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1. Introduction

The classical spectral estimation problem consists of recovering the coefficients an, λk,
k = 1, . . . , N, N ∈ N, of a signal

s(t) =
N∑
n=1

ake
λkt, t > 0

from the given observations s(j), j = 0, . . . , 2N − 1, where the coefficients ak, λk may be
arbitrary complex numbers. The literature describing various methods for solving the spectral
estimation problem is very extensive: see for example the list of references in [1, 2]. In these
papers a new approach to this problem was proposed: a signal s(t) was treated as a kernel of
a certain convolution operator corresponding to an input-output map for some linear discrete-
time dynamical system. While the system realized from the input-output map is not unique,
the coefficients an and λn can be determined uniquely using the non-selfadjoint version of the
boundary control method [3].

In [4, 8], this approach has been generalized to the infinite-dimensional case: more
precisely, the problem of the recovering the coefficients ak, λk ∈ C, k ∈ N, of the given signal:

S(t) =
∞∑
k=1

ak(t)e
λkt, t ∈ (0, 2T ), (1.1)

from the given data S ∈ L2(0, 2T ) was considered. In [4], the case ak ∈ C has been treated,
in [8] the case when for each k, ak(t) =

∑Lk−1
i=0 aikt

i are polynomials of the order Lk − 1 with
complex valued coefficients aik was studied.



64 S. A. Avdonin, A. S. Mikhaylov, V. S. Mikhaylov

Recently, it was observed [9, 15] that the results of [4, 8] are closely related to the
dynamical inverse source problem: let H be a Hilbert space, A be an operator in H with the
domain D(A), Y be another Hilbert space, O : H ⊃ D(O) 7→ Y be an observation operator
(see [18]). Given the dynamical system in H:{

ut − Au = 0, t > 0,

u(0) = a,
(1.2)

we denote by ua its solution, and by y(t) := (Oua)(t) the observation (output of this system).
The operator that realizes the correspondence a 7→ (Oua)(t) is called the observation operator
OT : H 7→ L2(0, T ;Y ). We fix some T > 0 and assume that y(t) ∈ L2(0, T ;Y ). One can
pose the following questions: what information on the operator A could be recovered from
the observation y(t)? We mention works on the multidimensional inverse problems for the
Schrödinger, heat and wave equations by one measurement, concerning this subject. Some of
the results (for the Schrödinger equation) are given in [9, 10, 16]. To answer this question in
the abstract setting, in [15] the authors derived the version of the BC-method equations under
the condition that A is self-adjoint and Y = R. In the present paper, we address the same
question without the assumption about selfajointness of A . The possibility of recovering the
spectral data from the dynamical one is well-known for the dynamical system with a boundary
control [11, 12]. We extend these ideas to the case of the dual (observation) system.

The solvability of the BC-method equations for the spectral estimation problem critically
depends on the properties of corresponding exponential family. The solvability of the BC-
method equations for system (1.2) depends on the controllability properties of the dual system.
We point out the close relation between these two problems: they both leads to essentially
the same equations (see section 4 for applications), and conditions for the solvability of these
equations are the same (on the connections between the controllability of a dynamical systems
and properties of exponential families see [5]).

In the second section, we outline the solution for the spectral estimation problem in
infinite dimensional spaces (see [8] for details). In the third section, we derive the equations of
the BC-method for problem (1.2), extending the results of [15] to the case of non self-adjoint
operator. Also, we answer the question on the extension of the observation y(t) = (Oa)(t).
The last section is devoted to the applications to inverse problem by one measurement of the
Schrödinger equation on the interval and to the problem of extending the inverse data for the
first order hyperbolic system on the interval, see also [4, 7–9].

2. The spectral estimation problem in infinite dimensional spaces

The problem is set up in the following way: given the signal (1.1), S ∈ L2(0, 2T ),
for T > 0, to recover the coefficients ak(t), λk, k ∈ N. Below, we outline the procedure of
recovering unknown parameters, for the details see [8].

We consider the dynamical systems in a complex Hilbert space H:

ẋ(t) = Ax(t) + bf(t), t ∈ (0, T ), x(0) = 0. (2.1)

ẏ(t) = A∗y(t) + dg(t), t ∈ (0, T ), y(0) = 0, (2.2)

here b, d ∈ H , f, g ∈ L2(0, T ), and we assume that the spectrum of the operator A, {λk}∞k=1 is
not simple. We denote the algebraic multiplicity of λk by Lk, k ∈ N, and also assume that the
set of all root vectors {φik}, i = 1, . . . , Lk, k ∈ N, forms a Riesz basis in H . Here, the vectors
from the chain {φik}

Lk
i=1, k ∈ N, satisfy the equations:

(A− λk)φ1
k = 0, (A− λk)φik = φi−1k , 2 6 i 6 Lk.
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The spectrum of A∗ is {λk}∞k=1 and the root vectors {ψik}, i = 1, . . . , Lk, k ∈ N, also form a
Riesz basis in H and satisfy the equations:(

A∗ − λk
)
ψLkk = 0,

(
A∗ − λk

)
ψik = ψi+1

k , 1 6 i 6 Lk − 1.

Moreover, the root vectors of A and A∗ are normalized, in accordance with the following:〈
φik, ψ

j
l

〉
= 0, if k 6= l or i 6= j;〈

φik, ψ
i
k

〉
= 1, i = 1, . . . , Lk, k ∈ N.

We consider f and g as the inputs of the systems (2.1) and (2.2) and define the outputs z and
w by the formulas:

z(t) = 〈x(t), d〉 , w(t) = 〈y(t), b〉 .
We assume that b =

∑∞
k=1

∑Lk
i=1 b

i
kφ

i
k, d =

∑∞
k=1

∑Lk
i=1 d

i
kψ

i
k. While searching for the solution

to (2.1) in the form x(t) =
∑∞

k=1

∑Lk
i=1 c

i
k(t)φ

i
k, we arrive at the following representation for the

output:

z(t) = 〈x(t), d〉 =
∞∑
k=1

Lk∑
i=1

cik(t)d
i
k =

t∫
0

r(t− τ)f(τ) dτ,

where the response function r(t) is defined as:

r(t) =
∞∑
k=1

eλkt
[
a1k + a2kt+ a3k

t2

2
+ . . .+ aLk−1k

tLk−2

(Lk − 2)!
+ aLkk

tLk−1

(Lk − 1)!

]
, (2.3)

with ajk being defined as:

ajk =

Lk∑
i=j

bikd
i−j+1
k , j = 1, . . . , Lk, k ∈ N. (2.4)

It is important to note that r(t) has the form of the series in (1.1).
Analogously, looking for the solution of (2.2) in the form:

y(t) =
∞∑
k=1

Lk∑
i=1

hik(t)ψ
i
k,

we arrive at:

w(t) = 〈y(t), b〉 =
∞∑
k=1

Lk∑
i=1

hik(t)b
i
k =

t∫
0

r(t− τ)g(τ) dτ.

We introduce the connecting operator CT : L2(0, T ) 7→ L2(0, T ), defined through its bilinear
form by the formula: 〈

CTf, g
〉

= 〈x(T ), y(T )〉 .
In [8], the representation for CT was obtained:

Lemma 1. The connecting operator CT has a representation

(CTf)(t) =

T∫
0

r(2T − t− τ)f(τ) dτ.
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We assume that the systems (2.1), (2.2) are spectrally controllable in time T . This
means that for any i ∈ {1, . . . , Lk}, and any k ∈ N, there exist f ik, g

i
k ∈ H1

0 (0, T ), such that
xf

i
k(T ) = φik, y

gik(T ) = ψik. Using ideas of the BC method [13], we are able to extract the
spectral data,

{
λk, a

j
k

}
, j = 1, . . . , Lk, k ∈ N, from the dynamical one, r(t), t ∈ (0, 2T ),

(see [4, 8] for more details):

Proposition 1. The set λk, f ik, i = 1, . . . , Lk, k ∈ N, are eigenvalues and root vectors of the
following generalized eigenvalue problem in L2(0, T ):

T∫
0

(r′(2T − t− τ)− λr(2T − t− τ)) f(τ) dτ = 0. (2.5)

The set λk, gik, k = 1, . . .∞, i = 1, . . . , Lk are eigenvalues and root vectors of the generalized
eigenvalue problem in L2(0, T ):

T∫
0

(
r′(2T − t− τ)− λr(2T − t− τ)

)
g(τ) dτ = 0. (2.6)

Now, we describe the algorithm of recovering a1k, . . . a
Lk
k , k ∈ N (see the representation

(2.3)). We normalize the solutions to (2.5), (2.6) by the rule:〈
CT f̃ ik, g̃

i
k

〉
= 1, (2.7)

and define:

b̃ik =
〈
yg̃

i
k(T ), b

〉
=

T∫
0

r(T − τ)g̃ik(τ) dτ, (2.8)

d̃ik =
〈
xf̃

i
k(T ), d

〉
=

T∫
0

r(T − τ)f̃ ik(τ) dτ. (2.9)

Then (see (2.4))

a1k =

Lk∑
i=1

b̃ikd̃
i
k. (2.10)

We denote by ∂ and I the differentiation operator and the identity operator in L2(0, T ).
We normalize the solutions to (2.5), (2.6) (for i > l) by the following rule:〈[

CT (∂ − λkI)
]l
f̂ ik, ĝ

i−l
k

〉
= 1, (2.11)

we define b̂ik, d̂
i
k by (2.8), (2.9) and evaluate:

alk =

Lk∑
i=l

b̂ikd̂
i−l+1
k , l = 2, . . . , Lk. (2.12)

We conclude this section with the algorithm for solving the spectral estimation problem: sup-
pose that we are given with the function r ∈ L2(0, 2T ) of the form (2.3) and the family⋃∞
k=1{eλkt, . . . , tLk−1eλkt} is minimal in L2(0, T ). Then, to recover λk, Lk and coefficients of

polynomials, one should utilize the following:
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Algorithm
a) solve generalized eigenvalue problems (2.5), (2.6) to find λk, Lk and non-normalized

controls.
b) Normalize f̃ ik, g̃

i
k by (2.7), define b̃ik, d̃

i
k by (2.8), (2.9) to recover a1k by (2.10).

c) Normalize f̂ ik, ĝ
i−l
k by (2.11), define b̂ik, d̂

i
k by (2.8), (2.9) to recover alk by (2.12),

l = 2, . . . , Lk − 1.

3. Equations of the BC method

Let us denote by A∗ the operator adjoint to A and B := O∗, B : Y 7→ H . Along with
system (1.2), we consider the following dynamical control system:{

vt + A∗v = Bf, t < T,

v(T ) = 0,
(3.1)

and denote its solution by vf . The reason we consider the system (3.1) reverse in time is that
it is adjoint to (1.2) (see [5, 15]).

For every 0 6 s < T , we introduce the control operator by W sf := vf (s). It is easy to
verify that −W 0 is adjoint to OT . Indeed, taking f ∈ L2(0, T ;Y ), a ∈ H we show [15] that:

T∫
0

(f,Oa)Y = −
(
W 0f, a

)
H
, (3.2)

here Oa = (Oua) (t). Due to the arbitrariness of f and a, the last equality is equivalent to(
OT
)∗

= −W 0.
We assume that the operator A satisfies the following assumptions:

Assumption 1. a) The spectrum of the operator A, {λk}∞k=1 consists of the eigenvalues λk
with algebraic multiplicity Lk, k ∈ N, and the set of all root vectors {φik}, i = 1, . . . , Lk,

k ∈ N, form a Riesz basis in H . Here, the vectors from the chain {φik}
Lk
i=1, k ∈ N,

satisfy the equations

(A− λk)φ1
k = 0, (A− λk)φik = φi−1k , 2 6 i 6 Lk.

The root vectors of A∗, {ψik}, i = 1, . . . , Lk, k ∈ N, form a Riesz basis in H and
satisfy: (

A∗ − λk
)
ψLkk = 0,

(
A∗ − λk

)
ψik = ψi+1

k , 1 6 i 6 Lk − 1.

b) The system (3.1) is spectrally controllable in time T : i.e. there exists the controls
f ik ∈ H1

0 (0, T ;Y ) such that W 0f ik = ψik, for i = 1, . . . , Lk, k ∈ N.

We say that the vector a is generic if its Fourier representation in the basis {φik}∞k=1,
a =

∑∞
k=1

∑Lk
i=1 a

i
kφ

i
k, is such that aik 6= 0 for all k, i. We assume that the controls from the

Assumption 1 are extended by zero outside the interval (0, T ). Now, we are ready to formulate.

Theorem 1. If A satisfies Assumption 1, Y = R, and source a is generic, then the spectrum of
A and controls f ik are the spectrum and the root vectors of the following generalized spectral
problem:

2T∫
0

(
˙(Oa)(t)− λk(Oa)(t), fk(t− T + τ)

)
Y
dt = 0, 0 < τ < T. (3.3)

Here, by dot, we denote the differentiation with respect to t.
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Proof. We denote by {f̃ ik} the set of controls which satisfy W 0f̃ ik = ψik. By {f ik} we denote the
set of shifted controls: f ik(t) = f̃ ik(t−T ). Thus, the control f ik acts on the time interval (T, 2T ).

Let us fix some i ∈ 1, . . . , Lk, k ∈ N, τ ∈ (0, T ) and consider W 0
(
ḟ ik(·+ τ)

)
:

W 0
(
ḟ ik(·+ τ)

)
= vḟ

i
k(·+τ)(0) = v

f ik(·+τ)
t (0) =

(
Bf ik(·+ τ)

)
(0)− A∗vf ik(·+τ)(0). (3.4)

Since f ik ∈ H1
0 (T, 2T, Y ), (Bf ik(·+ τ)) (0) = 0. The second term on the right side of (3.4)

could be evaluated using the following reasons. The function vf
i
k solves:

v
f ik(·+τ)
t + A∗vf

i
k(·+τ) = 0, 0 6 t 6 T − τ,

vf
i
k(·+τ)(T − τ) = ψik.

We are looking for a solution in the form vf
i
k(·+τ)(t) =

∑Lk
j=1 c

j
k(t)ψ

j
k, then cjk satisfies boundary

conditions cjk(0) = δij and equation:

d

dt
c1k + λkc

1
k = 0,

d

dt
cjk + λkc

j
k + cj−1k = 0, j = 2, . . . , Lk.

Solving this system, we obtain the following expansion:

vf
i
k(·+τ)(t) =

Lk∑
j=i

(T − τ − t)j−i

(j − i)!
eλk(T−τ−t)ψjk. (3.5)

Evaluating A∗vf
i
k(·+τ)(0), making use of (3.5) and properties of the root vectors, we arrive at:

A∗vf
Lk
k (·+τ)(0) = λkv

f
Lk
k (·+τ)(0),

A∗vf
i
k(·+τ)(0) = λkv

f ik(·+τ)(0) + vf
i+1
k (·+τ)(0), i < Lk.

Then, continuing (3.4), we obtain:

W 0
(
ḟLkk (·+ τ)

)
= −A∗vf

Lk
k (·+τ)(0) = −λkW 0fLkk , (3.6)

W 0
(
ḟ ik(·+ τ)

)
= −λkW 0f ik − λkW 0f i+1

k , i < Lk. (3.7)

Integrating by parts and taking into account that f ik(0) = f ik(T ) = 0 for i = 1, . . . , Lk,
we get:

2T∫
0

(
(Oa)(t), ḟ ik(t+ τ)

)
Y
dt = −

2T∫
0

(
˙(Oa)(t), f ik(t+ τ)

)
Y
dt

+
(

˙(Oa)(t+ τ), f ik(t)
)
Y

∣∣∣t=2T

t=0
= −

2T∫
0

(
˙(Oa)(t), f ik(t+ τ)

)
Y
dt (3.8)
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Conversely, using the duality between W 0 and OT and (3.6), (3.7), we have for i = Lk:

2T∫
0

(
(Oa)(t), ḟLkk (t+ τ)

)
Y
dt = −

(
a,W 0ḟLkk (·+ τ)

)
H

=
(
a, λkW

0fLkk (·+ τ)
)
H

=

(
λka,W

0fLkk (·+ τ)
)
H

= −
2T∫
0

(
λk(Oa)(t), fLkk (t+ τ)

)
Y
dt (3.9)

and for i < Lk:

2T∫
0

(
(Oa)(t), ḟ ik(t+ τ)

)
Y
dt =

(
a, λkW

0f ik(·+ τ) +W 0f i+1
k (·+ τ)

)
H

=

−λk

2T∫
0

(
(Oa)(t), f ik(t+ τ)

)
Y
dt−

2T∫
0

(
(Oa)(t), f i+1

k (t+ τ)
)
Y
dt (3.10)

In what follows, we assume that elements with index i = Lk + 1 or i = 0 are zero.
Combining (3.8) and (3.9), (3.10), we see that the pair λk, fk satisfies on 0 < τ < T , i =
1, . . . , Lk:

2T∫
0

(
˙(Oa)(t)− λk(Oa)(t), f ik(t+ τ)

)
Y
dt =

2T∫
0

(
(Oa)(t), f i+1

k (t+ τ)
)
Y
dt. (3.11)

Now we prove the converse; solving the generalized eigenvalue problem:

2T∫
0

(
˙(Oa)(t)− λ(Oa)(t), f(t+ τ)

)
Y
dt = 0 (3.12)

yields {λk}∞k=1 eigenvalues of A and controls {f ik}, i = 1, . . . , Lk, k ∈ N.
Let the functions {f1, . . . , fL} satisfying (3.11) constitute the chain for (3.12) for some

λ. Then, as it follows from the proof that for τ ∈ (0, T ):(
a,W 0ḟi(t+ τ)

)
H

+ λ
(
a,W 0fi(t+ τ)

)
H

= −
(
a,W 0fi+1(t+ τ)

)
H
,

which is equivalent to

−
(
a,A∗vfi(t+τ)(0)

)
H

+ λ
(
a, vfi(t+τ)(0)

)
H

= −
(
a, vfi+1(t+τ)(0)

)
H
, τ ∈ (0, T ). (3.13)

First, we consider case i = L. We rewrite the last equality (using the notation f = fL) as:(
a,A∗vf(t+τ)(0)− λvf(t+τ)(0)

)
H

= 0, τ ∈ (0, T ). (3.14)

We assume that vf(t+τ)(T − τ) =
∑

k∈N
i=1,...,Lk

cikψ
i
k. Then, developing vf in the Fourier series as

we did in (3.5), we arrive at:

vf(t+τ)(0) =
∑
k∈N

i=1,...,Lk

cik

Lk∑
j=1

(T − τ)j−i

(j − i)!
eλk(T−τ)ψjk. (3.15)
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Applying operator A∗ and using the property A∗ψjk = λkψ
j
k + ψj+1

k , we obtain:

A∗vf(t+τ)(0) =
∑
k∈N

i=1,...,Lk

cik

Lk∑
j=1

(T − τ)j−i

(j − i)!
eλk(T−τ)

(
λkψ

j
k + ψj+1

k

)
. (3.16)

Introducing the notation:

g(τ) := A∗vf(t+τ)(0)− λvf(t+τ)(0) =
∑
k∈N

i=1,...,Lk

gik(τ)ψik, (3.17)

relation (3.14) yields:

0 = (a, g)H =
∑
k∈N

i=1,...,Lk

aikg
i
k(τ), τ ∈ (0, T ). (3.18)

The functions gik(τ) are combination of products of eλk(T−τ) and polynomials (T−τ)α
α!

. Then, we
can rewrite (3.18) as follows:

0 =
∑
k∈N

i=1,...,Lk

bik
(T − τ)i−1

(i− 1)!
eλk(T−τ), τ ∈ (0, T ). (3.19)

If Y = R, the controllability of the dynamical system (3.1) imply [5] the minimality of
the family

⋃∞
k=1{eλkt, teλkt . . . , tLk−1eλkt} in L2(0, T ) in L2(0, T ), so we have bik = 0 for all

k, i. However, as follows from (3.15), (3.16):

bLkk = c1kλka
1
k − λc1ka1k = 0.

Then, since a is generic, either λ = λk or c1k = 0.
Let λ 6= λk, so c1k = 0. Then, for bLk−1k , we have:

bLk−1k = c2kλka
2
k − λc2ka2k = 0,

from which the equality c2k = 0 follows. Repeating this procedure for bLk−ik , i > 2, we obtain:

If λ 6= λk, then cik = 0, i = 1, . . . , Lk. (3.20)

We consider the second option; let λ = λk. Then, from (3.15) and (3.16):

bLk−1k = c1k = 0, bLk−2k = c2ka
3
k = 0, . . . , b1k = cLk−1k aLkk = 0.

So, we arrive at the following:

If λ = λk, then cik = 0, i = 1, . . . , Lk − 1, and cLkk could be arbitrary. (3.21)

Finally (3.20), (3.21) imply that λ = λk′ and f = ck′f
Lk′
k′ , ck′ 6= 0, for some k′.

Thus, on the first step we already obtained that λ = λk′ for some k′ and fL = ck′f
Lk′
k′ .

The second vector f in the Jordan chain satisfies
2T∫
0

(
˙(Oa)(t)− λk′(Oa)(t), f(t+ τ)

)
Y
dt =

2T∫
0

(
(Oa)(t), ck′f

Lk′
k′ (t+ τ)

)
Y
dt.

We rewrite (3.13) in our case:

−
(
a,A∗vf(t+τ)(0)

)
H

+ λk′
(
a, vf(t+τ)(0)

)
H

= −
(
a, ck′v

f
Lk′
k′ (t+τ)(0)

)
H
, τ ∈ (0, T ). (3.22)
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In this case, g, introduced in (3.17), has the form:

g(τ) =
∑
k∈N

i=1,...,Lk

cik

Lk∑
j=1

(T − τ)j−i

(j − i)!
eλk(T−τ)

((
λk − λk′

)
ψjk + ψj+1

k

)
,

and rewrite (3.22) as:

(a, g)H =
(
a, vf

Lk′
k′ (·+τ)

)
H

= ck′a
Lk′
k′ e

λk′ (T−τ) (3.23)

Using the same notations in (3.18) and (3.19), we transcribe the equalities for coefficients bik
for (3.23) to get:

b1k′ = ck′a
Lk′
k′ , bik = 0, k 6= k′,

In the case k 6= k′, we repeat the arguments used above and find that:

cik = 0, i = 1, . . . , Lk.

When k = k′, we have:

b
Lk′
k′ = 0, b

Lk′−1
k′ = c1k′a

Lk′
k′ = 0, b

Lk′−2
k′ = c2k′a

Lk′
k′ = 0,

b2k′ = c
Lk′−2
k′ a

Lk′
k′ = 0, b1k′ = c

Lk′−1
k′ a

Lk′
k′ = ck′a

Lk′
k′ .

So, we find:

cik′ = 0, i < Lk′ − 1, c
Lk′−1
k′ = ck′ , c

Lk′
k′ is arbitrary.

So, finally we arrive at for some cL−1:

f = fL−1 = ck′f
Lk′−1
k′ + cL−1f

Lk′
k′

Arguing in the same fashion, we obtain that:

fi = ck′f
Lk′−i
k′ + cif

Lk′
k′ , 1 6 i < Lk′ − 1.

So, we have shown that the elements of the Jordan chain for (3.3) which correspond to eigen-
value λk′ are the linear combination of corresponding controls and eigenvector (i.e. the control
that generate the eigenvector of A∗). �

Remark 1. The solution to (3.3) yields {λk}∞k=1 eigenvalues of A and (non-normalized) root
vectors {f̂ ik}, f̂ ik = ckf

i
k + cikf

Lk
k k ∈ N, i = 1, . . . , Lk, c

Lk
k = 0.

For the dynamical system (1.2), under the conditions on A, Y , formulated in Theorem
1, there is the possibility to extend the observation y(t) = (Oua) (t) defined for t ∈ (0, 2T ) to
t ∈ R+. To this end, we show that for an observation having the form:

Oa =
∑
k∈N

eλkt
Lk∑
j=1

bjkt
Lk−j

(Lk − j)!
, (3.24)

we can recover the coefficients bjk.
Take i ∈ {1, . . . , Lk} and search for the solution to (1.2) with a = φik in the form

u =
∑Lk

l=1 cl(t)φ
l
k, we arrive at the system (here cLk+1 = 0):

d

dt
cl(t)− λkcl(t) = cl+1(t), l = 1, . . . , Lk,

cl(0) = δli.
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whose solution is:

cl(t) =
ti−l

(i− l)!
eλkt, l 6 i,

cl(t) = 0, l > i.

Thus,

uφ
i
k =

i∑
l=1

ti−l

(i− l)!
eλktφlk. (3.25)

For the initial state a =
∑

k∈N
∑Lk

i=1 a
i
kφ

i
k, we obtain:

ua =
∑
k∈N

eλkt
Lk∑
j=1

tLk−j

(Lk − j)!

j∑
l=1

aLk−j+lk φlk.

So, for observation (Oa)(t) = (Oua) (t), we derive the representation (3.24) with coefficients
bjk, defined by:

bjk :=

j∑
l=1

aLk−j+lk Oφlk, k ∈ N, j = 1, . . . , Lk. (3.26)

Making use of Theorem 1 (see also Remark 1), we have:

W 0f̂ ik = ckψ
i
k + cikψ

Lk
k , k ∈ N, i = 1, . . . , Lk, c

Lk
k = 0. (3.27)

Counting (3.2), we write: (
W 0f̂ ik, a

)
H

= −
T∫

0

Ouaf̂ ik dt.

We plug a = φik into the last equality and use (3.27) to get:

ck =
(
ckψ

i
k + cikψ

Lk
k , φik

)
H

= −
T∫

0

Ouφ
i
k f̂ ik dt. (3.28)

We evaluate the right side of (3.28) for all i. For i = 1 we get (see (3.25)):

ck = −Oφ1
k

T∫
0

eλktf̂ 1
k dt.

Or equivalently:

ck
Oφ1

k

= −
T∫

0

eλktf̂ 1
k dt. (3.29)

Evaluating (3.28) for i = 2, counting (3.25), we obtain:

ck = −Oφ2
k

T∫
0

eλktf̂ 2
k dt−Oφ1

k

T∫
0

teλktf̂ 2
k dt.
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We divide this equality by ck and plug (3.29) in to find:

ck
Oφ2

k

= −

T∫
0

eλktf̂ 1
k dt

T∫
0

eλktf̂ 2
k dt

T∫
0

eλktf̂ 1
k dt−

T∫
0

teλktf̂ 2
k dt

(3.30)

Suppose we already found ck
Oφlk

for l = 1, . . . , i− 1. To find this quantity for l = i, we evaluate

(3.28), plugging the expression for uφ
i
k (3.25):

ck = −
i∑
l=1

Oφlk

T∫
0

ti−l

(i− l)!
eλktf̂ ik dt.

We divide last equality by ck to find:

ck
Oφik

= −

T∫
0

eλktf̂ ik dt

1 +
i−1∑
l=1

T∫
0

ti−l

(i−l)!e
λktf̂ ik dt

(
ck
Oφlk

)−1 . (3.31)

Observe that in the right side of (3.31) in view of (3.30), we know all terms.
To evaluate aik, we use, see (3.27):

aik =
(
a, ψik

)
H

=
(
a,W 0f̂ ik − cikψ

Lk
k

)
H

1

ck
= −

T∫
0

Ouaf̂ ik dt
1

ck
− aLkk

cik
ck

(3.32)

We multiply (3.27) by φLkk and obtain for i < Lk:

cik =
(
W 0f ik, φ

Lk
k

)
H

= −
T∫

0

f ik(t)
(
Ouφ

Lk
k

)
(t) dt

= −
Lk∑
l=1

Oφlk

T∫
0

tLk−l

(Lk − l)!
eλktf ik(t) dt.

Dividing the last equality by ck, we obtain:

cik
ck

= −
Lk∑
l=1

(
ck
Oφlk

)−1 T∫
0

tLk−l

(Lk − l)!
eλktf ik(t) dt, i < Lk. (3.33)

Notice that in view of (3.31), we know all terms in the right hand side in (3.33). Now, we
multiply (3.32) by ck:

aikck = −
T∫

0

Ouaf̂ ik dt− a
Lk
k ck

cik
ck
.

Since cLkk = 0, we have for i = Lk:

aLkk ck = −
T∫

0

f̂Lkk (t) (Oua) (t) dt,
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and finally:

aikck = −
T∫

0

f̂ ik(t) (Oua) (t) dt+

T∫
0

f̂Lkk (t) (Oua) (t) dt
cik
ck
. (3.34)

In view of (3.33), we know all terms on the right side of (3.34).
Now, we rewrite formula for bjk (3.26):

bjk :=

j∑
l=1

{
aLk−j+lk ck

}(Oφlk
ck

)
k ∈ N, j = 1, . . . , Lk, (3.35)

and observe that the first term in each summand is given by (3.34), while the second term by
(3.31). So, we know right hand side in (3.35).

After we recovered all bjk by (3.35), we can extend the observation (Oa)(t) by formula
(3.24) for t > 2T .

4. Application to inverse problems

Here, we provide two applications of the above-developed theory to inverse problems.
Other applications of the BC approach to the spectral estimation problem can be found in
[1, 2, 4, 7–9, 15].

4.1. Reconstructing the potential for the 1D Schrödinger equation from boundary
measurements

Let the real potential q ∈ L1(0, 1) and a ∈ H1
0 (0, 1) be fixed, we consider the boundary

value problem:
iut(x, t)− uxx(x, t) + q(x)u(x, t) = 0 t > 0, 0 < x < 1

u(0, t) = u(1, t) = 0 t > 0,

u(x, 0) = a(x) 0 < x < 1.

(4.1)

Assuming that the initial datum a is generic (but unknown), the inverse problem we are inter-
ested in is to determine the potential q from the trace of the derivative of the solution u to (4.1)
on the boundary:

{r0(t), r1(t)} := {ux(0, t), ux(1, t)}, t ∈ (0, 2T ),

It is well known that the self-adjoint operator A defined on L2(0, 1) by:

Aφ = −φ′′ + qφ, D(A) := H2(0, 1) ∩H1
0 (0, 1), (4.2)

admits a family of eigenfunctions {φk}∞k=1 forming a orthonormal basis in L2(0, 1), and asso-
ciated sequence of eigenvalues λk → +∞. Using the Fourier method, we can represent the
solution of (4.1) in the form:

u(x, t) =
∞∑
k=1

ake
iλktφk(x), ak = (a, φk)L2(0,1) (4.3)

The inverse data admits the representation:

{r0(t), r1(t)} =

{
∞∑
k=1

ake
iλktφ′k(0),

∞∑
k=1

ake
iλktφ′k(1)

}
. (4.4)
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One can prove that r0, r1 ∈ L2(0, T ). Using the method from the first section, we recover the
eigenvalues λk of A and the products φ′k(0)ak and φ′k(1)ak. So (as a is generic) we recovered
the spectral data consisting of:

D :=

{
λk,

φ′k(1)

φ′k(0)

}∞
k=1

. (4.5)

Now from D we construct the spectral function associated with A.
Given λ ∈ C, we denote by y(·, λ) the solution to:{

−y′′(x, λ) + q(x)y(x, λ) = λy(x, λ), 0 < x < 1,

y(0, λ) = 0, y′(0, λ) = 1.

Then, the eigenvalues of the Dirichlet problem of A are exactly the zeros of the function y(1, λ),

while a family of normalized corresponding eigenfunctions is given by φk(x) =
y(x, λk)

‖y(·, λk)‖
.

Thus, we can rewrite the second components in D in the following way:

φ′k(1)

φ′k(0)
=
y′(1, λk)

y′(0, λk)
= y′(1, λk) =: Ak. (4.6)

Let us denote by dot the derivative with respect to λ and λn be an eigenvalue of A. We
borrowed the following fact from [17, p. 30]:

‖y(·, λk)‖2L2 = y′(1, λk)ẏ(1, λk),

y(1, λ) =
∏
n>1

λn − λ
n2π2

ẏ(1, λk) = − 1

k2π2

∏
n>1,n 6=k

λn − λk
n2π2

=: Bk.

Notice that the set of pairs {λk, ‖y(·, λk)‖2L2}∞k=1 =: D̃ is “classical” spectral data. Using the
above relations, we come to D̃ = {λk, AkBk}∞k=1. Let α2

k := ‖y(·, λk)‖2L2 = AkBk, we introduce
the spectral function associated with A:

ρ(λ) =


−

∑
λ6λk60

1
α2
k

λ 6 0,∑
0<λk6λ

1
α2
k

λ > 0,

which is a monotonously increasing function having jumps at the points of the Dirichlet spectra.
The regularized spectral function is introduced by:

σ(λ) =

{
ρ(λ)− ρ0(λ) λ > 0,

ρ(λ) λ < 0,
ρ0(λ) =

∑
0<λ0k6λ

1

(α0
k)

2
λ > 0,

where ρ0 is the spectral function associated with the operator A with q ≡ 0. The potential can
thus be recovered from σ(λ) by Gelfand-Levitan, Krein or the BC method (see [6, 14]). Once
the potential has been found, we can recover the eigenfunctions φk, the traces φ′k(0) and Fourier
coefficients ak, k = 1, . . .∞. Thus, the initial state can be recovered via its Fourier series.
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4.2. Extension of the inverse data

We fix pij ∈ C1([0, 1];C), d1, d2 ∈ L2(0, 1;C) and consider on interval (0, 1) the initial
boundary value problem:

∂
∂t

(
u

v

)
− ∂

∂x

(
0 1

1 0

)(
u

v

)
−

(
p11 p12
p21 p22

)(
u

v

)
= 0, t > 0,

u(0, t) = u(1, t) = 0, t > 0,(
u(x, 0)

v(x, 0)

)
=

(
d1(x)

d2(x)

)
, 0 6 x 6 1.

(4.7)

We fix some T > 0 and define R(t) := {v(0, t), v(1, t)}, 0 6 t 6 T. Here, we focus on
the problem of the continuation of the inverse data: we assume that R(t) is known on the
interval (0, T ), T > 2, and recover it on the whole real axis. The problem of recovering
unknown coefficients pij and initial state c1,2 has been considered in [19,20], where the authors
established the uniqueness result, having the response R(t) on the interval (−T, T ) for large
enough T.

We introduce the notations B =

(
0 1

1 0

)
, P =

(
p11 p12
p21 p22

)
, D =

(
d1
d2

)
and the

operators A, A∗ acting by the rule:

A = B
d

dx
+ P, on (0, 1),

A∗ψ = −B d

dx
+ P T , on (0, 1),

with the domains:

D(A) = D(A∗) =

{
ϕ =

(
ϕ1

ϕ2

)
∈ H1(0, 1;C2) |ϕ1(0) = ϕ1(1) = 0

}
.

The spectrum of the operator A has the following structure (see [19, 20]): σ(A) = Σ1 ∪ Σ2,
where Σ1 ∩ Σ2 = ∅ and there exists N1 ∈ N such that

1) Σ1 consists of 2N1 − 1 eigenvalues including algebraical multiplicities
2) Σ2 consists of infinite number of eigenvalues of multiplicity one
3) Root vectors of A form a Riesz basis in L2(0, 1;C2).

Let m denote the algebraical multiplicity of eigenvalue λ, and we introduce the notations:

Σ1 =
{
λi ∈ σ(A), mi > 2, 1 6 i 6 N

}
,

Σ2 = {λn ∈ σ(A), λn is simple , n ∈ Z} .

Let e1 :=
(
0
1

)
. The root vectors are introduced in the following way:(

A− λi
)
φi1 = 0,

(
A− λi

)
φij = φij−1, 2 6 j 6 mi,

φij(0) = e1, φ
i
j ∈ D(A), 1 6 j 6 mi.

For the adjoint operator, the following equalities are valid:(
A∗ − λi

)
ψimi = 0,

(
A∗ − λi

)
ψij = ψij+1, 1 6 j 6 mi − 1,

ψij(0) = e1, ψ
i
j ∈ D(A∗), 1 6 j 6 mi.
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For the simple eigenvalues, we have:

(A− λn)φn = 0,
(
A∗ − λn

)
ψn = 0, for n ∈ Z,

φn(0) = ψn(0) = e1, φn ∈ D(A), ψn ∈ D(A∗).

Moreover, the following biorthogonality conditions hold:(
φij, ψn

)
= 0,

(
φn, ψ

i
j

)
= 0, (φk, ψn) = 0,(

φij, ψ
k
l

)
= 0, if i 6= k or j 6= l,

ρij =
(
φij, ψ

i
j

)
, i = 1, . . . , N, j = 1, . . . ,mi,

ρn = (φn, ψn) , n ∈ Z.
We represent the initial state as the series:

D =
N∑
i=1

mi∑
j=1

dijφ
i
j(x) +

∑
n∈Z

dnφn(x), (4.8)

and search for the solution to (4.7) in the form:(
u

v

)
(x, t) =

N∑
i=1

mi∑
j=1

cij(t)φ
i
j(x) +

∑
n∈Z

cn(t)φn(x).

Using the method of moments, we can derive the system of ODe’s for cij, i ∈ {1, . . . , N},
j ∈ {1, . . . ,mi}, cn, n ∈ Z, solving which we obtain:

cij(t) = eλ
it

[
dij + dij+1t+ dij+2

t2

2
+ . . .+ dimi

tmi−j

(mi − j)!

]
, cn(t) = dne

λnt.

Notice that the response {v(0, t), v(1, t)} has a form depicted in (1.1):

v(0, t) =
N∑
i=1

eλ
ita0i (t) +

∑
n∈Z

eλntdn (φn(0))2 , (4.9)

v(1, t) =
N∑
i=1

eλ
ita1i (t) +

∑
n∈Z

eλntdn (φn(1))2 , (4.10)

where the coefficients of a0i (t) =
∑mi−1

k=0 αikt
k are given by

αi0 =

mi∑
l=1

dil
(
φil(0)

)
2
, αi1 =

mi∑
l=2

dil
(
φil−1(0)

)
2
, αi2 =

1

2

mi∑
l=3

dil
(
φil−2(0)

)
2
,

. . . , αik =
1

k!

mi∑
l=k+1

dil
(
φil−k(0)

)
2
, . . . αimi−1 =

1

(mi − 1)!
dimi

(
φi1(0)

)
2
.

The coefficients a1i (t), i = 1, . . . , N are defined by the similar formulas.
We assume that the initial state D is generic. Introducing the notation U :=

(
u
v

)
, we

consider the dynamical system with the boundary control f ∈ L2(R+):
Ut − AU = 0, 0 6 x 6 1, t > 0,

u(0, t) = f(t), u(1, t) = 0, t > 0,

U(x, 0) = 0.

It is not difficult to show that this system is exactly controllable in time T ≥ 2. This implies
(see [5]) that the family

⋃N
i=1{eλ

it, . . . , tmi−1eλ
it} ∪ {eλnt}n∈Z forms a Riesz basis in a closure
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of its linear span in L2((0, T );C). So we can apply the method from the second sections to
recover λi, mi, coefficients of polynomials a0,1i (t) i = 1, . . . , N, λn, n ∈ Z. The latter allows
one to extend the inverse data R(t) to all values of t ∈ R by formulas (4.9), (4.10). This is
important for the solution of the identification problem, see [20].
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