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1. Introduction

The Korteweg-de Vries (KdV) equation has attracted much attention in the literature,
both in the context of physics and mathematics. This equation was found to permit soliton
solutions and allow the modeling of solitary wave propagation on a water surface, a phenomena
first discovered by Scott Russell in 1834. The KdV equation is also used, e.g., to model
the unidirectional propagation of small amplitude long waves in nonlinear dispersive systems
such as ion-acoustic waves in a collisionless plasma, and magnetosonic waves in a magnetized
plasma etc [11]. The linearized KdV provides an asymptotic description of linear, undirectional,
weakly dispersive long waves, for example, shallow water waves. Earlier, it was proven that
via normal form transforms, the solution of the KdV equation can be reduced to the solution
for the linear KdVequation [12]. Belashov and Vladimirov [12] numerically investigated the
evolution of a single disturbance u(0, x) = u0 exp(−x2/l2) and showed that in the limit l → 0,
u0l

2 = const, the solution of the KdV equation is qualitatively similar to the solution of the
linearized KdV equation. Boundary value problems on half lines were considered in [2, 5, 7].

Here, summarizing and extending the results in [13], we investigate the linearized KdV
equation on star graphs Γ with m + k semi-infinite bonds connected at one point, called the
vertex. The bonds are denoted by Bj , j = 1, 2, ..., k + m, the coordinate xj on Bj is defined
from −∞ to 0 for j = 1, 2, ..., k, and from 0 to +∞ for j = k + 1, ..., k +m such that on each
bond, the vertex corresponds to 0. On each bond we consider the linear equation:

(
∂

∂t
+

∂3

∂x3
j

)
uj(xj, t) = fj(x, t), t > 0, xj ∈ Bj. (1)

Below, we will also use x instead of xj (j = 1, 2, ..., k + m). We investigate an initial
value problem, and using the method of potentials, construct solution formulas.
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2. Formulation of the problems

To solve linear KdV equation on an interval, one needs to impose three boundary
conditions (BC): two on the left end of the x-interval and one on the right end, (see, e.g., [5,6]
and references therein). For the star graph with m + k semi-infinite bonds, we need to impose
k + 2m BCs, which should also provide connection between the bonds. In detail, we require:

u1(0; t) = ajuj(0; t), j = 2, k +m, (2)

u+
x (+0; t) = Bu−x (−0; t), (3)

k∑
i=1

a−1
i uixx(−0; t) =

k+m∑
i=k+1

a−1
i uixx(+0; t), (4)

for t > 0, where u−(x; t) = (u1(x, t), . . . , uk(x, t))
T , u+(x; t) = (uk+1(x, t), . . . , uk+m(x, t))T ,

subscripts x and double x mean the first and the second order partial derivatives with respect
to x, ak are non-zero constants, B is a m× k matrix.

Furthermore, we assume that the fj(x, t) and the initial conditions:

uj(x, 0) = u0j(x), x ∈ Bj, (j = 1, 2, ..., k +m), (5)
are sufficiently smooth enough and bounded, and that u0,j satisfies the vertex conditions (2) –
(4).

It should be noted that the above vertex conditions are not the only possible ones. The
main motivation for our choice is caused by the fact that they guarantee uniqueness of the
solution and, if the solutions decay (to zero) at infinity,the norm (energy) conservation.

Here, we introduce some notation that will be useful in the following. For any vector,
v = (v1, v2, . . . , vk+m)T we put ṽ = (v2, . . . , vk+m)T , v− = (v1, . . . , vk)

T , ṽ− = (v2, . . . , vk)
T ,

v+ = (vk+1, . . . , vk+m)T .

3. Existence and uniqueness of solutions

Lemma 1. Let Ik − BTB be negatively defined matrix. Then the problem has at most one
solution in H3(Γ).
Proof of Lemma 1. Using the equation (1) one can easily get:

∂

∂ t

b∫
a

u2
j(x, t)dx =

(
2ujujxx − u2

jx

) ∣∣∣x=b

x=a
+2

b∫
a

fj(x, t)uj(x, t)dx

for appropriate values of constants a and b. From this equality and vertex conditions (2) – (4)
we have:

d

dt
‖u(·, t)‖2

Γ ≤
(
∂u−(0, t)

)T (
Ik −BTB

)
∂u−(0, t) + 2 ‖u(·, t)‖Γ ‖f(·, t)‖Γ .

According to condition of Lemma 1, we get:

‖u(·, t)‖Γ ≤ ‖u(·, 0)‖Γ +

t∫
0

‖f(·, τ)‖Γ dτ. (6)

The inequality (6) proves the lemma.
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Notice that equality in (6) (i.e. energy conservation) holds iff BTB = Im.
We shall construct solutions and prove existence theorems for data from the Schwartz

class of smooth decreasing functions, and for data in Sobolev classes.
Let S(Bk) be the Schwartz space of rapidly decaying functions on the closure of Bk,

k = 1, 2, 3. We say v(x, t) ∈ C1([0, T ]; S(Bk)) (T > 0) if v and
∂v

∂t
in C([0, T ]; S(Bk)).

Theorem 1. Assume that Ik − BTB is negatively defined matrix, u0k(x) ∈ S(Bk), fk(x, t) ∈

C1([0, T ]; S(Bk)) for some T > 0 and that u(p)
0k ≡

∂3p

∂x3p
u0k(x) and f (p)

k =
∂3p

∂x3p
fk(x, t) satisfy

vertex conditions (1) – (5) for any nonnegative integer p. Then (1) – (5) has a solution in
C1([0, T ]; S(Bk)).

To treat the case of Sobolev data consider function v = (v1(x1), v2(x2), . . . , vk+m(xk+m))

defined on the graph. We suppose that vk ∈ S(Bk) and the functions v(p)
k ≡

∂3p

∂x3p
vk(x) satisfy

vertex conditions (2) –(4) for any non-negative integer p. We denote the set of all such functions
v by S−(Γ) (S+(Γ)), and define W−(Γ) (or W+(Γ)) as the closure of the set S−(Γ) ( or S+(Γ))
with respect to the norm ‖v‖3,Γ =

∑3
k=1 ‖vk‖H3(Bk).

Theorem 2. Let Ik −BTB be negatively defined matrix,
u0 ≡ (u01(x1), u02(x2), . . . , u0,k+m(xk+m)) ∈ W±(Γ). Then (1) – (5) has a unique solution in
L∞(0, T,W±(Γ)).

First, we construct exact solutions, using the results from the theory of potentials for the
linearized KdV equation. For that purpose, we give some preliminaries from [1,3, 5].

4. Some preliminaries from potentials theory

The following functions are called fundamental solutions of the equation ut − uxxx = 0
(see [1, 3, 5, 12]):

U(x, t; ξ, η) =


1

(t− η)1/3
f

(
x− ξ

(t− η)1/3

)
, if t > η;

0, if t ≤ η,

V (x, t; ξ, η) =


1

(t− η)1/3
φ

(
x− ξ

(t− η)1/3

)
, if t > η;

0, if t ≤ η,

where f(x) =
π

31/3
Ai
(
− x

31/3

)
, φ(x) =

π

31/3
Bi
(
− x

31/3

)
for x ≥ 0, φ(x) = 0 for x < 0

and Ai(x) and Bi(x) are the Airy functions. The functions f(x) and φ(x) are integrable and∫ 0

−∞ f(x)dx =
π

3
,
∫ +∞

0
f(x)dx =

2π

3
,
∫ +∞

0
φ(x)dx = 0. We summarize some properties of

potentials for (1) from [3, 5]. For given ω, f and φ let:

u(x, t) =

b∫
a

U(x, t; ξ, 0)ω(ξ)dξ, v(x, t) =

t∫
0

b∫
a

U(x, t; ξ, τ)f(ξ, τ)dξdτ,

w(1)(x, t) =

t∫
η

Uxξ(x, η; a, t)φ(η)dη, w(2)(x, t) =

t∫
η

Vxξ(x, η; a, t)φ(η)dη.
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Lemma 2. a) Let ω ∈ BV ([a, b]). Then u(x, t) satisfies ut − uxxx = 0 for t > 0 and:

lim
(x,y)→(x0,0)

u(x, t) =

{
πω(x0), if x0 ∈ (a, b);

0, if x0 6∈ (a, b).

b) Let f ∈ L2((a, b)×(0, T ). Then, v(x, t) satisfies ut−uxxx = πf(x, t) in (a, b)×(0, T ],
T > 0 and initial condition u(x, 0) = 0, x ∈ (a, b).

c) If φ ∈ H1(0, T ), then :

lim
x→a+0

w(1)(x, t) =
2π

3
φ(y), lim

x→a−0
w(1)(x, t) = −π

3
φ(y), lim

x→a+0
w(2)(x, t) = 0.

Now, we are ready to construct exact solutions for the considered problems. We assume
that initial data and source terms in each bond are sufficiently smooth and bounded functions.

5. Integral formula for exact solution

We look for solution in the form:

u(x, t) =

t∫
0

U(x, t; 0, η)φ(η)dη +

t∫
0

V (x, t; 0, η)ψ(η)dη + F(x, t), (7)

where

Fk(x, t) =
1

π

∫
Bk

U(x, t; ξ, 0)uk(ξ, 0)dξ +
1

π

t∫
0

∫
Bk

U(x, t; ξ, η)fk(ξ, η)dξdη.

φ(t) = (φ1(t), . . . , φk+m(t))T , ψ(t) = (0, . . . , 0, ψk+1(t), . . . , ψk+m(t))T are unknown vector
functions.

According to vertex conditions (2) – (4), we get:

C̃·
t∫

0

f(0)

(t− τ)1/3
φ1(τ)dτ =

t∫
0

f(0)

(t− τ)1/3
φ̃(τ)dτ+

t∫
0

ϕ(0)

(t− τ)1/3
ψ̃(τ)dτ−

(
C̃F1 − F̃

)∣∣∣
x=0

, (8)

t∫
0

f ′(0)

(t− τ)2/3
φ+(τ)dτ +

t∫
0

ϕ′(0)

(t− τ)2/3
ψ+(τ)dτ =

B

t∫
0

f ′(0)

(t− τ)2/3
φ−(τ)dτ −

(
∂F+(0, t)−B · ∂F−(0, t)

)
,

(9)

2(C−)Tf−(t) + (C+)Tf+(t) =
3

π

(
−C−

∣∣C+
)
∂2F(0, t), (10)

where C =

(
1,

1

a2

,
1

a3

, . . . ,
1

ak+m

)
.

Abel’s integral equations (8), (9) can be written in terms of fractional integrals [9]:

Jα(0,t)f(t) :=
1

Γ(α)

t∫
0

(t− τ)α−1f(τ)dτ, 0 < α < 1,
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and solved using the inverse operators, i.e. the Riemann-Liouville fractional derivatives [8, 9]
defined by:

Dα
(0,t)f(t) :=

1

Γ(1− α)

d

dt

t∫
0

(t− τ)−αf(τ)dτ, 0 < α < 1.

Using the relation Dα
(0,t)J

α
(0,t) = I from (8) and (9), we obtain the linear algebraic

equations:

f(0)
(
C̃
∣∣− Im+k−1

)
φ(t)−

(
0(m+k−1)×1

∣∣Im+k−1

)
ϕ(0)ψ(t) =

− 1

Γ(1/3)

(
C̃
∣∣− Im+k−1

)
D

2/3
(0,t)F(0, t), (11)

f ′(0)
(
B
∣∣− Im

)
φ(t) + ϕ′(0)

(
0m×k

∣∣− Im
)
ψ(t) = − 1

Γ(2/3)
D

1/3
(0,t)

(
B
∣∣− Im

)
∂F(0, t). (12)

We rewrite the system of equations (10), (11) and (12) in the following matrix form:

M ·

(
φ(t)

ψ+(t)

)
= G(t), G(t) =


− 1

Γ(1/3)

(
C̃
∣∣− Im+k−1

)
D

2/3
(0,t)F(0, t)

− 1

Γ(2/3)
D

1/3
(0,t)

(
B
∣∣− Im

)
∂F(0, t)

3

π
(−C−

∣∣C+)∂2F(0, t)

 ,

where

M =


f(0)C̃−

∣∣ −f(0)Ik−1

∣∣ 0(k−1)×m
∣∣ 0(k−1)×m

f(0)C+
∣∣ 0m×(k−1)

∣∣ −f(0)Im
∣∣ −φ(0)Im

f ′(0)B
∣∣ −f ′(0)Im

∣∣ −φ′(0)Im
2C−

∣∣ C+
∣∣ 01×m


Now we must prove that det(M) 6= 0.
Suppose that det(M) = 0. Then, the homogenous equation Mα = 0 has a non-

trivial, time independent solution α = (α1, α2, . . . , αk+m) (notice that M is constant ma-
trix). Therefore, putting in (7) φ(t) = φ0 = (α1, . . . , αk+m)T = const, ψ(t) = ψ0 =
(0, . . . , 0, αk+m+1, . . . , αk+2m) = const, we obtain a solution for the problem with u0(x) ≡ 0,
f(x, t) ≡ 0. According to the uniqueness theorem, we have:

φ0

t∫
0

1

(t− τ)1/3
f

(
x

(t− τ)1/3

)
dτ +ψ0

t∫
0

1

(t− τ)1/3
ϕ

(
x

(t− τ)1/3

)
dτ = 0,

or

φ0f
( x

t1/3

)
+ψ0ϕ

( x

t1/3

)
= 0,

for any fixed t. The last equality contradicts the condition of linear independence for the Airy
functions Ai(x) and Bi(x). This proves the statement det(M) 6= 0.
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Summarizing the above studies, we obtain:

u(x, t) = F(x, t) +

t∫
0

U(x, t− τ)M−1G(τ)dτ

with

U(x, t) =

(
U(x, t; 0, 0)Ik | 0k×m | 0k×m

0m×k | U(x, t; 0, 0)Im | V (x, t; 0, 0)Im

)
.

6. Proof of existence theorems

Proof of Theorem 1. According to the theory of potentials [3, 5], the solutions constructed in
the previous sections and their x-derivatives, up to the second order, are continuous functions
in the closure of each bondof the graph.

Now, we consider the functions vj(xj, t) that are solutions of the considered problem

with initial conditions vj(x, 0) =
d3

dx3
u0j(x), and with fj replaced by

∂3

∂x3
fj . According to the

conditions of the theorem, one can easily obtain
∂3uj
∂x3

(x, t) = vj(x, t). From this, we conclude

that the functions uj(x, t), j = 1, 2, 3 and their x-derivatives of any order are continuous
functions in the closure of Bj .

Now, we consider the half lines corresponding to each bond separately. Notice that
uj(x, t) is a solution of the linearized KdV equation on the half line Bj and satisfies compati-
bility conditions at the point x = 0, t = 0. Applying Theorem 1.1 from [7], we get that these
solutions define a C1 map from [0, T ] into S(B̄j).

Proof of Theorem 2. Above, we proved the estimate:

‖u(·, t)‖Γ ≤ ‖u(·, 0)‖Γ +

t∫
0

‖f(·, τ)‖Γ dτ.

Note that for the function v, constructed above, the same estimate holds.
Summing up these two estimates, we have:

‖u(·, t)‖3,Γ ≤ ‖u(·, 0)‖3,Γ +

t∫
0

‖f(·, τ)‖3,Γ dτ. (13)

By construction, S±(Γ) is dense in W±(Γ). This, together with the a priori estimate (13)
proves the theorem. Thus, we have shown the existence and uniqueness of the solution for the
linearized KdV equation on a metric star graph and derived its explicit solution. The above
approach can also be extended to cases of graphs with different topologies.
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