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The motion of a quantum particle in a time-dependent circular billiard is studied on the basis of the

Schrödinger equation with time-dependent boundary conditions. The cases of monotonically expanding

(contracting), non-harmonically, harmonically breathing circles the case when billiard wall suddenly disap-

pears are explored in detail. The exact analytical solutions for monotonically expanding and contracting

circles are obtained. For all cases, the time-dependence of the quantum average energy is calculated. It is

found that for an harmonically breathing circle, the average energy is time-periodic in the adiabatic regime

with the same period as that of the oscillation. For intermediate frequencies which are comparable with the

initial frequency of the particle in unperturbed billiard, such periodicity is broken. However, for very high

frequencies, the average energy once again becomes periodic. A qualitative analysis of the border between

adiabatic and non-adiabatic regimes is provided.
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1. Introduction
Billiards are convenient models for the study of classical and quantum dynamics of

non-integrable systems. They have been extensively studied in both experimental [1] and the-
oretical contexts [2,3]. A remarkable feature of particle motion in billiards is the dependence
of the dynamics on the geometry of the billiard boundaries. Depending on the geometry, the
dynamics can be regular, mixed or chaotic in the classical case. The corresponding quantum
dynamics exhibit certain features in the statistical properties of the energy spectrum. For
those systems, whose classical dynamics are chaotic, the nearest-neighbor energy level spac-
ing distribution function of the corresponding quantum system is of Wigner type, while for
regular systems this distribution is Poissonian [2,3]. Most of the studies on billiards deal with
static billiards. However, in recent years there is a growing interest in the classical dynamics
of time-dependent billiards [4]- [8]. One of the key questions that has been investigated
is whether there will be Fermi acceleration in such two-dimensionally confined geometries.
Studies of time-dependent billiards with a regular static counterpart, such as the breathing
circle, show that there is no unbounded growth of the velocity, while for some non-integrable
geometries, like the stadium [4,5] and the (eccentric) annular billiard [6], Fermi acceleration
is possible. Recently, the classical dynamics of particles in time-dependent elliptic billiard
have been studied and tunable Fermi acceleration has been shown to exist in such a system,
even though the static counterpart is integrable [7, 8]. Despite certain progress made in the
study of the classical dynamics of time-dependent billiards, the quantum dynamics of such
systems are still an open problem. At the present time , no detailed treatment of the problem
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on the basis of two-dimensional time-dependent Schrödinger equation has yet been done. In
the quantum case, the problem of time-dependence is reduced to solving the two-dimensional
Schrödinger equation with time-dependent boundary conditions. The one-dimensional coun-
terpart of this problem has been extensively studied [10] - [28]. These studies showed that
even for the one-dimensional case, the Schrödinger equation with time-dependent boundary
conditions cannot be solved exactly for an arbitrary time-dependence of the boundary condi-
tions. In the case of the 1D box, the time-dependent boundary conditions can be reduced to
static ones, leading to a Schrödinger equation which can be interpreted as a time-dependent
confined harmonic oscillator [13, 16–18]. Makowsky et al. solved this problem for special
cases of the time-dependence of the boundaries [16]. In particular, they classified the types
of time-dependent boundary conditions for which an exact analytical solution of the problem
can be obtained.

In the case of periodic (harmonic) time-dependence of the boundaries, the problem
can be solved numerically by an expansion of the wave function in terms of Gaussian wave
packets [17]. Scheininger and Kleber treated the case of a special type of periodically time-
dependent boundaries by solving the problem in terms of the full-circle propagator [15]. Seba
studied the case of time-periodic boundary conditions in terms of Floquet operators [24]. In
a very recent work, Ref. [28], the quantum infinite square well with an oscillating wall was
studied. It was shown that three types of regimes are possible in such a system, which can be
classified as adiabatic (for low oscillation frequencies), chaotic (for intermediate frequencies)
and periodic (for high oscillation frequencies). In particular, the average energy was found
to be time-periodic for the adiabatic and periodic regimes, while for the chaotic regime,
periodicity was broken.

In this work, we address the two-dimensional extension of the problem considered
by Makowski et al. [16]. We solve the Schrödinger equation for the circular billiard with a
time-dependent radius. In particular, we consider the following cases:
i) monotonically expanding (contracting) circle;
ii) non-harmonically breathing circle;
iii) harmonically breathing circle.

The classical counterpart of this system has been studied earlier Ref. [30], where it was
shown that unbounded velocity gain is not possible. In Ref. [31] dynamics, statistical prop-
erties of quasi-energy levels and wave functions for the quantum system have been studied
for harmonically oscillating circle. The ”scars” in the quantum quasi-energy eigenfunctions
corresponding to classical unstable periodic orbits were found in [31].

This paper is organized as follows: in the next section we briefly recall the case of the
circular billiard with fixed boundaries. Section 3 presents the analytical solution when time
and coordinate variables can be separated. In section 4, we study the case when billiard wall
disappears suddenly. Non-harmonically breathing circle is studied in section 5. Section 6
provides detailed study of the circle with harmonically oscillating boundaries, by solving the
time-dependent Schrödinger equation numerically. Finally, section 7 presents the discussion
of the obtained results and some concluding remarks.

2. Static circular billiard

The circular billiard is defined by the potential:

V (r, θ) = V (r) =

{
0 for r < r0,

∞ for r � r0,
(1)



226 D.B. Babajanov, D.U. Matrasulov, Z.A. Sobirov, S.K. Avazbaev, O.V. Karpova

where r0 is the radius of circle. The corresponding quantum mechanical eigenvalue problem
is given by:
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∂2

∂θ2

)
ψ(r, θ) = Eψ(r, θ), (2)

with μ being the mass of the particle. Angular and radial variables in this equation can be
separated with ψ(r, θ) = R(r)Θ(θ) (the system of units μ = � = 1 is used throughout the
paper)
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r
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)
+
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2r2
R = ER, (3)

d2Θ(m)(θ)

dθ2
= −m2Θ(m)(θ), (4)

where R(r) and Θ(θ) are the radial and angular solutions, respectively, and m is the angular
quantum number. The boundary conditions for Eqs. 3 and 4 are given by:

R(r0) = 0,

Θ(m)(θ + 2π) = Θ(m)(θ).

We note that using the substitution R(r) = u(r)/
√
r, Eq.(3) can be reduced into a form

which does not contain the first derivative of the radial wave function:

−1

2

d2u

dr2
+
m2 − 1/4

2r2
u = Eu. (5)

The solution for the radial equation satisfying the above boundary condition can be written
in terms of the regular Bessel functions [29, 33–35]:

Rmn(r) = NmnJm(λmnr), (6)

where n is the radial quantum number and the eigenvalues are defined by:

Emn =
λ2mn

2r20
, (7)

λmn is the n-th zero of the m-th Bessel function Jm(r) and Nmn is the normalization constant
given by:

N2
mn

r0∫
0

| Jm(λmnr) |2 rdr = 1. (8)

The angular equation has normalized solutions of the form:

Θ(m)(θ) =
1√
2π
eimθ. (9)

Eqs. (6) -(9) completely define the solution of the time-independent quantum mechanical
circular billiard problem.
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3. Monotonically expanding circle

Now, we proceed to a time-dependent circle. The central symmetry of the circular
billiard allows us to solve the problem within the radial Schrödinger equation. We restrict
ourselves to the case when just the radius of the circle is time-dependent so that central
symmetry is remained. First, we consider a monotonically expanding (contracting) circle.
For circular billiards with time-dependent radius, the radial Schrödinger equation can be
written as:

i
∂R

∂t
= −1

2

∂2R

∂r2
− 1

2r

∂R

∂r
+
m2

2r2
R, (10)

and the boundary conditions are given by:

R(r(t), t) = 0 for r = r0(t).

As shown earlier for example in Refs. [11]- [18], to solve Eq.(10) we need to make the
boundary conditions time-independent. This is can done by using the coordinate transfor-
mation:

y =
r

r0(t)
. (11)

Thus, Eq.(10) reduces to:

i
∂R(y, t)

∂t
= − 1

2r20

∂2R

∂y2
−
(

1

2r20y
− i

ṙ0
r0
y

)
∂R

∂y
+

m2

2r20y
2
R. (12)

Inserting the substitution:

R(y, t) =
1

r0(t)
√
y
exp

(
i

2
ṙ0(t)r0(t)y

2

)
φ(y, t), (13)

into Eq.(12), we get:

ir20
∂φ

∂t
= −1

2

∂2φ

∂y2
+

(
1

2
r30 r̈0y

2 +
m2 − 1/4

2y2

)
φ. (14)

Eq.(14) can be interpreted as the Schrödinger equation for a time-dependent harmonic os-
cillator confined to a unit circle. Time and coordinate variables in Eq.(14) can be separated,
provided that the following condition is fulfilled:

r30 r̈0 = const = −C, C > 0. (15)

Separating variables by:

φ(y, t) = ϕ(y)T (t),

we get:

−1

2

d2ϕ

dy2
+

(
−1

2
Cy2 +

m2 − 1/4

2y2

)
ϕ = k2ϕ, (16)

and

ir20
dT

dt
= k2T (t), (17)

where k is the separation constant. The general solution for Eq.(15) can be written as:

r0(t) =
√
at2 + bt + c, (18)

where

C =
b2 − 4ac

4
.
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For C = b2

4
we have a circle expanding with non-constant velocity:

r0(t) =
√
at + b. (19)

For C = 0 this solution corresponds to a linearly expanding (contracting) circle:

r0(t) = at+ b.

For the linearly expanding (contracting) circle, Eq. (16) is formally the same as Eq. (5), the
one for the static circular billiard. However, because of the relation (13), the solution of
the original time-dependent radial equation (10) is different from that of the static circular
billiard. For the time-dependent radial wave function, we have:

Rmn(r, t) =
1

r0(t)Jm+1 (λmn)
exp

(
i

2

ṙ0(t)

r0(t)
r2
)
Jm

(
λmnr

r0(t)

)
exp

⎛
⎝−i

t∫
0

λ2mndτ

r20(τ)

⎞
⎠ . (20)

For a = 0, the solution coincides with the one of the static billiard given by Eq.(6). For
C �= 0, the solution of Eq. (16) is expressed in terms of the confluent hypergeometric
functions [35]:

ϕ(y) = ym+1/2e−0.5i
√
Cy2M(d,m+ 1, i

√
Cy2), (21)

where:

d =
m+ 1

2
+

k2

2
√
C
i.

The eigenvalues k are defined by the condition ϕ(1) = 0, or:

M(d,m+ 1, i
√
C) = 0, (22)

where only d depends on k. Thus the solution of Eq.(10) can be written as:

Rmn(r, t) = Nmn
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2
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√
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2
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√
C

r2

r20(t)

)
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⎛
⎝−ik2mn

t∫
0

dτ

r20(τ)

⎞
⎠ , (23)

where Nmn is the normalization constant given by∫
|Rmn|2 rdr = 1.

A quantity which is of interest from the viewpoint of Fermi acceleration in time-
dependent billiards, is the average kinetic energy, which is defined as:

〈Em(t)〉 = 〈ψ(r, t)|H|ψ(r, t)〉,
where:

H = −1

2

∂2

∂r2
− 1

2r

∂

∂r
+
m2

2r2
. (24)

The asymptotic behavior of the average energy for the linearly expanding (contracting) circle
in the limits t→ ∞ and r0(t) → ∞ can easily be estimated. Indeed, since radial and angular
variables are separated and H does not depend on the angular variables, the average energy
can be written in terms of the time-dependent radial wave functions as:

〈Emn(t)〉 =
∫ r0(t)

0

R∗
mn(r, t)HRmn(r, t)rdr =

1

2

∫ r0(t)

0

| ∂Rmn

∂r
|2 rdr + m2

2

∫ r0(t)

0

| Rmn |2
r

dr.
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Taking into account the relation:

| ∂Rmn

∂r
|2= 1

r20(t)J
2
m+1(λmn)

[(
ṙ0
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J2
m
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we get:

〈Emn(t)〉 = C1 + C2
1

(at + b)2
, (26)

where the constants C1 and C2 are given by:

C1 =
a2

J2
m+1(λmn)

∫ 1

0

y3J3
m(λmny)dy, (27)

C2 =
1

J2
m+1(λmn)

∫ 1

0

(
∂

∂y
Jm (λmny)

)2

ydy +
m2

J2
m+1(λmn)

∫ 1

0

1

y
J2
m(λmny)dy. (28)

From Eq.(26), the average energy of the particle in a linearly expanding (a > 0)
circle goes to Emn(t) → C1 for t→ ∞, while for the linearly contracting (a < 0, b > 0) circle
we get asymptotically Emn(t) → +∞ for t → − b

a
. Such asymptotic behavior is confirmed

by Fig. 1, where 〈Emn(t)〉 is shown for the linearly expanding and contracting circles for
different values of the expanding (contracting) velocities a. It is clear that the difference
between adiabatic (a << 1) and non-adiabatic (a >> 1) regimes is exhibited in the decay
rate of the curve. Furthermore, the curves are symmetric for the expanding and contracting
circles (for the same expanding/contracting velocities). We note that the above described
asymptotic behavior is true not only for linearly expanding (contracting) circles but also
for other types of monotonically expanding circles, as long as the radius is given by either
Eqs. (18) or (19).

4. Suddenly removed billiard walls

In the time-dependent billiard problem, it is important to explore differences between
adiabatic and non-adiabatic regimes of the wall’s motion. In this section, we consider the
case when the billiard wall is removed (disappears) suddenly. To some extent, this situation
is equivalent to when the billiard expands with infinite velocity, so that it can be considered
a highly non-adiabatic regime. A similar problem for the one-dimensional infinite well has
been previously considered [27] in the context of diffraction in time. Our purpose is to
explore the time-evolution of the wavefunction, mean position, and its time derivative for
such regime of wall’s motion. We assume that at t = 0 the initial state wavefunction of the
system is the eigenstate of the circular billiard given by:

ϕmn(r, θ) =

√
2

r0Jm+1(λmn)
Jm

(
λmnr

r0

)
eimθ. (29)

Time evolution of the wavefunction can be calculated using the Green’s function, G(r, t; r′, 0)
[27]

ψ(r, t) =

∫
dr′G(r, t; r′, 0)ψ(r′, 0). (30)

For the case of circular billiard the time evolution is given by [polyanin]

ψ(r, θ, t) =
1

2πit

∫ 2π

0

∫ r0

0

r′ exp
[
i
r2 + r′2 − 2rr′ cos(θ − θ′)

2t

]
ϕ(r′, θ′)dr′dθ′, (31)
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Fig. 1. The time-dependence of the quantum average energy for linearly ex-
panding r0(t) = b1 + at (left panel) and (with the same velocity as that of the
expanding circle) contracting r0(t) = b2 − at (right panel) circles. The initial
state is taken to be an eigenstate of (16) with m = 1, n = 1. The parame-
ters are: A) a = 0.01, b1 = 25, b2 = 75, B) a = 0.5, b1 = 25, b2 = 125, C)
a = 10.0, b1 = 25, b2 = 525

and for m = 0:

ψ(r, t) =
1

it

∫ r0

0

r′ exp
[
i
r2 + r′2

2t

]
I0

(
−irr

′

t

)
ϕ(r′)dr′, (32)

where I0(r
′) is the modified Bessel function. The wavefunction is normalized as:

N(t) =

∫ ∞

0

|ψ|2rdr = 1. (33)

The mean position can be calculated as:

〈r(t)〉 =
∫ ∞

0

|ψ|2r2dr. (34)

In Fig. 2, we show the r-dependence of them = 0, n = 3 circular billiard wavefunction
(with initial radius r0 = 40) at different moments of time (t = 100, t = 300, t = 500). It is
clear that the wavefunction decays with increasing r and completely disappears at upper r-
limit. The decay distance is longer as t is longer. In addition, we explored the time evolution
of the wavefunction, mean position and its time derivative after removing the wall. As an
initial state, we chose the static billiard wavefunction for m = 0, 1, 2, n = 1, 2, 3. The results
are shown in Fig. 3. As we can see in Fig 3, where the mean position (left panel) and its
time derivative (right panel), after some initial period the states will expand with constant
velocity. As can be seen from Fig. 3, 〈r(t)〉 grows monotonically in time. This implies that
the motion of the particle is not localized after the wall’s removal and can go to infinity; as
large as the initial state energy and as high as the growth rate of 〈r〉. Completely different
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behavior can be observed for d〈r(t)〉
dt

; unlike the mean position, d〈r(t)〉
dt

grows during some initial
time period, after which it becomes constant. Again, the growth rate is proportional to the
initial state energy. The accuracy of wavefunction evolution has been checked by monitoring
norm conservation.

Fig. 2. The wavefunction of m = 0, n = 3 state as a function of r (the real
part (black), the imaginary part (red), the absolute value of the wavefunction
(green)): A) t = 100, B) t = 300, C) t = 500

5. Non-harmonically breathing circle

In this section, we consider the following type of time- dependence:

r0(t) =

{
ρ0 + vt, 0 < t < 1

2
T,

ρ0 + v(T − t), 1
2
T < t < T.

(35)

This means that the time-law of the radius is periodic but not harmonic and it is still possible
to find an exact solution of Eq.(14). For a fixed value of T , it is clear that the oscillation
amplitude depends on the velocity, v: the higher the velocity the larger the amplitude will
be. The oscillation frequency is defined as ω = 2π/T . We have to solve Eq.(14) with the
boundary conditions φ(0, t) = φ(1, t) = 0. The boundary condition at y = 0 follows from
the substitution (13). It is clear that the motion of the boundary can be considered as the
(subsequent) combination of linearly expanding and contracting circles.
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Fig. 3. Mean position and its time-derivative (expansion rate). n = 1 (black),
n = 2 (red), n = 3 (green)

The one-dimensional Schrödinger equation with such a boundary condition is solved
in Ref. [15] in terms of the full-cycle propagator. Here, we use the same prescription as in
Ref. [15] to obtain the solution for Eq.(14). The solution for Eq.(14) can be found in each
time interval, 0 < t < 1

2
T and T < t < T , from which, general solutions can be constructed.

First, we note that for r30 r̈0 = 0, time and coordinate variables in Eq.(14) can be separated
and the solution can be written as:

φmn(y, t) =

√
2

Jm+1(λmn)

√
yJm (λmny) exp

⎛
⎝−2iλ2mn

t∫
0

dτ

r20(τ)

⎞
⎠ , (36)

where 0 < λm1, < λm2, < ... are zeros of the Bessel function given by Jm(λmn) = 0. In the
following, the angular quantum number m will be considered as fixed, and consequently,
we will omit the subscript m in the following. The solution of Eq.(14) in the time interval
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0 < t < 1
2
T can be written in terms of the functions (36) as:

φ(y, t) =

∞∑
n=1

Anφn(y, t).

The expansion coefficients can be found as Fourier coefficients using the initial value of φ
i.e. from the relation:

φ(y,+0) =
N∑

n=1

AnYn(y), (37)

that gives:

An =

1∫
0

Yn(y) · φ(y,+0) dy,

where:

Yn(y) =

√
2

Jm+1(λmny)

√
yJm (λmny) .

To find the solution in the general case, we note that:

r0r̈0y
2 = −2vy2

[
ρ1δ

(
t− 1

2
T

)
− ρ0δ(t− T ) + ...

]
, (38)

where ρ1 = ρ0 +
1
2
vT. The solution of Eq.(14) jumps at t = 1

2
T :

φ

(
y,

1

2
T + 0

)
= exp

(
ivy2ρ1

)
φ

(
y,

1

2
T − 0

)
. (39)

The solution of Eq.(14) in the interval 1
2
T < t < T can be written as:

φ(y, t) =

∞∑
n=1

ÃnYn(y) exp

⎛
⎜⎝−2iλ2mn

t∫
T/2

dτ

r20(τ)

⎞
⎟⎠ , (40)

where Fourier coefficients can be found as:

Ãn =

1∫
0

Yn(y)φ

(
y,

1

2
T + 0

)
dy =

1∫
0

Yn(y)e
ivy2ρ1φ

(
y,

1

2
T − 0

)
dy =

=
∑
l

Al exp

⎛
⎝−2iλ2ml

T/2∫
0

dτ

r20(τ)

⎞
⎠ 1∫

0

Yn(y)e
ivy2ρ1Yl(y)dy.

At t = T the solution has a jump:

φ(y, T + 0) = e−ivy2ρ0φ(y, T − 0).

Expanding φ(y, T + 0) in terms of φn(y, T + 0), we get:

φ(y, T + 0) =
∑
n

Ānφ(y,+0) =
∑
n

ĀnYn(y),

we can find expansion coefficients as:

Ān =

1∫
0

Yn(y)φ(y, T + 0)dy =

1∫
0

Yn(y)e
−ivρ0φ(y, T − 0)dy =
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=
∑
j

Ãj exp

⎛
⎜⎝−2iλ2mj

T∫
T/2

dτ

r20(τ)

⎞
⎟⎠

1∫
0

Yn(y)e
ivy2ρ1Yj(y)dy =

∑
l

AlUnl.

The full-cycle propagator is given by:

Unl =
∑
j

Cjl(ρ1) exp

(
−i T

ρ0ρ1
λ2ml

)
C∗

nj(ρ0) exp

(
−i T

ρ0ρ1
λ2mj

)
,

with

Cnj(ρ) =

1∫
0

Yn(y)e
ivy2ρYj(y)dy.

Fig. 4. Time-dependence of the quantum mechanical average energy for the
circular billiard with non-harmonically oscillating radius for different oscilla-
tion parameters, m = 1, l = 1, A) T = 500, v = 0.002, ρ0 = 1.0, B) T = 20,
v = 10, ρ0 = 30

Thus, we have derived the full-cycle propagator for the non-harmonically breathing
circle. Eq.(38) implies that the frequency of the harmonic oscillator in Eq.(14) has a periodic
delta-kicking form. This reduces our problem to solving the Schrödinger equation with a
delta-kicking potential (where between the kicks circle expands/contracts linearly), whose
solution can be obtained in terms of the full-cycle propagator describing the (exact) evolution
of the wave function within one period. Having obtained the full-cycle propagator, we can
find solutions for the full time-period 0 < t < T , from which one can construct the solutions
for any number of periods.
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Fig. 5. Magnification of the selected part in Fig.2(B)

In Fig. 4, the time-dependence of the average energy is plotted for different values of
v, T and ρ0. The expansion coefficients for the initial state (in Eq. (37)) are chosen as:

An(0) =

∫ 1

0

ϕn(y)ϕl(y) exp

(
− i

2
ṙ0(t)r0(0)y

2

)
dy, (41)

so that 〈E(0)〉 = λ2
ml

2r20
.

It is clear that in the adiabatic regime (for high oscillation periods), the time-
dependence of 〈E(t)〉 is periodic and for each period it can be separated into symmetric parts,
which correspond to linearly expanding and contracting circle average energies (Fig. 4(A)).
However, this symmetry is broken in the non-adiabatic regime, corresponding to small oscil-
lation periods. This can be seen from Fig. 4(B), where 〈E(t)〉 is plotted for T = 20, v = 10
and ρ0 = 30. Such a behavior can be explained by the fact that in the adiabatic regime, the
particle follows the wall’s motion, while for higher frequencies, it cannot follow the wall’s
motion. This leads to a breaking of the symmetry, i.e. parts of 〈E(t)〉 (within one period)
corresponding to contracting and expanding circles are not symmetric. This can be clearly
seen from Fig. 5, which presents the magnification of a part of the 〈E(t)〉−curve (Fig. 4(B))
for the time interval from 10 to 30. It is clear that the maximum value of the left hand
part (corresponding to contracting circle) is much smaller than that of the right hand part
corresponding to the expanding circle. Such an asymmetry is caused by the presence of a
delta-function in the Schrödinger equation. As follows from Eq. (38), the potential in the
Schrödinger equation has a jump at t = T/2. This jump is as high as the value of v in
Eq. (38). Therefore for smaller velocities the jump is quite small, while for higher values of
v it is much larger and can be clearly seen in Fig. 5.

6. Harmonically breathing circle

As we have seen in the previous sections, an analytical solution of the Schrödinger
equation of the circular billiard with a time-dependent radius and corresponding boundary
conditions is possible in a few cases of the time-dependence only. In particular, no analytical
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solution can be obtained in the case of a harmonic time-dependence, since time and coordi-
nate variables cannot be separated in the Schrödinger equation. In this section, we consider
the case of a harmonically oscillating radius which is given by:

r0(t) = a+ b cos(ωt), (42)

where ω is the oscillation frequency. The classical dynamics of circular billiards with oscillat-
ing boundaries have been investigated in the context of Fermi acceleration [29] and particle
motion inside collectively excited nuclei [32]. In Fig. 6, the time-dependence of the energy
averaged over an ensemble of 1000 trajectories is plotted for ω = 2 and ω = 5 for the classical
system. The growth of the energy is strongly suppressed for both values of the frequency.
It is clear that the character of suppression is the same for both frequencies, although the
critical value at which suppression starts is higher for higher frequency values. This is in
good accordance with previous studies of the breathing circle, see, e.g., Refs. [29, 30].

To numerically solve Eq. (14) with the boundary conditions given by Eq. (42), we
expand the function φ(y, t) in terms of the eigenfunctions of Eq.(14) at C = 0:

φ(y, t) =
∑
n

cn(t)ϕn(y), (43)

where:

ϕn(y) =

√
2yJm(λmny)

Jm+1(λmn)
. (44)

Inserting the expansion (43) into Eq.(14) we have:

ir20
∑
n

ċnϕn =
∑
n

cn

(
λ2mn

2
+

1

2
r30 r̈0y

2

)
ϕn. (45)

By multiplying with ϕ∗
k and integrating over y from 0 to 1, we get a system of differential

equations for the expansion coefficients cn(t):

ċn(t) = − i

2r20
λ2mncn −

i

2
r̈0r0

∑
k

Mknck, (46)

where:

Mkn =

∫ 1

0

ϕn(y)ϕk(y)y
2dy.

The system of differential equations (46) is solved using ZVODE package [26], which
uses variable-coefficient methods. The number of basis functions for the results presented
in Figs. (7-10) was taken as 200, while for those in the Fig. 9 we used 3000 basis functions.
The convergence of the calculations are checked by increasing the number of basis functions.

Solving Eqs.(46) numerically, we obtain φ(y, t) and thus the radial wave functions
R(y, t). The average energy can be calculated as:

〈Em(t)〉 =
∫ 1

0

R∗(y, t)HR(y, t)ydy =

=
1

2r20

(∑
n

|cn|2λ2mn + r20 ṙ
2
0

∫ 1

0

y2|φ|2dy + 2r0ṙ0Im

∫ 1

0

yφ∗∂φ
∂y
dy

)
. (47)

Using Eq. (47), we numerically compute the average energy as a function of time
for different oscillation frequencies. The initial values of the expansion coefficients can be
chosen using Eq. (41). Then, for harmonically oscillating boundary (Eq. (42)) the expansion
coefficients of the initial state become cn(0) = δnl, because ṙ0(0) = 0 in Eq. (41).
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Fig. 6. Time-dependence of the classical average energy for circular billiard
with harmonically oscillating radius; black - r0(t) = 20+ cos(2t), red - r0(t) =
20 + cos(5t)

Fig. 7. Time-dependence of the quantum average energy (A) and mean po-
sition (B) for the circular billiard with harmonically oscillating radius; m = 0,
l = 1, r0(t) = 40 + cos(0.0005t)

Furthermore, we compare 〈Em(t)〉 for different regimes of the wall’s motion:
a) slowly oscillating (adiabatic) wall,
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Fig. 8. Time-dependence of the quantum average energy (A) and mean po-
sition (B) for the circular billiard with harmonically oscillating radius; m = 0,
l = 1, r0(t) = 40 + cos(0.6t). (C) is the magnification of the selected part in
(B)

Fig. 9. Time-dependence of the quantum average energy (A), r0(t)/2 (B) and
mean position (C) for the circular billiard with harmonically oscillating radius;
m = 0, l = 1, r0(t) = 40 + cos(250t)

b) high oscillation frequency,
c) intermediate wall oscillation frequencies.

In Fig. 7(A), the time-dependence of the average energy, 〈Em(t)〉 is plotted for the
adiabatic regime (ω = 5×10−4). As can be seen from this figure, 〈Em(t)〉 is periodic in time
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Fig. 10. Time-dependence of the quantum average energy for the circular
billiard with harmonically oscillating radius; m = 0, l = 1, r0(t) = 40+cos(ωt),
A) ω = 0.02, B) ω = 0.1, C) ω = 1.7

and the period is the same as the period of the applied driving law. This can be explained by
the fact that in the adiabatic regime, the particle follows the wall’s motion. This is clearly
seen from Fig. 7(B), where r0(t)/2 is compared with the expectation value of the position of
the particle in billiard, 〈r(t)〉.

Fig. 8(A) presents 〈Em(t)〉 for higher values of the wall’s oscillation frequency, (ω =
0.6). It is clear that the periodicity of 〈Em(t)〉 is broken and this can be explained by
Fig. 8(B), where r0(t)/2 and the mean position are compared for this regime. For this value
of the frequency, the motion of the billiard particle is no longer adiabatic and it doesn’t
follow the wall’s motion.

In Fig. 9(A), the time-dependence of the average energy is plotted for a very high
frequency value, ω = 250. It is clear from this plot that the periodicity of 〈Em(t)〉 is recovered
in this highly oscillating regime. Comparison of 〈r(t)〉 and r0(t)/2 in Fig. 9(B) shows that
the particle doesn’t ”feel” the wall’s motion in this regime.

Finally, a remarkable feature of the harmonically breathing circle can be observed
in the intermediate regime. Namely, for some values of the frequency 〈Em(t)〉 can be time-
periodic with the period which is much larger than that of wall’s oscillation. Fig. 10 presents
the plots of the average energy for (ω = 0.02, ω = 0.1, ω = 1.7) which exhibit such a
periodicity. The appearance of such periodicity for intermediate oscillation frequencies may
be caused by the existence of a special resonance-like regime of motion where the periodic
motion is possible for certain frequencies only.

To qualitatively determine the border between the adiabatic and non-adiabatic regimes,
we study the behavior of the expansion coefficients, cn for different oscillation frequencies.
It is clear that billiard wall’s position changes very slowly, the wavefunction of the billiard
particle should be slightly different than that of the static billiard. Therefore, in the wave-
function of the adiabatically expanding (contracting) billiard, which is given by Eq.(43) only
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Fig. 11. The absolute value of the dominating expansion coefficient (|cD|)
as a function of ω, measured after one period (black curves), and after two
periods (red curves). Initial states are A) m = 0, n = 1, B) m = 0, n = 2, C)
m = 0, n = 3

one expansion coefficient, cD (which corresponds to the initial state) is dominating. Thus,
the dependence of this coefficient on the expansion (contraction) rate can be considered
as an indicator for the fact whether wall’s motion adiabatic or not. In application to the
harmonically breathing billiard, this implies that the breaking of the dominance of the co-
efficient cD coefficient when the oscillation frequency reaches some threshold value can be
considered as a breaking of the adiabatic regime. Fig. 11 represents |cD| as a function of the
wall’s oscillation frequency, ω. Up to a certain value of ω, |cD| is approximately equal to 1.
After exceeding some (critical) value of ω, |cD| starts to become less than 1, which implies
breaking of the adiabatic regime.

Thus, we can conclude that for the harmonically breathing circle the behavior of the
average energy as a function of time is mostly similar to that of harmonically oscillating 1D-
box, studied in the Ref. [28]. However, unlike to that system, in the breathing circle, 〈Em(t)〉



Time-dependent quantum circular billiard 241

can be time-periodic even for certain frequency values, which belong to the intermediate
frequency range.

7. Conclusions

We have studied the quantum dynamics of a circular billiard with different driving
laws for the radius. An exact analytical solution was obtained for cases of monotonically
expanding and contracting circles. Non-harmonically time-periodic boundary conditions
(sawtooth-like motion) were considered in terms of the analytically-derived full-cycle propa-
gator. Using this propagator, the time-dependence of the average energy was calculated. It
was found that in the adiabatic regime, when the wall moves slowly, the time-dependence
of the average energy was periodic and for each period, 〈E(t)〉 can be constructed from
corresponding 〈E(t)〉s of linearly expanding and contracting circles. In other words, the part
of the curve for the average energy corresponding to one period consisted of two symmetric
parts, describing linearly expanding and contracting circles. However, for smaller oscillation
periods when adiabaticity was broken, such symmetry was broken, though 〈E(t)〉 was still
periodic. To explore more deeply the difference between adiabatic and highly adiabatic
regimes, we considered the case when billiard wall suddenly disappears. It was found for
this case that the mean position of the billiard particle grew monotonically in time, which
implies that over a long period, the motion becomes infinite.

The case of the harmonically breathing circle was studied by solving the time-
dependent Schrödinger equation numerically by means of a basis set expansion. When the
oscillation frequency of the radius was very small (compared to the initial frequency, ω0), the
systems remained in the adiabatic regime and 〈E(t)〉 was periodic with the same period as
that of the applied driving law. Such periodicity broken down by increasing the oscillation
frequency. However, for some intermediate range frequencies, 〈E(t)〉 can become periodic
in time with a period much larger than that of the driving law. For very high oscillation
frequencies, the average energy became time-periodic again, with the same period as that of
the driving law. The border between adiabatic and non-adiabatic regime is roughly defined
by the dependence of the dominating expansion coefficient in Eq.(43) on the wall’s oscilla-
tion frequency. Namely, the situation when the dominance of these coefficients breaks can be
considered as a fingerprint for the transition from an adiabatic into a non-adiabatic regime.
In our opinion, the explanation of such periodicity requires deeper exploration of the studied
system, which will be the subject of forthcoming research. Finally, the importance of the
above study is due to its direct relevance to quantum Fermi acceleration in confined geome-
tries and the problem of quantum dynamics in driven systems. The latter is of importance
for many mesoscopic and nanoscale systems such as quantum dots, confined cold atoms and
molecules. Finally, we note that extension of the above study to the case of open quantum
billiards is of importance because of their direct relevance to quantum dots. Currently, such
studies are ongoing.
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