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In this report we discuss the problem of approximating nonlinear delta-interactions in dimensions one and
three with regular, local or non-local nonlinearities. Concerning the one dimensional case, we discuss a recent
result proved in [10], on the derivation of nonlinear delta-interactions as limit of scaled, local nonlinearities.
For the three dimensional case, we consider an equation with scaled, non-local nonlinearity. We conjecture
that such an equation approximates the nonlinear delta-interaction, and give an heuristic argument to
support our conjecture.
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1. Introduction

Point interactions in quantum mechanics describe the dynamics of particles in inter-
action with potentials supported on a (finite or infinite) set of points. In dimension one, they
are quite easily understood as a limit of short range potentials and they have been a subject
of study since the very early years of quantum mechanics, a most well-known application
is the Kronig-Penney model [17], which describes the dynamics of electrons in crystals. In
higher dimensions, the first attempts to use point interaction came from nuclear physics,
to describe the short range interactions between nucleons. It was found that to define a
potential supported in one point in dimension larger than one is a subtler and less intuitive
matter. Indeed, a rigorous mathematical definition of point potentials in dimension three
was achieved only in the 1960’s with the work of Berezin and Faddeev [7].

At a formal level the Hamiltonian describing a particle in a potential supported by
points can be written as: Hα = −∆ +

∑
j αjδyj , where α = {αj} is a set of assigned real

constants, Y = {yj} is a fixed set of points in Rd, and δyj is the Dirac delta-distribution
centered in yj. For this reason, Hα is also referred to as delta-interaction. For a thorough
discussion on the Hamiltonian Hα see [6], the monograph also includes an historical overview
of the topic and an appendix with an update on the progresses in the area.

The subject of this report is the Schrödinger equation associated with a nonlinear
version of the Hamiltonian Hα in which the constants αj depend on the state of the system.
Such an equation describes the propagation of a wave function in a medium whose response
is nonlinear only in some isolated points. The question that we want to address is whether
the solution of the equation with point-like nonlinearities is approximated by the solution of
an equation with smooth nonlinear terms.

We shall focus attention only on the one and three dimensional cases. They will be
discussed separately, with the related applications and literature, in Sec. 2 and 3 respectively.
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In dimension one, a solution to the approximating problem was given in [10]. Here
we shall briefly discuss the result and give a sketch of the proof, we refer to [10] for the
details.

In dimension three , the problem is still open. Here we shall exhibit an equation that
we conjecture to approximate the nonlinear delta-interaction, and give an heuristic argument
to support our conjecture.

To the best of our knowledge very little is known about the two dimensional case.
Also the correct definition of the limit problem, and the study of the well-posedness, is not
yet done. In dimension four or higher, instead, the problem cannot be set up because is not
possible to define the Hamiltonian Hα, see [6].

In what follows we shall construct the approximating equation by introducing a small
scaling parameter that will be denoted by ε. We shall denote by c a generic positive constant
whose value may change from line to line. The constant c may depend on the parameters
entering the equations and on the initial data, but in no case c will depend on the scaling
parameter.

2. Nonlinear delta-interactions in dimension one

In this section we shall present a review on the Schrödinger equation with delta-like
nonlinearities concentrated in a fixed set of points in dimension one. We shall recall the
definition of the equation and the basic results about its well-posedness, this part is a survey
of the works [4, 5] and [16]. Then we shall state the main result of [10] on the derivation of
the equation as the limit of Schrödinger equations with spatially non-homogeneous scaled
nonlinearity, and discuss the basic ideas behind the proof. We shall also mention a different
approximation method based on non-local smoothed nonlinearities, this method was used
in [16] as an intermediate step in the proof of the well-posedness of the limit equation.

To begin, it is worth recalling the definition of the operator Hα in dimension one.

The domain of the self-adjoint operator Hα is

D(Hα) = {ψ ∈ H2(R\Y ) ∩H1(R) : ψ′(y+j )− ψ′(y−j ) = αjψ(yj)}. (1)

The operator Hα acts on the elements in its domain as the Laplacian, everywhere, except
that in the points yj, i.e.,

Hαψ = −ψ′′ ∀x 6= yj, j = 1, ..., N (2)

for any ψ ∈ D(Hα).

The form domain of Hα does not depend on the parameters αj and coincides with
H1(R).

To give a precise definition of the nonlinear dynamics in which we are interested,
we start with a discussion on the non-autonomous Hamiltonian Hα(t), for which we let the
parameters αj depend on the time variable t. Such Hamiltonians are interesting on their
own both from the physical and mathematical point of view, see, e.g., [15,19] and references
therein.

When αj(t) are assigned real valued functions of time, the domain D(Hα(t)) changes
in time as well. In particular, if ψ(t) ∈ D(Hα(t)), then ψ(t) must satisfy the time dependent
jump conditions ψ′(t, y+j ) − ψ′(t, y−j ) = αj(t)ψ(t, yj). Conversely, the form domain of Hα(t)

does not depend on t and coincides with H1(R).
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Consider the Cauchy problem i
d

dt
ψ(t) = Hα(t)ψ(t)

ψ|t=0 = ψ0

(3)

The weak solutions of (3) are the solutions of the associated integral equation

ψ(t, x) = (U(t) ∗ ψ0)(x)− i
N∑
j=1

∫ t

0

dsU(t− s, x− yj)αj(s)ψ(s, yj), (4)

where U(t) is the unitary evolution group associated to the free Laplacian in dimension one,
its explicit expression is given by

U(t, x) =
ei

x2

4t

(4πit)1/2
.

The solutions of (4) belong to the domain of Hα(t) only under suitable assumptions
on the initial datum and on the regularity of the functions αj(t). For a discussion on this
problem we refer to the works [15,19].

From (4), it is clear that the solution ψ(t, x) is fully determined from the quantities
ψ(t, yj), j = 1, ..., N . Then, by evaluating the equation (4) in yk, k = 1, ..., N , the problem
of finding ψ(t, x) can be reduced to solve a system of N coupled Volterra equations for the
functions ψ(t, yk). This fact will also be used in the analysis of the nonlinear problem.

To define the nonlinear delta-interactions we use the weak formulation (4) and mimic
the nonlinear flow on it by letting αj(t)→ αj(|ψ(t, yj)|2). In this way we give a weak formu-

lation of the problem given by the equation i∂tψ = −∂2xxψ +
∑N

j=1 αj(|ψ(t, yj)|2) δyj ψ with

initial datum ψ0. We remark that the choice of the nonlinearity αj(|ψ(t, yj)|2) guarantees that
the equation is invariant under phase multiplication and that the nonlinearity is local; strong
solutions should satisfy the jump condition ψ′(t, y+j )− ψ′(t, y−j ) = αj(|ψ(t, yj)|2)ψ(t, yj).

We shall follow [4, 5] and consider only power-type nonlinearities, i.e., αj(z) = γjz
µj

for some real constants γj, and µj > 0, but more general nonlinearities could be considered,
see, e.g., [16]. Our model nonlinear delta-interaction is then defined by the integral equation

ψ(t, x) = (U(t) ∗ ψ0)(x)− i
N∑
j=1

γj

∫ t

0

dsU(t− s, x− yj)|ψ(s, yj)|2µjψ(s, yj). (5)

This is a weak formulation of the problem
i
∂

∂t
ψ(t, x) = − ∂2

∂x2
ψ(t, x) +

N∑
j=1

γj δyj |ψ(t, yj)|2µjψ(t, x)

ψ(0, x) = ψ0(x).

Nonlinear point interactions of this form have been used in solid state physics, see,
e.g., [8,18] (and references therein), and, more recently, to model nonlinear periodic systems,
such as Bose-Einstein condensates trapped into optical lattices, see [14].

As for the time dependent delta-interactions, we do not address here the problem
of showing under what conditions on γj, µj and ψ0, the solution of (5) satisfies the jump
condition ψ′(t, y+j ) − ψ′(t, y−j ) = γj|ψ(t, yj)|2µjψ(t, yj). Instead we take initial data in the

form domain, H1(R), and discuss the well-posedness and the approximation problem in
H1(R).
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We start by recalling that global well-posedness of (5) for initial data in H1(R) and
under the condition that

µj < 1 if γj < 0 (6)

was proved in [5] (see also [16] for different kind of nonlinearities).
The proof of global well-posedness as given in [5] follows a standard scheme: first prove

local well-posedness; then show that there exist some conserved quantities; finally, extend the
well-posedness to an arbitrarily large time T by exploiting the conserved quantities together
with results on the existence of global solutions for the Volterra equations. We shall not
comment on the first step of the proof, the analysis of the local well-posedness. For the
purposes of this report it is enough to discuss the conservation laws and how they affect the
proof of the global well-posedness, the discussion will make clear where the condition (6)
plays a role.

For any initial state in H1(R), there exist two quantities which are conserved by the
nonlinear flow (5): the L2-norm (also referred to as mass), and the energy

E[ψ] = ‖ψ′‖2 +
N∑
j=1

γj
µj + 1

|ψ(yj)|2µj+2.

Then, if ψ(t) is the solution of (5) with ψ0 ∈ H1(R), one has that ‖ψ(t)‖2 = ‖ψ0‖2 and
E[ψ(t)] = E[ψ0].

One main issue in the proof of the global well-posedness is to prove that the H1-norm
of the solution does not blow-up in finite time, i.e., that there does not exist T such that
lim supt→T ‖ψ(t)‖H1 <∞.

From the conservation of mass, proving that blow-up does not occur is reduced to
prove that the kinetic energy ‖ψ′(t)‖2 does not blow-up in finite time.

If γj > 0 for all j, the conservation of the energy immediately implies that ‖ψ′(t)‖ 6 c
(as well as |ψ(t, yj)| 6 c). Then no restriction on the power of the nonlinearity is needed.

If for some j, γj < 0, then the conservation of the energy alone is not enough to
guarantee that ‖ψ′(t)‖ stays bounded. One needs to be sure that in the energy the growth of
‖ψ′(t)‖ cannot be compensated by the negative term

∑
j:γj<0

γj
µj+1
|ψ(t, yj)|2. This is achieved

by using the well known Gagliardo-Nirenberg inequality

‖ψ‖∞ 6 c‖ψ′‖
1
2‖ψ‖

1
2 . (7)

Inequality (7), together with the energy and mass conservation, imply

E[ψ0] = E[ψ(t)] = ‖ψ′(t)‖2 +
∑
j:γj>0

γj
µj + 1

|ψ(t, yj)|2µj+2 −
∑
j:γj<0

|γj|
µj + 1

|ψ(t, yj)|2µj+2

> ‖ψ′(t)‖2 − c
∑
j:γj<0

‖ψ′(t)‖µj+1.
(8)

The bound (8) makes clear where the condition (6) comes from: if µj < 1 for all the j’s such
that γj < 0, then the inequality (8) implies that ‖ψ′(t)‖ 6 c; otherwise the negative term at
the r.h.s. dominates for ‖ψ′(t)‖ large, and the inequality (8) does not imply that ‖ψ′(t)‖ is
bounded.

We note that in [5], it is shown that for N = 1 the condition (6) is indeed sharp.
In the sense that for µ ≡ µ1 > 1, it is possible to find an initial datum ψ0 ∈ H1(R) such
that there exists tc < ∞ for which lim supt→tc ‖ψ(t)‖H1(R) = ∞, i.e., the solution blows-up
in finite time.
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2.1. Point-like limit of scaled spatially non-homogeneous nonlinearities in
dimension one

Here we discuss the approximating equation used in [10] and give a sketch of the
proof of the convergence of the solutions.

For any ε > 0, consider the nonlinear flow

ψε(t, x) = (U(t) ∗ ψ0)(x)− i
N∑
j=1

∫ t

0

ds
(
U(t− s) ∗ V ε

j (· − yj)|ψε(s)|2µjψε(s)
)
(x) (9)

where

V ε
j (x) =

1

ε
Vj

(x
ε

)
with Vj ∈ L1(R, (1 + |x|)dx) ∩ L∞(R) (10)

and µj > 0.
We remark that Eq. (9) is a weak formulation of the Cauchy problem

i
∂

∂t
ψε(t, x) = − ∂2

∂x2
ψε(t, x) +

N∑
j=1

V ε
j (x− yj)|ψε(t, x)|2µjψε(t, x)

ψε(0, x) = ψ0(x)

(11)

This describes a situation in which there is a spacial inhomogeneity of the response of the
medium to the wave function propagation. The regions in which the response is nonlinear
are supported on intervals of length of order ε around the points yj.

Before discussing the convergence of the solutions of Eq. (9) to the solutions of Eq.
(5) we shall comment on the well-posedness of (9). Under the assumption (10), Corollary
6.1.2 of [11] applies, so that, for any ε > 0, one has global existence of strong H1-solutions for
every initial datum ψ0 ∈ H1(R) for any µj > 0 if Vj > 0 (defocusing case) and for 0 < µj < 2
if Vj is negative in some open interval (for µj = 2, the critical case, one has global existence
for small data, see Remark 6.1.3 of [11]).

As for the limit problem (5), to prove global well-posedness in H1 one uses the fact
that there exist two conserved quantities: the L2-norm (mass) and the energy

Eε[ψ] = ‖ψ′‖2 +
N∑
j=1

1

µj + 1

∫
R
V ε
j (y − yj)|ψ(y)|2µ+2dy.

Precisely one has that, for any ψ0 ∈ H1(R), the solution ψε(t) of (9) is such that:

‖ψε(t)‖2 = ‖ψ0‖2 and E[ψε(t)] = E[ψ0].

From the mass conservation, to prove that the H1-norm of ψε(t) does not blow-up in finite
time, one needs to show that the quantity ‖ψε′(t)‖ stays bounded for any t. This is achieved
by using the following argument, write Vj as the sum of its positive and negative part,
Vj = Vj,+ − Vj,−, with Vj,+ > 0 and Vj,− > 0. Then, by the Gagliardo-Nirenberg inequality
(7),

1

µj + 1

∫
R
V ε
j (y − yj)|ψε(y)|2µj+2dy =

1

µj + 1

∫
R

1

ε
Vj

(y − yj
ε

)
|ψε(y)|2µj+2dy

> − 1

µj + 1

∫
R

1

ε
Vj,−

(y − yj
ε

)
|ψε(y)|2µj+2dy

> −c
ε
‖ψε‖2µj∞

∫
R
|ψε(y)|2dy > −c

ε
‖ψε′‖µj‖ψε‖2
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We denote by K ⊆ {1, ..., N} the set of indices j such that Vj is negative in some open
interval. Then by mass and energy conservation, and the inequality above, one has that,

Eε[ψ0] = Eε[ψε(t)] > ‖ψε′(t)‖2 − c

ε

∑
j∈K

‖ψε′(t)‖µj . (12)

As a consequence, one has ‖ψε′(t)‖ 6 Cε if µj < 2 for all j ∈ K. We remark that the
argument used above gives a bound on ‖ψε′(t)‖ which is not uniform in ε. The constant
Cε depends on ε because ε appears at the denominator of c in Eq. (12). This is enough to
obtain global well-posedness for any ε > 0 but it is not enough to prove the convergence
result. For that we shall need a bound on ‖ψε′(t)‖ which is uniform in ε, we shall be able to
obtain it at the cost of a more restrictive constraint on µj.

Now we are ready to state the main result of [10].

Theorem 2.1. For all j = 1, ..., N , take V ε
j as in (10) and 0 < µj < 1 if Vj is negative in

some open interval. For any ψ0 ∈ H1(R), let ψ be the solution of Eq. (5) with γj =
∫
R Vjdx

and ψε be the solution of Eq. (9). Then, for any T > 0,

lim
ε→0

sup
t∈[0,T ]

‖ψ(t)− ψε(t)‖H1(R) = 0.

Outline of the proof of Th. 2.1. We shall discuss only the main ideas behind the proof of
Th. (2.1), for the details we refer to [10]. We divide the proof in four steps.

Step 1. The first step is to obtain a bound for ‖ψε′(t)‖ which is uniform in ε. This
can be achieved at the cost of a more restrictive constraint on the power of the nonlinear
term, precisely we shall need to assume that µj < 1, for all j ∈ K. Writing, as in the proof
of the well-posedness of Eq. (9), Vj as the sum of its positive and negative parts, and by
assumption (10) and Gagliardo-Nirenberg inequality, we have that

1

µj + 1

∫
R
V ε
j (y − yj)|ψε(y)|2µj+2dy =

1

µj + 1

∫
R

1

ε
Vj

(y − yj
ε

)
|ψε(y)|2µj+2dy

> − 1

µj + 1

∫
R
Vj,−(y)|ψε(yj + εy)|2µj+2dy

> −c‖ψε′‖µj+1

The latter bound together with the conservation of the energy, gives

Eε[ψ0] = Eε[ψε(t)] > ‖ψε′(t)‖2 − c
∑
j∈K

‖ψε′(t)‖µj+1.

Since

sup
ε∈[0,1]

Eε[ψ0] 6 ‖ψ′0‖2 + ‖ψ0‖2µ+2
∞

N∑
j=1

1

µj + 1

∫
R
dx Vj,+(x) ≡ K

we finally get the inequality:

‖ψε′(t)‖2 − c
∑
j∈K

‖ψε′(t)‖µj+1 6 K

which implies ‖ψε′(t)‖ 6 c if µj < 1 for all j ∈ K and t > 0, by the Gagliardo-Nirenberg
inequality, this also implies the bound ‖ψε(t)‖∞ 6 c.

Step 2. The solution of the limit problem (5) is completely determined by the values
ψ(t, yj), j = 1, ..., N . Then to find ψ(t, x) we must solve first the system of coupled nonlinear
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Volterra equations in the variables ψ(t, yk).

ψ(t, yk) = (U(t) ∗ ψ0)(yk)− i
N∑
j=1

γj

∫ t

0

dsU(t− s, yk − yj)|ψ(s, yj)|2µjψ(s, yj), (13)

k = 1, ..., N .
For this reason in the second step of the proof we address the problem of showing the

convergence of ψε(t, yk) to ψ(t, yk), for all k = 1, ..., N . To this end, we compute ψε(t, yk) by
using Eq. (9), we get

ψε(t, yk) = (U(t) ∗ ψ0)(yk)− i
N∑
j=1

∫ t

0

ds
(
U(t− s) ∗ V ε

j (· − yj)|ψε(s)|2µjψε(s)
)
(yk).

We rewrite the latter equation in a more explicit form as

ψε(t, yk) = (U(t) ∗ ψ0)(yk)

− i
N∑
j=1

∫ t

0

ds

∫
R
U(t− s, yk − yj − εy)Vj(y) |ψε(s, yj + εy)|2µjψε(s, yj + εy)dy. (14)

Letting ε→ 0 at the r.h.s. of the latter equation one would expect that

ψε(t, yk) ' (U(t) ∗ ψ0)(yk)− i
N∑
j=1

∫
R
Vj(y)dy

∫ t

0

ds U(t− s, yk − yj) |ψε(s, yj)|2µjψε(s, yj).

By comparison with Eq. (13) one notices that ψε(t, yk) approximatively satisfies the same
equation as ψ(t, yk) if γj =

∫
R Vj(y)dy. To make precise this idea we subtract Eq. (13)

from (14). By adding and subtracting suitable terms at the r.h.s. (using the fact that
γj =

∫
R Vj(y)dy), we end up with the identity

ψε(t, yk)− ψ(t, yk) =

− i
N∑
j=1

γj

∫ t

0

ds U(t− s, yk − yj)
(
|ψε(s, yj)|2µjψε(s, yj)− |ψ(s, yj)|2µjψ(s, yj)

)
+Rε(t)

whereRε(t) is a remainder that satisfies the bound supt∈[0,T ] |Rε(t)| 6 cεδ for any 0 < δ < 1/2
and T > 0, we refer to [10] for the details. Here we use the a priori bounds ‖ψ(t)‖∞ 6 c and
‖ψε(t)‖∞ 6 c.

From the bound for the remainder Rε(t), the explicit expression of U(t, x), the fact
that ||a|2µa − |b|2µb| 6 (|a|2µ + |b|2µ)|a − b| for any a, b ∈ C, and the a priori bounds
‖ψ(t)‖∞ 6 c and ‖ψε(t)‖∞ 6 c, we get the inequality:

|ψε(t, yk)− ψ(t, yk)| 6 c

N∑
j=1

∫ t

0

ds
1√
t− s

|ψε(s, yj)− ψ(s, yj)|+ cεδ.

By a standard argument in the theory of Abel integral operators, we conclude that

sup
t∈[0,T ]

|ψε(t, yj)− ψ(t, yj)| 6 cεδ (15)

for any 0 < δ < 1/2 and T > 0.
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Step 3. Now we can proceed to the proof of the convergence in L2-norm, precisely
we shall show that

sup
t∈[0,T ]

‖ψε(t)− ψ(t)‖ 6 cεδ (16)

for any 0 < δ < 1/2 and T > 0.
We rewrite the nonlinear Eq. (9) explicitly, as

ψε(t, x) = (U(t) ∗ ψ0)(x)

− i
N∑
j=1

∫ t

0

ds

∫
R
U(t− s, x− yj − εy)Vj(y) |ψε(s, yj + εy)|2µjψε(s, yj + εy)dy. (17)

As in Step 2, letting ε→ 0 at the r.h.s. we see that, if γj =
∫
R Vjdx, ψε(t, x) approximately

satisfies the same equation as ψ(t, x). To make precise this argument we subtract (17) from
(5) and get the identity

ψε(t, x)− ψ(t, x) =

− i
N∑
j=1

γk

∫ t

0

dsU(t− s, x− yj)
(
|ψε(s, yj)|2µjψε(s, yj)− |ψ(s, yj)|2µjψ(s, yj)

)
+ T ε(t, x).

where T ε(t, x) is a remainder that satisfies the bound supt∈[0,T ] ‖T ε(t)‖ 6 cεδ for any 0 <

δ < 1/2 and T > 0 (see [10] for the details). Taking the L2-norm of ψε(t, x) − ψ(t, x) we
obtain

sup
t∈[0,T ]

‖ψε(t)− ψ(t)‖

6
N∑
j=1

|γj| sup
t∈[0,T ]

∥∥∥∥∫ t

0

ds U(t− s, · − yj)
(
|ψε(s, yj)|2µjψε(s, yj)− |ψ(s, yj)|2µjψ(s, yj)

)∥∥∥∥+ cεδ

6c
N∑
j=1

sup
s∈[0,T ]

∣∣|ψε(s, yj)|2µjψε(s, yj)− |ψ(s, yj)|2µjψ(s, yj)
∣∣ + cεδ

6c
N∑
j=1

sup
s∈[0,T ]

|ψε(s, yj)− ψ(s, yj)| + cεδ 6 cεδ.

In the second inequality we used the bound

sup
t∈[0,T ]

∥∥∥∥∫ t

0

U(t− s, ·)f(s) ds

∥∥∥∥ 6 c sup
s∈[0,T ]

|f(s)|.

In the third inequality we used ||a|2µa−|b|2µb| 6 (|a|2µ+ |b|2µ)|a− b| and the a priori bounds
‖ψ(t)‖∞ 6 c, ‖ψε(t)‖∞ 6 c. And finally we used the bound (15). This concludes the proof
of (16).

Step 4. We are left to prove the convergence in H1. Since the bound ‖ψε′(t)‖ 6 c
holds true, there exists a subsequence, that we denote in the same way, such that ψε(t)
converges weakly to φ(t) in H1(R). Recalling that ψε(t)→ ψ(t) in L2(R) we conclude that
φ(t) = ψ(t) a.e.. Moreover, since:

‖ψε(t)− ψ(t)‖2H1 = ‖ψε(t)‖2H1 + ‖ψ(t)‖2H1 − 2 Re (ψε(t), ψ(t))H1 ,

it is sufficient to prove that
lim
ε→0
‖ψε(t)‖2H1 = ‖ψ(t)‖2H1 .
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As in Step 3 we proved the convergence in L2, we are left to show that

lim
ε→0

sup
t∈[0,T ]

∣∣‖ψε′(t)‖2 − ‖ψ′(t)‖2∣∣ = 0. (18)

From the conservation of the energy we obtain

‖ψε′(t)‖2 = Eε[ψ0]−
N∑
j=1

1

µj + 1

∫
dxV ε

j (x− yj)|ψε(t, x)|2µj+2

‖ψ′(t)‖2 = E[ψ0]−
N∑
j=1

γj
1

µj + 1
|ψ(t, yj)|2µj+2.

Since limε→0E
ε[ψ0] = E[ψ0], we have

lim
ε→0

sup
t∈[0,T ]

∣∣‖ψε′(t)‖2 − ‖ψ′(t)‖2∣∣
= lim

ε→0
sup
t∈[0,T ]

∣∣∣∣∣
N∑
j=1

1

µj + 1

(∫
R
Vj(x)|ψε(t, yj + εx)|2µj+2dx− γj|ψ(t, yj)|2µj+2

)∣∣∣∣∣ . (19)

By Step 2 we have limε→0 supt∈[0,T ] ||ψε(t, yj)|2µj+2 − |ψ(t, yj)|2µj+2| = 0. Moreover, since

γj =
∫
R Vjdx, it follows that∣∣∣∣∫

R
Vj(x)|ψε(t, yj + εx)|2µj+2dx− γj|ψε(t, yj)|2µj+2

∣∣∣∣
=

∣∣∣∣ ∫
R
Vj(x)

(
|ψε(t, yj + εx)|2µj+2 − |ψε(t, yj)|2µj+2

)
dx

∣∣∣∣
6 c
√
ε
∥∥|ψε(t)|2µk+2

∥∥
H1

∫
R
|Vj(x)|

√
|x|dx 6 c

√
ε.

The latter bound, together with the equality (19), give (18), and this concludes the proof of
Th. 2.1. �

2.2. Remarks on the one dimensional problem

We conclude the discussion on the one dimensional case with several remarks.

We note that the approximating problem (11) imitates the approximation result
on the linear delta-interactions. Indeed it is well known, see [6], that the Hamiltonian
Hε = −∆ +

∑
j V

ε
j (· − yj), with V ε

j defined as in Eq. (10), converges in the norm resolvent

sense to Hα, defined by (1) - (2), with αj =
∫
R Vjdx. Recall that this also implies the

convergence of associated unitary groups.
For the convergence of the linear problem one only needs to assume Vj ∈ L1(R).

Also, the well-posedness result for Eq. (9) requires only Vj ∈ L1(R)∩L∞(R) (see [11]). This
suggests that the assumption Vj ∈ L1(R, (1 + |x|)dx) ∩ L∞(R) in Th. (2.1) is not optimal.

Concerning the assumptions on Vj, we also note that the limit problem (5) is well
posed for any µj > 0 if γj > 0. Since γj =

∫
R Vjdx, one would expect the convergence result

to hold true for any µj > 0 if
∫
R Vjdx > 0. Nevertheless, the argument used to derive the

uniform bound, ‖ψε′(t)‖ 6 c (step 1 in the proof of Th. 2.1), requires an upper bound on µj
whenever Vj is negative in some open interval. The same problem appears in the proof of
the well-posedness of Eq. (9). This is a consequence of the fact that the argument neglects
the positive part of Vj.
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In [16], the authors describe a different type of approximating problem which uses a
non-local nonlinearity. They consider the equation

i
∂

∂t
ψε(t, x) = − ∂2

∂x2
ψε(t, x) + ρε(x)α(|〈ρε, ψε(t)〉|2)〈ρε, ψε(t)〉, (20)

where ρε is a function approximating the Dirac delta-distribution (i.e., ρε(x) = ρ(x/ε)/ε
with ρ ∈ C∞0 [−1, 1], ρ > 0, and

∫
R ρdx = 1) and α(z) is a nonlinear function.

Under suitable assumptions of the nonlinearity, they prove that, for any initial data
in H1(R), the solution of Eq. (20), converges to the solution of the equation i∂tψ = −∂2xxψ+
α(|ψ(t, 0)|2) δ0 ψ.

3. Nonlinear delta-interactions in dimension three

This section is devoted to the analysis of the approximation problem for the Schrödinger
equation with nonlinear delta-interactions in dimension three. We will discuss a conjecture
on an approximating problem with non-local nonlinearity. For the sake of simplicity we shall
restrict the analysis to the case N = 1. For a discussion on the generalization of the limit
model to N > 1 we refer to [1–3].

We shall start by recalling several results from [1] on the well-posedness of the limit
model. Since we are setting N = 1, we use the notation α1 ≡ α, and set y1 ≡ 0, i.e., we put
the center of interaction in the origin. We set

G0(x) =
1

4π|x|
.

In dimension three the operator formally written as Hα = −∆ + αδ0 is defined by

D(Hα) =

{
ψ ∈ L2(R3) : ψ = φ+ qG0, φ ∈ H2

loc(R3),

∇φ ∈ L2(R3), ∆φ ∈ L2(R3), q ∈ C,

lim
x→0

(ψ(x)− qG0(x)) = αq

} (21)

and
Hαψ = −∆ψ ∀x 6= 0. (22)

The quantity q is referred to as charge of the wave function ψ. We remark that by
the definition of D(Hα), in general one has φ /∈ H2(R3). This is due to the decomposition
ψ = φ + qG0 and to the fact that G0 /∈ L2(R3). Whenever q = 0, one has that ψ = φ, and
ψ ∈ H2(R) with ψ(0) = 0.

The form domain of the operator Hα is

V =

{
ψ ∈ L2(R3) : ψ = φ+ qG0, φ ∈ H1

loc(R3), ∇φ ∈ L2(R3), q ∈ C
}

As for the one dimensional case the form domain does not depend on α. Yet, we
note one main difference with the one dimensional case: V does not coincide with H1(R),
the form domain of the free Laplacian (−∆, H2(R3)). Then Hα is not a small perturbation,
in the sense of quadratic forms, of −∆.

As for the one dimensional case, to give a precise definition of the nonlinear dynamics
we are interested in, we start with a discussion on the non-autonomous Hamiltonian Hα(t),
where α(t) is an assigned function. Such Hamiltonians have been studied, for example, in
relation with the ionization problem (see, e.g., [12, 13] and references therein).
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Consider the Cauchy problem (3) in dimension three. From [20], one obtains its solu-
tion in terms of the time dependent charge q(t). The charge satisfies the Volterra equation:

q(t)

4
√
πi

+

∫ t

0

ds
α(s)q(s)√
t− s

=

∫ t

0

ds
(U(s) ∗ ψ0)(0)√

t− s
, (23)

where U(t) is the unitary group generated by the free Laplacian in dimension three. Its
explicit expression is given by

U(t,x) =
ei

|x|2
4t

(4πit)3/2
,

while the solution ψ(t) is completely defined by q(t) through the equation

ψ(t,x) = (U(t) ∗ ψ0)(x) + i

∫ t

0

dsU(t− s,x)q(s). (24)

The solutions defined by equations (23) - (24) belong to D(Hα(t)) only under certain as-
sumptions on the regularity of the function α(t) and on the initial state ψ0, see, e.g., [21]
and references therein for results in this direction.

To define a nonlinear delta-interaction in dimension three we let α(t)→ α(|q(t)|2) in
equation (23). Following [1], we restrict ourselves to power type nonlinearities, and, as for
the one dimensional case, we choose α(z) = γzµ, with γ ∈ R and µ > 0.

With this choice the linear Volterra equation (23) is replaced by the nonlinear one

q(t)

4
√
πi

+ γ

∫ t

0

ds
|q(s)|2µq(s)√

t− s
=

∫ t

0

ds
(U(s) ∗ ψ0)(0)√

t− s
. (25)

Equation (24) - (25), define our model for a nonlinear delta-interaction in dimension
three. We recall that, global well-posedness for the problem (24) - (25) in ψ0 ∈ V and under
the condition that µ < 1 if γ < 0 was proved in [1]. In the same paper, the authors also
prove that the nonlinear flow admits two conserved quantities: the L2-norm (mass) and the
energy

E[ψ] = ‖∇φ‖2 +
γ|q|2µ+2

µ+ 1
,

where ψ = φ+ qG0 ∈ V . So that, for any ψ0 ∈ V , if ψ(t) is the solution of the problem (24)
- (25), one has ‖ψ(t)‖2 = ‖ψ0‖2 and E[ψ(t)] = E[ψ0].

We remark that by the definition of the form domain of Hα, ψ ∈ V does not imply
ψ ∈ H1(R3), and the well-posedness in V must be understood in the sense that ‖∇φ(t)‖ and
|q(t)| stay bounded.

We also remark that in [1], the authors consider the more general case of finitely many
nonlinear delta-interactions, N > 1. The conditions on the initial state which guarantee
ψ(t) ∈ D(Hα(|q(t)|2)) are also discussed in [1]. We refer to [2] for the analysis of the blow-
up problem and to [3] for the study of the stability/instability properties of the stationary
solutions of (24) - (25).

3.1. Point-like limit of scaled non-local nonlinearities in dimension three

In this section we discuss a conjecture about the approximation problem for (24)
- (25)through scaled non-local nonlinear flows. We remark that in dimension three the
problem of finding an approximation of the nonlinear flow (24) - (25) is subtler than the
corresponding problem in dimension one. This is not surprising, as also the problem of
finding a regular approximation of the (linear) operator Hα in dimension three requires
non-trivial renormalization procedures (see, [6]).
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Let ρ be such that ρ ∈ C∞0 (R3), ρ > 0, and
∫
R3 ρdx = 1, then set ρε(x) = ρ(x/ε)/ε3,

so that ρε converges to the Dirac delta-distribution in dimension three.

We denote by ρ̃(k) and ρ̃ε(k) the Fourier transform of ρ and ρε respectively, by scaling
one has that ρ̃ε(k) = ρ̃(εk). Moreover, from

∫
R3 ρdx = 1, it follows that ρ̃(0) = 1.

We set M = 1
(2π)3

∫
R3 dk (ρ̃(k))2/|k|2 and consider the nonlinear flow (in weak form)

ψε(t,x) = (U(t) ∗ ψε0)(x)

− i ε
M

∫ t

0

ds(U(t− s) ∗ ρε)(x)

(
−1 + γ

ε2µ+1|〈ρε, ψε(s)〉|2µ

M2µ+1

)
〈ρε, ψε(s)〉. (26)

Note that we let the initial datum ψε0 to depend on ε as well. This is due to the fact
that we want to compare the solutions of Eq. (26) with the solution of (24) - (25). To do
that, one should consider the two nonlinear flows with the same initial datum. In dimension
three this is, in general, not possible, because problem (24) - (25) is naturally defined for
initial data in V , while problem (26) is naturally defined for initial data in H1(R3). For this
reason we let the initial datum in (26) to depend on ε, and assume that ψε0 converges to ψ0

in a suitable norm as ε→ 0.

To begin, it is also convenient to set γ > 0 (defocusing nonlinearity), this choice
simplifies some issues with the well-posedness, giving at once some useful bounds on relevant
quantities, and avoids further constraints on the power of the nonlinearity µ.

We remark that problem (26), is a weak formulation of i
∂

∂t
ψε(t,x) = −∆ψε(t,x) +

ε

M

(
−1 + γ

ε2µ+1|〈ρε, ψε(t)〉|2µ

M2µ+1

)
〈ρε, ψε(t)〉ρε(x)

ψε(0,x) = ψε0(x)

We also note that, also in this case, the nonlinear approximation problem is inspired
by the linear one. Indeed, it is easy prove that the (non-local) operator Hε = −∆ +
ε
M

(
−1 + α ε

M

)
〈ρε, ·〉ρε converges in norm resolvent sense to the operator Hα defined by (21)

- (22).

We conjecture that, for any ψ0 ∈ V and ψε0 ∈ H1(R3) that converges to ψ0 in a
suitable sense, the solution of Eq. (26) converges to the solution of (24) - (25).

We do not have yet a rigorous proof of this statement, but we are able to give an
heuristic argument to support the conjecture.

The basic idea is that the quantity qε(t) = ε
M
〈ρε, ψε(t)〉, should converge to the charge

q(t). Eq. (26), written in terms of qε(t), gives

ψε(t,x) = (U(t) ∗ ψε0)(x)− i
∫ t

0

ds(U(t− s) ∗ ρε)(x)
(
−1 + γ

ε

M
|qε(s)|2µ

)
qε(s). (27)

We recall that ρε → δ0, then (U(t − s) ∗ ρε)(x) → U(t − s,x). Assuming, moreover, that
U(t) ∗ ψε0 → U(t) ∗ ψ0, one expects that

ψε(t,x) ' (U(t) ∗ ψ0)(x) + i

∫ t

0

dsU(t− s,x)qε(s).

By comparison with Eq. (24), this suggests that, if qε(t) converges to q(t), then also ψε(t)
converges to ψ(t).
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To support the idea that qε(t) should converge to q(t) we proceed as follows. We take
the scalar product of Eq. (27) with ρε, using the definition of qε(t) we get the identity

M

ε
qε(t) = 〈ρε, U(t) ∗ ψε0〉 − i

∫ t

0

ds〈ρε, U(t− s) ∗ ρε〉
(
−1 + γ

ε

M
|qε(s)|2µ

)
qε(s). (28)

Let Kε(t) = 1
(2π)3

∫
R3 dk (ρ̃ε(k))2e−i|k|

2t/|k|2. By the definition of U(t) one has that

〈ρε, U(t) ∗ ρε〉 =
1

(2π)3

∫
R3

dk (ρ̃ε(k))2e−i|k|
2t =

i

(2π)3
d

dt

∫
R3

dk
(ρ̃ε(k))2e−i|k|

2t

|k|2
= i

d

dt
Kε(t).

Using the latter identity, written as 〈ρε, U(t − s) ∗ ρε〉 = −i d
ds
Kε(t − s), in (28), and by

integration by parts in s, we get

M

ε
qε(t) = 〈ρε, U(t) ∗ ψε0〉+

∫ t

0

dsKε(t− s) d
ds

[(
−1 + γ

ε

M
|qε(s)|2µ

)
qε(s)

]
−Kε(0)

(
−1 + γ

ε

M
|qε(t)|2µ

)
qε(t) +Kε(t)

(
−1 + γ

ε

M
|qε(0)|2µ

)
qε(0).

Using the identity Kε(0) = M/ε we see that M
ε
qε(t) cancels, so that, rearranging the terms,

we are left with

γ|qε(t)|2µqε(t) = 〈ρε, U(t) ∗ ψε0〉+

∫ t

0

dsKε(t− s) d
ds

[(
−1 + γ

ε

M
|qε(s)|2µ

)
qε(s)

]
+Kε(t)

(
−1 + γ

ε

M
|qε(0)|2µ

)
qε(0).

To recover an equation of the form (25), we multiply for 1√
τ−t and integrate in t for t ∈ [0, τ ].

We obtain

γ

∫ τ

0

dt
|qε(t)|2µqε(t)√

τ − t
=

∫ τ

0

dt
〈ρε, U(t) ∗ ψε0〉√

τ − t

+

∫ τ

0

dt
1√
τ − t

∫ t

0

dsKε(t− s) d
ds

[(
−1 + γ

ε

M
|qε(s)|2µ

)
qε(s)

]
+
(
−1 + γ

ε

M
|qε(0)|2µ

)
qε(0)

∫ τ

0

dt
Kε(t)√
τ − t

. (29)

The heuristic argument showing that qε(t) should converge to q(t) is based on the fact that

Kε(t)→ 1

(2π)3

∫
R3

dk
e−i|k|

2t

|k|2
=

1

4π
√
πi
√
t
, (30)

as ε→ 0. This suggests that Eq. (29) should be approximated by

γ

∫ τ

0

dt
|qε(t)|2µqε(t)√

τ − t
'
∫ τ

0

dt
〈ρε, U(t) ∗ ψε0〉√

τ − t

+
1

4π
√
πi

∫ τ

0

dt
1√
τ − t

∫ t

0

ds
1√
t− s

d

ds

[(
−1 + γ

ε

M
|qε(s)|2µ

)
qε(s)

]
+

1

4π
√
πi

(
−1 + γ

ε

M
|qε(0)|2µ

)
qε(0)

∫ τ

0

dt
1√
τ − t

1√
t
.
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In the second line of the equation above we exchange the integrals in t and s and use the
fact that

∫ τ
0
dt 1√

τ−t
1√
t−s1{t>s} = π, while in the third line we use

∫ τ
0
dt 1√

τ−t
1√
t

= π, to get

γ

∫ τ

0

dt
|qε(t)|2µqε(t)√

τ − t
'
∫ τ

0

dt
1√
τ − t

〈ρε, U(t) ∗ ψε0〉

+
1

4
√
πi

∫ τ

0

ds
d

ds

[(
−1 + γ

ε

M
|qε(s)|2µ

)
qε(s)

]
+

1

4
√
πi

(
−1 + γ

ε

M
|qε(0)|2µ

)
qε(0).

Performing the integral in s, and neglecting further terms of order ε, we finally end up with

γ

∫ τ

0

dt
|qε(t)|2µqε(t)√

τ − t
'
∫ τ

0

dt
〈ρε, U(t) ∗ ψε0〉√

τ − t
− qε(τ)

4
√
πi
.

Comparing the latter formula with Eq. (25), one sees that qε(t) satisfies approximatively
the same equation as q(t).

To make rigorous the heuristic argument described above is the goal of a forthcoming
work. One would expect that the right approach is to add and subtract to Kε, in Eq. (29),
its limit, given in formula (30), then prove that the remainder (the term containing the
difference between Kε and its limit) is small. One main issue with this approach is the
presence of the derivative of qε(s) in Eq. (29), which implies that the remainder depends on
q̇ε. The dependence of the reminder on q̇ε is unexpected, because the limit equation does
not involve the derivative of q, and difficult to treat, because it requires a bound on q̇ε. An
approach that avoids taking the derivative of qε would be preferable.

4. Conclusions

We addressed the problem of finding regular approximations of nonlinear delta-
interactions.

We showed that, in dimension one, it is possible to find both local (see [10]) and
non-local (see [16]) nonlinearities that converge to the limit problem. The convergence can
be rigorously proved for initial data in H1(R).

For what concerns the three dimensional problem, we suggested an approximation
through non-local nonlinearities. The convergence to the limit problem seems to be plausible
but it is not yet proved rigorously.

Several problems remain completely open and would deserve some attention. We
mention two of them which are strictly related. They concern the approximation of delta-
interactions in dimension one and three, through local nonlinearities in the presence of a
linear term with a zero energy resonance.

The approximation of Hα in dimension three through Hamiltonians with scaled po-
tentials is not as intuitive as in dimension one. We already noted that in dimension one the
operator −∆ + V (·/ε)/ε converges to Hα, with α =

∫
R V dx. One might then think that

also in dimension three, adding a delta-convergent function to the Laplacian would give an
operator that converges to Hα. This does not happen to be the case.

To define a sequence of Schrödinger operators that converge to Hα one has to choose
a potential V such that the operator H = −∆ + V has a zero energy resonance. That
means that there exists a function φ such that φ ∈ L2

loc(R3), ∇φ ∈ L2(R) and Hφ = 0 in
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the distributional sense. Assuming additionally, that V decays fast enough, one has that
(see [6])

Hε = −∆ +
1 + λε

ε2
V
( ·
ε

)
, (31)

where λ ∈ R converges (in norm resolvent sense) to Hα, with coupling constant α = −mλ,
where m is a positive constant that depends on V .

One may wonder whether letting λ→ λ(ψ) would allow to obtain a local approxima-
tion of the nonlinear delta-interaction in dimension three.

A similar problem can be formulated in dimension one. Assume that V decays fast
enough and that it is such that H = −∆ + V has a zero energy resonance, i.e., there exists
φ ∈ L∞(R), φ /∈ L2(R), such that −φ′′ + V φ = 0. Assume also that the resonance φ
is an even function. Then the operator Hε in (31), in dimension one, converges in norm
resolvent sense to Hα, defined in (1) - (2), with α = −m̃λ, where m̃ is a positive constant
which depends on V (see [9]). In this sense the problems of approximating Hα in dimension
one and three are similar. We remark that, in dimension one, also the convergence of the
operator −∆ + V (·/ε)/ε relies on the presence of a zero energy resonance of the operator
(−∆, H2(R)). In this case the resonance is just the constant function.

Also in the one dimensional case, one might expect that letting λ→ λ(ψ) in (31) will
allow one to construct an approximation of a nonlinear delta-interaction.
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no. 3, 477–500.

[2] Adami, R., Dell’Antonio, G., Figari, R., and Teta, A., Blow-up solutions for the Schrödinger equation in
dimension three with a concentrated nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004),
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