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The uncertainty relation between angle and orbital angular momentum had not been formulated in a similar
form as the uncertainty relation between position and linear momentum because the angle variable is not
represented by a quantum mechanical self-adjoint operator. Instead of the angle variable operator, we introduce

the complex position operator Ẑ = x̂+iŷ and interpret the order parameter µ = 〈Ẑ〉/
√
〈Ẑ†Ẑ〉 as a measure of

certainty of the angle distribution. We prove the relation between the uncertainty of angular momentum and
the angle order parameter. We also prove its generalizations and discuss experimental methods for testing
these relations.
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1. Introduction

Uncertainty relations elucidate the difference between classical physics and quantum
physics. In classical physics, accuracy of measurement is not limited in principle and it is
assumed that any observables can be measured simultaneously and precisely. However, in
quantum physics, the accuracy of simultaneous measurements of two observables is limited
by the uncertainty relation.

Originally, Heisenberg [1] formulated the uncertainty relation between position Q
and linear momentum P as:

∆Q∆P & h, (1)
with the Planck constant h. He deduced this relation via a Gedankenexperiment. Later,
Weyl, Kennard, and Robertson [2] gave a rigorous proof of this relation. In the context
of quantum mechanics, the position is represented by a self-adjoint operator Q̂ and the
uncertainty of the position is defined as the variance:

(∆Q)2 :=
〈
ψ
∣∣∣(Q̂− 〈ψ|Q̂|ψ〉)2∣∣∣ψ〉 = 〈ψ|Q̂2|ψ〉 − 〈ψ|Q̂|ψ〉2, (2)

for a normalized state vector |ψ〉. The uncertainty ∆P of momentum is defined in a similar
way.

It is natural to expect a similar relation:

∆φ∆L & h, (3)

holds for the angle φ and the angular momentum L as shown in the textbook [3]. However,
in a plane, the coordinate values {φ + 2πn} with any integer n represent the same point
as φ indicates. In other words, the angle variable φ is a multivalued function. In quantum



206 Shogo Tanimura

mechanics, the spectrum of a self-adjoint operator should have one-to-one correspondence
with the values of an observable. Hence, there is no self-adjoint operator φ̂ corresponding
to the multivalued angle variable φ. Therefore, the angle uncertainty ∆φ cannot be defined
as the position uncertainty ∆Q was defined.

The uncertainty relation between angle and orbital angular momentum is a long-
standing issue in physics. Many people have proposed other definitions of the angle uncer-
tainty and have formulated several versions of the uncertainty relation between angle and
angular momentum [4] – [9]. However, most of these relations treat a particle moving
on a one-dimensional circle. They did not consider a particle moving in two- or three-
dimensional spaces. Thus, we do not yet have an angle-angular momentum uncertainty
relation that is applicable for a realistic situation.

In this paper, we introduce the moment of position distribution in a plane, which
is an arbitrary two-dimensional subspace in the configuration space of the particle. We
propose to use the moment of position as an indicator of certainty or bias of angle distri-
bution. The main results of this work are inequalities (27), (32), (36), which represent the
uncertainty relation between the moments of position and the orbital angular momentum.
Our results are applicable for a particle moving in configuration space having more than
two dimensions.

2. Robertson inequality

The Robertson inequality [2] is one formulation of general uncertainty relations.
The Robertson inequality has a clear meaning and it is applicable to any kind of observable.
Hence, it is regarded as the universal formulation of uncertainty relations. Although
the Robertson inequality is well known and its proof is rather simple, here, we write its
derivation to make a comparison with our uncertainty relation of the angle and angular
momentum, which is derived in the next section.

For any vectors |α〉 and |β〉 of a Hilbert space H , the Schwarz inequality:

〈α|α〉〈β|β〉 ≥
∣∣∣〈α|β〉∣∣∣2, (4)

holds. The equality holds if and only if the two vectors |α〉 and |β〉 are linearly dependent.
Let ψ ∈ H be an arbitrary normalized vector satisfying 〈ψ|ψ〉 = 1. For self-adjoint
operators Â and B̂ on H , we set:

〈Â〉 := 〈ψ|Â|ψ〉, (5)

∆Â := Â− 〈Â〉Î , (6)

|α〉 := ∆Â|ψ〉, (7)

|β〉 := ∆B̂|ψ〉, (8)

where Î is the identity operator on H . Then, the Schwarz inequality (4) becomes:

〈ψ|(∆Â)2|ψ〉〈ψ|(∆B̂)2|ψ〉 ≥
∣∣∣〈ψ|∆Â∆B̂|ψ〉

∣∣∣2. (9)

The standard deviation of the observable Â is defined as:

σ(Â) :=
(
〈ψ|(∆Â)2|ψ〉

) 1
2
. (10)
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Then, it is easy to see that:

∆Â∆B̂ =
1

2

(
∆Â∆B̂ + ∆B̂∆Â

)
+

1

2

(
∆Â∆B̂ −∆B̂∆Â

)
=

1

2
{∆Â,∆B̂}+

1

2
[∆Â,∆B̂]. (11)

Since 〈ψ|{∆Â,∆B̂}|ψ〉 is a real number and 〈ψ|[∆Â,∆B̂]|ψ〉 is a pure imaginary number,
the right-hand side of (9) can be rewritten as:∣∣∣〈ψ|∆Â∆B̂|ψ〉

∣∣∣2 =
1

4
〈ψ|{∆Â,∆B̂}|ψ〉2 +

1

4

∣∣∣〈ψ|[∆Â,∆B̂]|ψ〉
∣∣∣2. (12)

Moreover, we can see that:

[∆Â,∆B̂] = [Â, B̂]. (13)

Therefore, (9) implies

σ(Â)2σ(B̂)2 ≥
∣∣∣〈ψ|∆Â∆B̂|ψ〉

∣∣∣2 =
1

4
〈ψ|{∆Â,∆B̂}|ψ〉2 +

1

4

∣∣∣〈ψ|[∆Â,∆B̂]|ψ〉
∣∣∣2

≥ 1

4

∣∣∣〈ψ|[Â, B̂]|ψ〉
∣∣∣2. (14)

By taking squre roots of the both sides, we obtain the Robertson inequality:

σ(Â) · σ(B̂) ≥ 1

2

∣∣∣〈ψ|[Â, B̂]|ψ〉
∣∣∣, (15)

which means that the two observables cannot have precise values simultaneously if
〈ψ|[Â, B̂]|ψ〉 6= 0. On the other hand, the following quantity:

Cs(Â, B̂) :=
1

2
〈ψ|{∆Â,∆B̂}|ψ〉 =

1

2
〈ψ|{∆Â, B̂}|ψ〉 =

1

2
〈ψ|{Â,∆B̂}|ψ〉

=
1

2
〈ψ|{Â, B̂}|ψ〉 − 〈ψ|Â|ψ〉〈ψ|B̂|ψ〉, (16)

is called the symmetrized covariance of Â and B̂. Then, (14) can be rewritten as:

σ(Â)2 · σ(B̂)2 ≥
∣∣∣Cs(Â, B̂)

∣∣∣2 +
1

4

∣∣∣〈ψ|[Â, B̂]|ψ〉
∣∣∣2. (17)

Sometimes this is referred to as the Schrödinger inequality [10].

3. Angular order parameter and orbital angular momentum

In this section, we show our main result. Let us consider a quantum mechanical
particle in a configuration space whose dimensionality is equal to or larger than two. The
system has four observables x̂, ŷ, p̂x, p̂y, which satisfy the canonical commutation relations
[x̂j, p̂k] = ih̄δjk. We introduce two operators:

Ẑ := x̂+ iŷ, L̂ := x̂p̂y − ŷp̂x. (18)

The operator Ẑ is not self-adjoint but it is related to position of the particle. The self-adjoint
operator L̂ is called the orbital angular momentum (OAM). They satisfy the following:

[L̂, Ẑ] = h̄Ẑ, (19)

and:

[L̂, Ẑn] = nh̄ Ẑn (20)
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for any natural number n = 1, 2, 3, . . . . With a normalized vector ψ ∈H we define:

〈L̂〉 := 〈ψ|L̂|ψ〉, ∆L̂ := L̂− 〈L̂〉Î . (21)

By substituting:

|α〉 = ∆L̂|ψ〉, |β〉 = Ẑ|ψ〉, (22)

into the Schwarz inequality (4) and by noting 〈α| = 〈ψ|∆L̂† = 〈ψ|∆L̂ and 〈β| = 〈ψ|Ẑ†, we
get:

〈ψ|(∆L̂)2|ψ〉〈ψ|Ẑ†Ẑ|ψ〉 ≥
∣∣∣〈ψ|∆L̂ Ẑ|ψ〉∣∣∣2. (23)

Hence: √
〈(∆L̂)2〉

√
〈Ẑ†Ẑ〉 ≥

∣∣∣〈∆L̂ Ẑ〉∣∣∣. (24)

In a similar way, by substituting:

|α〉 = Ẑ†|ψ〉, |β〉 = ∆L̂|ψ〉, (25)

into (4), we get: √
〈ẐẐ†〉

√
〈(∆L̂)2〉 ≥

∣∣∣〈Ẑ∆L̂〉
∣∣∣. (26)

Note that ẐẐ† = Ẑ†Ẑ. The triangle inequality |a| + |b| ≥ |a − b| holds for any complex
number a, b. The commutation relation (19) implies [∆L̂, Ẑ] = [L̂, Ẑ] = h̄Ẑ. By adding (24)
with (26) and multiplying 1/2, we obtain:√

〈(∆L̂)2〉
√
〈Ẑ†Ẑ〉 ≥ 1

2

{∣∣〈∆L̂ Ẑ〉∣∣+
∣∣〈Ẑ∆L̂〉

∣∣}
≥ 1

2

{∣∣〈∆L̂Ẑ − Ẑ∆L̂〉
∣∣}

=
1

2
h̄
∣∣〈Ẑ〉∣∣. (27)

This is one of our main results.
By replacing the operator Ẑ with Ẑn, we can derive more general inequalities:√

〈(∆L̂)2〉
√
〈(Ẑ†Ẑ)n〉 ≥ 1

2
nh̄
∣∣〈Ẑn〉

∣∣ (n = 1, 2, 3, . . . ), (28)

via a similar inference. The nonnegative number:

σ(L̂) :=

√
〈ψ|(∆L̂)2|ψ〉 = 〈ψ|L̂2|ψ〉 − 〈ψ|L̂|ψ〉2, (29)

is the standard deviation of the orbital angular momentum. The complex number

〈Ẑn〉 = 〈ψ|(x̂+ iŷ)n|ψ〉 =

∫ ∞∫
−∞

(x+ iy)n
∣∣∣ψ(x, y)

∣∣∣2 dx dy (30)

is the n-th moment of probability density for the wave function ψ(x, y)1. If the probability
density |ψ(x, y)|2 is rotationally invariant, all the moments vanish 〈Ẑn〉 = 0 (n = 1, 2, 3, . . . ).
Conversely, if the system exhibits a nonvanishing moment 〈Ẑn〉 6= 0 for some n, the
probability density, |ψ(x, y)|2, is not rotationally invariant. Hence, the expectation value

1If the dimension of the configuration space is larger than two, it is necessary to use a suitable wave
function ψ(x, y, x, . . . ).
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〈Ẑn〉 is interpreted as an order parameter to measure the degree of breaking of the rotational
symmetry. The complex number:

µn :=
〈Ẑn〉√
〈(Ẑ†Ẑ)n〉

=
〈(x̂+ iŷ)n〉√
〈(x̂2 + ŷ2)n〉

, (31)

is called the normalized n-th moment of position distribution or the normalized angular
order parameter, which indicates bias or asymmetry of angular distribution of the particle.
Then, we have:

σ(L̂) ≥ 1

2
nh̄

∣∣〈Ẑn〉
∣∣

〈(Ẑ†Ẑ)n〉1/2
=

1

2
nh̄
∣∣∣µn

∣∣∣ (n = 1, 2, 3, . . . ). (32)

This is the main result of our work. This inequality implies that if the uncertainty σ(L̂)
of OAM is small, the normalized moment |µn| must be small. In this case, the angular
distribution is not strongly biased and hence the uncertainty of angle must be large.

However, if the uncertainty of angle is small, the angular distribution is strongly
biased and hence, the normalized moment |µn| becomes large, then the inequality (32)
implies that the uncertainty σ(L̂) of OAM must become large.

4. Tighter inequality

The necessary and sufficient conditions for the equality in (27) are the two equalities
in (24), (26) and the other equality 〈∆L̂Ẑ〉 = −〈Ẑ∆L̂〉. Actually, there is no state vector
satisfying these three conditions simultaneously, and hence, the equality in (27) is never
attained. In this sense, the inequality (27) is not tight.

It is desirable to find a tighter inequality. For this purpose, we introduce self-adjoint
operators:

x̂n :=
1

2

(
Ẑn + Ẑ†n

)
ŷn :=

1

2i

(
Ẑn − Ẑ†n

)
, (33)

for n = 1, 2, 3, . . . . Then, we have:

Ẑn =
(
x̂+ iŷ

)n
= x̂n + iŷn. (34)

Using these, it is easy to see that:

∆L̂ Ẑn =
1

2
{∆L̂, Ẑn}+

1

2

[
∆L̂, Ẑn

]
=

1

2
{∆L̂, (x̂n + iŷn)}+

1

2
nh̄Ẑn

=
1

2
{∆L̂, x̂n}+ i

1

2
{∆L̂, ŷn}+

1

2
nh̄(x̂n + iŷn). (35)

Hence, (23) is equivalent to:

〈(∆L̂)2〉 · 〈Ẑ†Ẑ〉 ≥
∣∣∣1
2
〈{∆L̂, x̂n}〉+

1

2
nh̄〈x̂n〉

∣∣∣2 +
∣∣∣1
2
〈{∆L̂, ŷn}〉+

1

2
nh̄〈ŷn〉

∣∣∣2
=

∣∣∣Cs(L̂, x̂n) +
1

2
nh̄〈x̂n〉

∣∣∣2 +
∣∣∣Cs(L̂, ŷn) +

1

2
nh̄〈ŷn〉

∣∣∣2. (36)

This is the tightest inequality whose equality can be attained. However, the equality holds
if and only if the state is an eigenstate of L̂. In this case, both sides of (36) are zero.
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5. Experimental realization

We have formulated the uncertainty relations (27), (32), (36). In order to test these
relations, we need to have a method for controlling and measuring angular momenta of
particles.

In optics, there is a method for controlling and measuring angular momenta of
photons. Franke-Arnold and Padgett et al. [11, 12] have tested the uncertainty relation of
Judge [4] and Berbett, Pegg [7], by using an analyzer of photon angular momentum.

Uchida and Tonomura [13] first made a coherent electron beam carrying nonzero
orbital angular momentum. Such electron beam has a wave front whose shape looks like
a vortex. Verbeeck et al. [14] and McMorran et al. [15] developed fork-shaped diffraction
gratings, which control orbital angular momenta of electrons. They observed circularly
symmetric diffraction patterns for eigenstates of orbital angular momentum. Thus, they
verified that the uncertainty in angular distribution was maximum when the uncertainty
of angular momentum was minimum.

Recently, Hasegawa and Saitoh et al. [16,17] made a superposition of two coherent
electron beams carrying different angular momenta. As a result, they produced a quantum
state that has an uncertain orbital angular momentum. They observed an interference
pattern that was circularly asymmetric. Thus, they verified that the uncertainty in angular
distribution became smaller when the uncertainty of angular momentum became larger.
Yet, quantitative analysis of the uncertainty relation was not performed in experiments
using electrons.

6. Generalization

The angular momentum L̂ is a generator of rotational transformations, which trans-
form the angle variable (x̂ + iŷ)/

√
x̂2 + ŷ2. A nonzero value of the order parameter

µ = 〈x̂ + iŷ〉/
√
〈x̂2 + ŷ2〉 indicates breaking of rotational symmetry, or certainty of the

angle distribution, which accompanies uncertainty of the angular momentum. The rela-
tion between the angle order parameter and the uncertainty of the angular momentum is
expressed by the inequality (32).

This kind of relation between a symmetry generator and a symmetry-breaking order
parameter can be formulated in a more general form. Suppose that we have a self-adjoint
operator Ĝ, which is a generator of symmetry transformations and is called charge. Also,
suppose that we have another operator, Φ̂. It is not necessary to assume that Φ̂ is a
self-adjoint operator. Then, the inequality:

σ(Ĝ) ≥ | 〈[Ĝ, Φ̂]〉 |√
〈Φ̂†Φ̂〉+

√
〈Φ̂Φ̂†〉

, (37)

holds. The expectation value 〈[Ĝ, Φ̂]〉 = 〈ψ|[Ĝ, Φ̂]|ψ〉 is taken with respect to a state |ψ〉.
This is a generalization of (27) and its proof is straightforward.

On the left-hand side of (37), the standard deviation σ(Ĝ) measures uncertainty
of the charge, while on the right-hand side of (37), the commutator [Ĝ, Φ̂] represents
transformation of Φ̂ by Ĝ. If the state |ψ〉 is invariant under the transformation generated
by Ĝ, then 〈ψ|[Ĝ, Φ̂]|ψ〉 = 0. If the order parameter 〈[Ĝ, Φ̂]〉 exhibits a nonzero value, then
the state is not invariant and the uncertainty of the charge must satisfy inequality (37).
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This formulation is applicable to the uncertainty relation between the particle num-
ber and the phase. In this case, we take Ĝ = â†â and Φ̂ = â, with the creation and
annihilation operators â† and â.

This formulation is applicable also to the complementarity relation [18] between the
particle and wave natures.

7. Summary

The uncertainty relation between angle and orbital angular momentum does not
have a formulation similar to the uncertainty relation between position and linear momen-
tum. The angle variable is not represented by a quantum mechanical self-adjoint operator,
although the other observables are represented by self-adjoint operators. We reviewed
the general formulation of the uncertainty relation between noncommutative observables,
which was proved by Robertson. Instead of the angle variable operator, we introduced the

complex position operator Ẑ = x̂+ iŷ and interpreted the order parameter µ = 〈Ẑ〉/
√
〈Ẑ†Ẑ〉

as a measure of certainty of angle distribution. Then, we have proven relation (27) between
the uncertainty of angular momentum and the certainty of angle. We proved relations (32),

which are generalizations to higher moments of angular distribution µn = 〈Ẑn〉/
√
〈(Ẑ†Ẑ)n〉.

We proved also the tightest inequality (36). A theoretical generalization to the uncertainty
relation (37) between a symmetry generator and an order parameter was shown. Methods
for controlling angular momenta of photons and electrons were discussed. Quantitative
experimental tests of the relations will be discussed in future publications.

In this paper, we considered uncertainties of values of observables that are inherent
in quantum states. However, we did not consider measurement process of observables.
An actual measurement process involves measurement error and causes disturbance on the
state of the measured system. Ozawa [19] formulated a quantitative relation between the
measurement error and the disturbance. Branciard [20] established the tightest inequality
that the error and the disturbance obey. We do not yet know this kind of error-disturbance
relation for the angle and angular momentum.

Hayashi [21] formulated quantum estimation theory for the group action, which can
be regarded as a generalization of the problem that was considered in our work. This aspect
warrants further investigation.
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