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1. Introduction

Wave transport in the nonlinear regime, described by nonlinear evolution equations,
such as the nonlinear Schrödinger, Korteweg de Vries and sine Gordon equations, has
attracted much attention in different areas of physics over the past five decades (see, e.g.
books [1] – [5]).

Recently, one can observe a growing interest in particle and wave transport in
branched, network type structures [6] – [13]. Such problem is of importance for different
topics in physics, such as hydrodynamics, acoustics, optics, cold atom physics and con-
densed matter physics. Soliton solutions and connection formulae were derived for simplest
graphs in the Ref. [6]. The problem of fast solitons on star graphs was treated in the
Ref. [7], where the estimates for the transmission and reflection coefficients were obtained
in the limit of very high velocities. The problem of soliton transmission and reflection
was studied in [9] by numerically solving the stationary NLSE on graphs. The dispersion
relations for linear and nonlinear Schrödinger equations on graphs were discussed in [10].
Ref. [11] treated the stationary NLSE in the context of scattering from nonlinear net-
works. The stationary NLSE with power focusing nonlinearity on star graphs was studied
in recent papers [7, 8], where the existence of nonlinear stationary states were shown for
δ−type boundary conditions. In [13], the exact analytical solutions of the stationary NLSE
for simplest graphs were obtained.

In this work, we treat time dependent NLSE on metric graphs by considering the
simplest topology, a star graph. Unlike the case of the NLSE on an interval, in the case of
the graph, the NLSE becomes a multicomponent equation, with the components related to
each other through the boundary conditions given at the graph vertex.

Our aim is to solve the (cubic) nonlinear Schrödinger equation on metric graphs.
The latter are systems consisting of bonds which are connected at the vertices [16] to a
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rule which is called the topology of a graph. The topology of a graph can be relayed in
terms of a so-called adjacency matrix, which can be written as [17]:

Cij = Cji =

{
1, if i and j are connected;
0, otherwise, i, j = 1, 2, . . . , V.

In the following, we consider the so-called primary star graph, consisting of three
bonds connected at single vertex. However, our results can be extended to any arbitrary
topology. Our approach is based on extending the method proposed by Fokas and its
solution for the NLSE on a finite interval [14]. In Refs. [14, 15], an effective method
allowing one to obtain a general solution for the NLSE on a finite interval [14] and on a
half-line [15] was developed. As it will be shown below, this method can be adapted to
the case of the NLSE on a metric graph. Thus, the problem we are going to solve is the
nonlinear Schrödinger equation on a graph with bonds bj ∼ (0, Lj), j = 1, 2, 3, which can
be written as:

i
∂

∂t
qj +

∂2

∂x2j
qj − 2λ|qj|2qj = 0, (1)

λ = ±1, j = 1, 2, 3, L1 < x1 < 0, 0 < x2,3 < L2,3, 0 < t < T.

The initial conditions are given as:

qj(xj, 0) = q0j(xj), j = 1, 2, 3, L1 < x1 < 0, 0 < x2,3 < L2,3, (2)

The following boundary conditions provide matching of the bonds at the vertex:

q1(0, t) = q2(0, t) = q3(0, t) = g0(t), 0 < t < T (3)

qj(Lj, t) = f0j(t), 0 < t < T, j = 1, 2, 3, (4)
∂

∂x1
q1(0, t) =

∂

∂x2
q2(0, t) +

∂

∂x3
q3(0, t), 0 < t < T (5)

Furthermore, we define the following functions:

g1j(t) =
∂

∂xj
qj(0, t), g1j(t) =

∂

∂xj
qj(Lj, t).

These functions are considered to be unknown and will be found subsequently.
The difference between Eq. (1) and with that treated in Ref. [14] is caused by bond

indices, j. In other words, Eq. (1) is a multicomponent equation in which each component
is related to others through the boundary conditions (3) – (5). As we will see below,
this makes it possible to rewrite most of the results derived in [14] for the case of metric
graphs.

2. Description of the approach

The method we are going to utilize includes three steps [14]. The first step consists
of Riemann-Hilbert (RH) problem formulation under the assumption of existence. Follow-
ing Ref. [14], we assume that there exists a smooth solution q(x, t) = {q1(x1, t), q2(x2, t),
q3(x3, t)}.

Applying the spectral analysis to the Lax pair, we write q(x, t) = {q1(x1, t), q2(x2, t),
q3(x3, t)} in terms of the solution of a 2 × 2-matrix RH problem defined in the complex
k-plane [14]. Such a problem is uniquely defined in terms of the spectral functions which
are given as:

{aj(k), bj(k)}, {Aj(k), Bj(k)}, {Aj(k),Bj(k)}. (6)
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These functions are defined in terms of the functions:

q0j(xj), {g0(t), g1j(t)}, {f0j(t), f1j(t)}, (7)

respectively. Here, the functions g0(t, g1j(t) and f1j(t) denote the unknown boundary
values for the solution to the NLSE and its derivatives (see Eqs. (3)).

Following Ref. [14], one can show that the spectral functions (6) are not indepen-
dent, but they satisfy the global relation:

(ajAj + λb̄je
2ikLjBj)Bj − (bjAj + āje

2ikLjBj)Aj = e4ik
2T c+j (k), k ∈ Cj, (8)

where c+j (k) has the same meaning as in [14].
The second step implies proof of the existence of the solution to the NLSE, as-

suming that the above spectral functions satisfy the global relation. The spectral func-
tions given in (6) can be written in terms of the (smooth) functions (7). We also define
q(x, t) = {q1(x1, t), q2(x2, t), q3(x3, t)} in terms of the solution of the RH problem formulated
in Step 1. Assuming that smooth functions g1j(t) and f1j(t) exist such that the spectral
functions (6) satisfy the global relation (8), one can prove that:
(i) q(x, t) = {q1(x1, t), q2(x2, t), q3(x3, t)} is defined globally for all L1 < x1 < 0, 0 < x2,3 < L2,3,
0 < t < T .
(ii) q(x, t) = {q1(x1, t), q2(x2, t), q3(x3, t)} solves the NLSE.
(iii) q(x, t) = {q1(x1, t), q2(x2, t), q3(x3, t)} satisfies the given initial and boundary condi-
tions:

qj(xj, 0) = q0j(x), qj(0, t) = g0(t), qj(Lj, t) = f0j(t).

A byproduct of this proof is that:

∂

∂xj
qj(0, t) = g1j(t) and

∂

∂xj
qj(Lj, t) = f1j(t).

Finally, the third step presents an analysis of the global relation treated in the second
step. Namely, for given q0j, g0, f0j, one can show that the global relation (8) characterizes
g1j and f1j through the solution of a system of nonlinear Volterra integral equations.

Furthermore, following the Ref. [14], we introduce the eigenfunctions,{
µ
(n)
j (x, t, k)

}4

n=1
, such that:

µ
(1)
j (0, T, k) = I, µ

(2)
j (0, 0, k) = I,

µ
(3)
j (Lj, 0, k) = I, µ

(4)
j (Lj, T, k) = I, j = 1, 2, 3, (9)

with µ(n)
j being the 2× 2 matrices, I = diag(1, 1). One can show that these eigenfunctions

can be written in terms of the matrices sj, Sj, SLj as:

sj(k) = µ
(3)
j (0, 0, k), Sj(k) =

(
e2ik

2Tσ3µ
(2)
j (0, T, k)e−2ik

2Tσ3
)−1

,

SLj (k) =
(
e2ik

2Tσ3µ
(3)
j (Lj, T, k)e−2ik

2Tσ3
)−1

, (10)

where σ3 = diag(1,−1).
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3. Lax pair and its solutions

The Lax pair for our problem can be written as [20]:

∂

∂x
µj + ikσ̂3,jµj = Qjµj,

∂

∂t
µj + 2ik2σ̂3,jµj = Q̃jµj, (11)

where µj(x, t, k) is a 2× 2 matrix-valued function, σ̂3,j is defined by:

σ̂3,j· = [σ3,j, ·] σ3,j = diag(1,−1), (12)

and the 2× 2 matrices Qj, Q̃j are given as:

Qj(xj, t) =

(
0 qj(xj, t)

λq̄j(xj, t) 0

)
,

Q̃j(xj, t, k) = 2kQj − i
∂

∂x
Qjσ3,j − iλ|qj|2σ3,j, λ = ±1. (13)

Furthermore, we assume that there exists a sufficiently smooth solution qj(xj, t),
j = 1, 2, 3, x1 ∈ [L1, 0], x2,3 ∈ [0, L2,3], t ∈ [0, T ], of NLSE.

A solution of equation (11) is given by [14]:

µ
(∗)
j (xj, t, k) = I +

(xj ,t)∫
(xj∗,t∗)

e−i(kxj+2k2t)σ̂3,jWj(y, τ, k), (14)

where the closed 1-form Wj is defined by:

Wj = ei(kx+2k2t)σ̂3,j(Qjµjdx+ Q̃jµjdt), (15)

(xj∗, t∗) is an arbitrary point in the domain x1 ∈ [L1, 0], x2,3 ∈ [0, L2,3], t ∈ [0, T ], and the
integral denotes a line integral connecting smoothly the points indicated.

Following Ref. [14], it can be shown that the functions µ(n)
j are related by these

equations:

µ
(3)
j (xj, t, k) = µ

(2)
j (xj, t, k)e−i(kxj+2k2t)σ̂3,jsj(k), (16)

µ
(1)
j (xj, t, k) = µ

(2)
j (xj, t, k)e−i(kxj+2k2t)σ̂3,jSj(k), (17)

µ
(4)
j (xj, t, k) = µ

(3)
j (xj, t, k)e−i(kxj+2k2t)σ̂3,jSLj (k), (18)

and one can find from Eq. (16) at xj = t = 0, s(k) = µ
(3)
j (0, 0, k). Finally, from Eqs. (17)

and (18) at xj = Lj, t = T we have:

SLj (k) =
(
e2ik

2T σ̂3,jµ
(3)
j (Lj, T, k)

)−1
and

µ
(4)
j (xj, t, k) = µ

(2)
j (xj, t, k)e−i(kxj+2k2t)σ̂3,j

(
s(k)eikLj σ̂3,jSLj (k)

)
. (19)
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4. The global relation

As was mentioned before, the spectral functions aj(k), bj(k), Aj(k), Bj(k), Aj(k),
Bj(k) are not independent, but they satisfy the global relation (8), where c+j (k) denotes the

element of −
∫ Lj

0

[exp(ikyσ̂3,j)](Qjµ
(4)
j )(y, T, k)dy, and µ(4)

j is defined by an equation similar

to µ(3)
j with

∫ t

0

replaced by −
∫ T

0

. The proof is the same as in the case of the NLSE for

the finite interval treated in [14]. We now introduce Mj(xj, t, k), defined by:

M
(+)
j =

(
µ
(2)(1)
j

αj(k)
, µ

(4)(1)
j

)
, arg k ∈

[
0,
π

2

]
,

M
(−)
j =

(
µ
(1)(2)
j

dj(k)
, µ

(3)(2)
j

)
, arg k ∈

[π
2
, π
]
,

M
(+)
j =

(
µ
(3)(3)
j ,

µ
(1)(3)
j

dj(k̄)

)
, arg k ∈

[
π,

3π

2

]
,

M
(−)
j =

(
µ
(4)(4)
j ,

µ
(2)(4)
j

αj(k̄)

)
, arg k ∈

[
3π

2
, 2π

]
, (20)

where the scalars dj(k) and αj(k) are defined below. These definitions imply:

detMj(xj, t, k) = 1 (21)

and

Mj(xj, t, k) = I +O

(
1

k

)
, k →∞. (22)

As in the case of the NLSE on a finite graph studied in [14], it can be shown that
Mj satisfies the jump condition:

M
(−)
j (xj, t, k) = M

(+)
j (xj, t, k)Jj(xj, t, k), k ∈ R ∪ iR, (23)

where the 2× 2 matrix Jj is defined by:

Jj =


J
(2)
j , arg k = 0;

Jj(1), arg k =
π

2
;

J
(4)
j ≡ J

(3)
j (J

(2)
j )−1J

(1)
j , arg k = π;

J
(3)
j , arg k =

3π

2

(24)
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and

J
(1)
j =


δj(k)

dj(k)
−Bj(k)e2ikLje−2iθj

λBj(k̄)

dj(k)αj(k)
e2iθj

aj(k)

αj(k)

 ,

J
(3)
j =


δj(k̄)

d(k̄)

−Bj(k)

dj(k̄)αj(k̄)
e−2iθj

λBj(k̄)e−2ikLje2iθj
a(k̄)

αj(k̄)

 ,

J
(2)
j =

 1 −βj(k)

αj(k)
e−2iθj

λ
βj(k)

αj(k)
e2iθj

1

|αj(k)|2

 ,

θj(xj, t, k) = kxj + 2k2t, (25)

αj(k) = aj(k)Aj(k) + λbj(k̄)e2ikLjBj(k),

βj(k) = bj(k)Aj(k) + λaj(k̄)e2ikLjBj(k) (26)

dj(k) = aj(k)Aj(k̄)− λbj(k)e2ikLjBj(k̄),

δj(k) = αj(k)Aj(k̄)− λβj(k)e2ikLjBj(k̄). (27)

The above expressions are the same as those for the NLSE on a finite interval, except for
the bond index, j.

Following Ref. [14], one can prove
Theorem. Let q0j(x) be a smooth function. We assume that that the set of functions g0(t),
g1j(t), f0j(t), f1j(t), is admissible with respect to q0j(x) and define the spectral functions
aj(k), bj(k), Aj(k), Bj(k), Aj(k), Bj(k) in terms of q0j(x), g0(t), g1j(t), f0j(t), f1j(t). We
assume that

• aj(k) has at most simple zeros, {k(n)j }, for =k(n)j > 0 and has no zeros for =k = 0.

• Aj(k) has at most simple zeros, {K(n)
j }, for argK

(n)
j ∈

(
0,
π

2

)
∪
(
π,

3π

2

)
and has

no zeros for arg k = 0,
π

2
, π,

3π

2
.

• Aj(k) has at most simple zeros, {K(n)
j }, for argK

(n)
j ∈

(
0,
π

2

)
∪
(
π,

3π

2

)
and has

no zeros for arg k = 0,
π

2
, π,

3π

2
.

• The function

dj(k) = aj(k)Aj(k)− λbj(k)Bj(k) (28)

has at most simple zeros, {λ(n)j }, for arg λ
(n)
j ∈

(π
2
, π
)

and has no zeros for

arg k =
π

2
and arg k = π.

• The function

αj(k) = aj(k)Aj(k) + λb(k)e2ikLjBj(k) (29)
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has at most simple zeros, {v(n)j }, for arg v
(n)
j ∈

(
0,
π

2

)
and has no zeros for arg k = 0,

arg k =
π

2
.

• None of the zeros of aj(k) for arg k ∈
(π

2
, π
)

coincides with a zero of dj(k).

• None of the zeros of aj(k) for arg k ∈
(

0,
π

2

)
coincides with a zero of αj(k).

• None of the zeros of αj(k) for arg k ∈
(

0,
π

2

)
coincides with a zero of Aj(k) or a

zero of Aj(k).

• None of the zeros of dj(k) for arg k ∈
(π

2
, π
)

coincides with a zero of Aj(k) or a

zero of Aj(k).

We define Mj(xj, t, k) as the solution of the following 2× 2 matrix RH problem:

• Mj is sectionally meromorphic in C/{R ∪ iR}, and has unit determinant.
•

M
(−)
j (xj, t, k) = M

(+)
j (xj, t, k)Jj(xj, t, k), k ∈ R ∪ iR, (30)

where Mj is M (−)
j for arg k ∈

[π
2
, π
]
∪
[

3π

2
, 2π

]
, Mj is M (+)

j for arg k ∈
[
0,
π

2

]
∪[

π,
3π

2

]
, and Jj is defined in terms of aj, bj, Aj, Bj, Aj, Bj, by equations (24)

and (25).
•

Mj(xj, t, k) = I +O

(
1

k

)
, k →∞. (31)

• Let [Mj]1 and [Mj]2 denote the first and the second column of the matrix Mj. Then
residue conditions:

Res
k=v

(n)
j

[Mj(xj, t, k)]1 = c
(n)(1)
j e4i(v

(n)
j )2t+2iv

(n)
j xj [Mj(xj, t, v

(n)
j )]2, (32)

Res
k=v

(n)
j

[Mj(xj, t, k)]2 = λc
(n)(1)
j e−4i(v

(n)
j )2t−2iv(n)

j xj [Mj(xj, t, v
(n)
j )]1, (33)

Res
k=λ

(n)
j

[Mj(xj, t, k)]1 = c
(n)(2)
j e4i(v

(n)
j )2t+2iv

(n)
j xj [Mj(xj, t, λ

(n)
j )]2, (34)

Res
k=λ

(n)
j

[Mj(xj, t, k)]2 = λc
(n)(2)
j e−4i(v

(n)
j )2t−2iv(n)

j xj [Mj(xj, t, λ
(n)

j )]1, (35)

where:

c
(n)(1)
j =

aj(v
(n)
j )

e2iv
(n)
j LjBj(v

(n)
j )α̇j(v

(n)
j )

, c
(n)(2)
j =

λBj(λ
(n)

j )

aj(λ
(n)
j )ḋj(λ

(n)
j )

. (36)

Then, Mj(xj, t, k) exists and is unique. We define qj(xj, t) in terms of Mj(xj, t, k)
by

qj(x, t) = 2i · lim
k→∞

k(Mj(x, t, k))12. (37)

Then, qj(x, t), together with the following functions:
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qj(x, 0) = q0j(x), qj(0, t) = g0(t),
∂

∂x
qj(0, t) = g1j(t),

qj(Lj, t) = f0j(t),
∂

∂x
qj(Lj, t) = f1j(t) (38)

present the solution for the nonlinear Schrödinger equation (1) with initial and boundary
conditions given by Eqs.(2) – (5), respectively. The proof of the theorem is similar to that
of the NLSE for a finite interval treated in [14]).

Furthermore, repeating the same steps as in [14] ( for aj(k) ≡ 1,bj(k) ≡ 0), we get
the following expressions for f1j, g1j:

iπ

4
f1j =

∫
∂D0

1

2k2

∆j(k)

[
M̂

(1)
j (t, k)− g0(t)

2ik2

]
dk −

∫
∂D0

1

k2
Σj(k)

∆j(k)

[
M̂

(1)
j (t, k)− f0j(t)

2ik2

]
dk +

+

∫
∂D0

1

k

∆j(k)
[Fj(t, k)− Fj(t,−k)] dk, (39)

−iπ
4
g1j =

∫
∂D0

1

2k2

∆j(k)

[
M̂

(1)
j (t, k)− f0j(t)

2ik2

]
dk −

∫
∂D0

1

k2
Σj(k)

∆j(k)

[
M̂

(1)
j (t, k)− g0(t)

2ik2

]
dk −

−
∫
∂D0

1

k

∆j(k)

[
e−2ikLjFj(t, k)− e2ikLjFj(t,−k)

]
dk, (40)

where:

Σj(k) = e2ikLj + e−2ikLj , (41)

Fj(t, k) =
if0j(t)

2
e2ikLjM̂

(2)
j −

ig0(t)

2
M̂

(2)
j +

+

[
L̂

(2)
j − iλ

f0j(t)

2
M̂

(1)
j + kM̂

(2)
j

]
·
[
L̂
(1)
j − i

g0(t)

2
M̂

(2)
j + kM̂

(1)
j

]
−

−e2ikLj

[
L̂
(2)
j − iλ

g0(t)

2
M̂

(1)
j + kM̂

(2)
j

]
·
[
L̂

(1)
j − i

f0j(t)

2
M̂

(2)
j + kM̂

(1)
j

]
.(42)

Finally, from Eqs. (40) and (5) we obtain:
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g0(t) =

∫
∂D0

1

k2
Σ1(k)

∆1(k)
M̂

(1)
1 dk −

∫
∂D0

1

2k2

∆1(k)

[
M̂

(1)
1 −

f01(t)

2ik2

]
dk

1

2i

∫
∂D0

1

Σ1(k)

∆1(k)
dk − 1

2i

3∑
j=2

∫
∂D0

1

Σj(k)

∆j(k)
dk

−

−

3∑
j=2


∫
∂D0

1

k2
Σj(k)

∆j(k)
M̂

(1)
j dk −

∫
∂D0

1

2k2

∆j(k)

[
M̂

(1)
j −

f0j(t)

2ik2

]
dk


1

2i

∫
∂D0

1

Σ1(k)

∆1(k)
dk − 1

2i

3∑
j=2

∫
∂D0

1

Σj(k)

∆j(k)
dk

+

+

∫
∂D0

1

k

∆1(k)

[
e−2ikL1F1(t, k)− e2ikL1F1(t,−k)

]
dk

1

2i

∫
∂D0

1

Σ1(k)

∆1(k)
dk − 1

2i

3∑
j=2

∫
∂D0

1

Σj(k)

∆j(k)
dk

−

−

3∑
j=2

∫
∂D0

1

k

∆j(k)

[
e−2ikLjFj(t, k)− e2ikLjFj(t,−k)

]
dk

1

2i

∫
∂D0

1

Σ1(k)

∆1(k)
dk − 1

2i

3∑
j=2

∫
∂D0

1

Σj(k)

∆j(k)
dk

. (43)

We note that µ(1)
j (0, t, k) and µ(2)

j (0, t, k) are solutions of:

∂

∂t
µj + 2ik2σ̂3,jµj = Q̃j(0, t, k)µj, (44)

where:

Q̃j(0, t, k) =

 −iλ|qj(0, t)|2 2kqj(0, t) + i
∂

∂xj
qj(0, t)

2kq̄j(0, t)− i
∂

∂xj
q̄j(0, t) iλ|qj(0, t)|2

 . (45)

Therefore, it satisfies:

Q̃j(0, t, k) = σ3,jΣQ̃j(0, t, k̄)Σσ3,j, (46)

where Q̃j(0, t, k̄) =

 iλ|qj(0, t)|2 2kq̄j(0, t) + i
∂

∂xj
q̄j(0, t)

2kqj(0, t)− i
∂

∂xj
qj(0, t) −iλ|qj(0, t)|2

 , Σ =

(
λ 0
0 λ

)
.

This implies the following symmetry for boundary scattering matrix:

Sj(k) = σ3,jΣSj(k̄)Σσ3,j, (47)
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where Sj(k̄) =

(
Aj(k) Bj(k̄)

λBj(k) Aj(k̄)

)
.

5. Conclusions

In this paper, we treated the nonlinear Schrödinger equation with cubic nonlinearity
on a metric graph. The boundary conditions were imposed to provide continiuty and current
conservation at the graph vertex. Our approach is based an extension applied earlier by
Fokas [14] for the solution to the NLSE on a finite interval with Dirichlet boundary
conditions. Unlike the case of the NLSE on the interval in [14], in the case of our graph,
we have:
i) Multicomponent NLSE, whose components are related to each other through the vertex
boundary conditions.
ii) Additional, Neumann type boundary conditions at the graph vertex.
iii)Additional unknown functions, g0, g1, f0, f1 in the initial and boundary conditions.
However, this doesn’t lead to serious complication for adopting method of [14] for the case
of graphs, although results obtained are completely different from those of NLSE for finite
interval. We note that the above treatment of NLSE on star graph can be extended to other
graph topologies as well.
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