω) and n ∈ {1, . . . ,M}, i.e. Jα maps

D(b) into D(b ′) and will be used as an identification map.

3.3. Estimates for the identification map

Take any δ > 0. Using the following inequality:

(a1 + a2)2 ≥ (1− δ)a2
1 −

1

δ
a2

2, a1, a2 ≥ 0,

we estimate:

‖u‖2 − ‖Jαu‖2 =
M∑
n=1

∫∫
Λn

|u|2dx+
M∑
n=1

(∫∫
Πn

|u|2dx−
`n∫

0

∣∣∣(Pn,αu)(t)− (Pn,αu)(π(t)
)
ρ(t)

∣∣∣2dt
)

≤
M∑
n=1

∫∫
Λn

|u|2dx+
M∑
n=1

(∫∫
Πn

|u|2dx− (1− δ)
`n∫

0

∣∣(Pn,αu)(t)∣∣2dt+
1

δ

`n∫
0

∣∣(Pn,αu)(π(t)
)
ρ(t)

∣∣2dt

)

=
M∑
n=1

∫∫
Λn

|u|2dx+
M∑
n=1

(∫∫
Πn

|u|2dx−
`n∫

0

∣∣(Pn,αu)(t)∣∣2dt

)

+δ
M∑
n=1

`n∫
0

∣∣(Pn,αu)(t)∣∣2dt+
1

δ

M∑
n=1

`n∫
0

∣∣∣(Pn,αu)(π(t)
)
ρn(t)

∣∣∣2dt

=: I1 + I2 + I3 + I4.

We have the trivial inequality:

I1 ≤
1

α2

M∑
n=1

(∫∫
Λn

|∇u|2dx+ α2

∫∫
Λn

|u|2dx
)
.

To estimate the term I2, we use Lemma 2 and then (4):

I2 =
M∑
n=1

`n∫
0

( ∞∫
0

∣∣u(Θn(t, s)
)∣∣2ds−

∣∣∣ ∞∫
0

ϕα(s)u
(
Θn(t, s)

)
ds
∣∣∣2)dt

≤ 1

α2

M∑
n=1

`n∫
0

( ∞∫
0

∣∣∣ ∂
∂s
u
(
Θn(t, s)

)∣∣∣2ds− α
∣∣u(Θn(t, 0)

)∣∣2 + α2

∞∫
0

∣∣u(Θn(t, s)
)∣∣2ds

)
dt

≤ 1

α2

M∑
n=1

(∫∫
Πn

|∇u|2dx−
∫
Ln

|u|2dσ + α2

∫∫
Πn

|u|2dx
)
,
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which gives:

I1 + I2 ≤
1

α2

(
hΩ
α(u, u) + α2‖u‖2

)
.

Furthermore, with the help of the Cauchy-Schwarz inequality, we have:

I3 ≤ δ
M∑
n=1

`n∫
0

∞∫
0

∣∣∣u(Θn(t, s)
)∣∣∣2ds dt = δ

M∑
n=1

∫∫
Πn

|u|2dx ≤ δ‖u‖2,

To estimate the last term, I4, we introduce the following constant:

R := max
{ `n∫

0

∣∣ρn(t)
∣∣2dt : n ∈ {1, . . . ,M}

}
,

then, using first the estimate (8), and then the inequality (4),

I4 ≤
R

δ

M∑
n=1

sup
t∈(0,`n)

∣∣∣(Pn,αu)(πn(t)
)∣∣∣2

≤ R

δ

M∑
n=1

(∣∣(Pn,αu)(0)
∣∣2 +

∣∣(Pn,αu)(`n)
∣∣2)

≤ RC

δα

M∑
n=1

(∫∫
Λn

|∇u|2dx+ α2

∫∫
Λn

|u|2dx

)

≤ RC

δα

[ M∑
n=1

(∫∫
Λn

|∇u|2dx+ α2

∫∫
Λn

|u|2dx
)

+
M∑
n=1

(∫∫
Πn

|∇u|2dx−
∫
Ln

|u|2dσ + α2

∫∫
Πn

|u|2dx
)]

=
RC

δα

(
hΩ
α(u, u) + α2‖u‖

)
.

Choosing δ = α−1/2 and summing up the four terms, we see that:

‖u‖2 − ‖Jαu‖2 ≤ c1√
α

(
hΩ
α(u, u) + α2‖u‖2 + ‖u‖2

)
≡ c1√

α

(
b(u, u) + ‖u‖2

)
,

with a suitable constant c1 > 0.
Now, we need to compare b ′(Jαu, Jαu) and b(u, u). Take δ ∈ (0, 1) and use the

inequality:

(a1 + a2)2 ≤ (1 + δ)a2
1 +

2

δ
a2

2, a1, a2 ≥ 0,



Robin-Laplacian eigenvalues 55

Then:

b ′(Jαu, Jαu)− b(u, u) =
M∑
n=1

`n∫
0

∣∣∣(Pn,αu)′ − ρ ′n
[
(Pn,αu) ◦ πn

]∣∣∣2dt−
(
hΩ
α(u, u) + α2‖u‖2

)

≤(1 + δ)
M∑
n=1

`n∫
0

∣∣∣(Pn,αu)′
∣∣∣2dt+

2

δ

M∑
n=1

`n∫
0

∣∣∣ρ ′n[(Pn,αu) ◦ πn
]∣∣∣2dt

−
M∑
n=1

(∫∫
Λn

|∇u|2dx+ α2

∫∫
Λn

|u|2dx

)

−
M∑
n=1

(∫∫
Πn

|∇u|2dx−
∫
Ln

|u|2dσ + α2

∫∫
Πn

|u|2dx
)

≤ (1 + δ)
M∑
n=1

`n∫
0

∣∣∣(Pn,αu)′
∣∣∣2dt+

2

δ

M∑
n=1

`n∫
0

∣∣∣ρ ′n[(Pn,αu) ◦ πn
]∣∣∣2dt

−
M∑
n=1

(∫∫
Πn

|∇u|2dx−
∫
Ln

|u|2dσ + α2

∫∫
Πn

|u|2dx
)
.

(9)

Using first the Cauchy-Schwarz inequality and then inequality (4), we have:
`n∫

0

∣∣(Pn,αu)′
∣∣2dt ≤

`n∫
0

∞∫
0

∣∣∣ ∂
∂t
u
(
Θn(t, s)

)∣∣∣2ds dt ≤
∫∫
Πn

|∇u|2dx−
∫
Ln

|u|2dσ + α2

∫∫
Πn

|u|2dx.

Substituting the last inequality into (9), we arrive at:

b ′(Jαu, Jαu)− b(u, u) ≤ δ
M∑
n=1

(∫∫
Πn

|∇u|2dx−
∫
Ln

|u|2dσ + α2

∫∫
Πn

|u|2dx
)

+
2

δ

M∑
n=1

`n∫
0

∣∣∣ρ′n[(Pn,αu) ◦ πn
]∣∣∣2dt.

(10)

Furthermore, using the constant:

R ′ := max
{ `n∫

0

∣∣ρ′n(t)
∣∣2dt : n ∈ {1, . . . ,M}

}
,

and the inequality (8), we have:

M∑
n=1

`n∫
0

∣∣∣ρ′n[(Pn,αu) ◦ πn
]∣∣∣2dt ≤ R ′

M∑
n=1

sup
t∈(0,`n)

∣∣(Pn,αu)
(
πn(t)

)∣∣2
≤ R ′

M∑
n=1

(∣∣(Pn,αu)(0)
∣∣2 +

∣∣(Pn,αu)(`n)
∣∣2) ≤ R ′C

α

M∑
n=1

(∫∫
Λn

|∇u|2dx+ α2

∫∫
Λn

|u|2dx

)
.
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The substitution of this inequality into (10) and the choice δ = α−1/2 then leads to:

b ′(Ju, Ju)− b(u, u) ≤ c2√
α

(
hΩ
α(u, u) + α2‖u‖2

)
≤ c2√

α

(
b(u, u) + ‖u‖2

)
,

with a suitable constant c2 > 0. By Proposition 5, for any fixed m ∈ N and for large α, we
have the estimate µDm ≤ EΩ

m(α) +α2 +O(α−1/2). The combination with (5) gives the result.
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[10] P. Freitas, D. Krejčiřı́k. The first Robin eigenvalue with negative boundary parameter.
arXiv:1403.6666, (2014).

[11] A.A. Lacey, J.R. Ockendon, J. Sabina. Multidimensional reaction diffusion equations with nonlinear
boundary conditions. SIAM J. Appl. Math., 58 (5), P. 1622–1647 (1998).

[12] M. Levitin, L. Parnovski. On the principal eigenvalue of a Robin problem with a large parameter. Math.
Nachr., 281 (2), P. 272–281 (2008).

[13] Y. Lou, M. Zhu. A singularly perturbed linear eigenvalue problem in C1 domains. Pacific J. Math., 214
(2), P. 323–334 (2004).

[14] K. Pankrashkin. On the asymptotics of the principal eigenvalue for a Robin problem with a large
parameter in planar domains. Nanosystems: Phys. Chem. Math., 4 (4), P. 474–483 (2013).

[15] K. Pankrashkin, N. Popoff. Mean curvature bounds and eigenvalues of Robin Laplacians.
arXiv:1407.3087, (2014).

[16] O. Post. Branched quantum wave guides with Dirichlet boundary conditions: the decoupling case.
J. Phys. A, 38 (22), P. 4917–4932 (2005).


