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Non-stationary second harmonic generation by femtosecond pulses, taking into account both group velocity
mismatch and dispersion in nonlinear photonic crystals (quasi-phase matched crystals) with domains of
arbitrary sizes has been studied numerically. A simulated-annealing algorithm, working on the basis of
numerical calculation, is developed to design quasi-phase matching gratings which can yield the desired
amplitude and phase profile for second-harmonic pulses in the presence of pump depletion.
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1. Introduction

Nonlinear Photonic Crystals (NPC) are of great interest because of their utility in
practical applications, where it is necessary to control laser radiation. This interest in NPC’s
is especially warranted because they do not require the phase matching, which is necessary
for uniform nonlinear crystals [1]. In such type of crystals, phase matching (or phase syn-
chronism) of the interacting waves is obtained by periodically changing the sign of the
second-order susceptibility, effectively widening the spectral range of frequency converters.
Quasi-phase matched (QPM) or NPC gratings can also be used to provide dramatic pulse
compression [2-3] and improved conversion efficiencies [4-5].

QPM gratings with a non-uniform periodicity can exhibit a longitudinally variable
spectral response and entail the realization of advanced parametric processes [6], from highly
efficient second harmonic generation (SHG) and parametric amplification in the case of a
linear QPM chirp [4-5,7-9], to compression of second harmonic (SH) pulses when employing
chirped fundamental-frequency (FF) pulses, [2-3, 10-11].

One of the interesting practical tasks, which can be solved by QPM gratings during
SHG is the generation of SH pulses with arbitrarily chosen amplitude and phase profiles under
the regime of pump depletion. A few methods have been developed to this end. Among them,
the optimal control technique, based on Lagrange multipliers and real amplitudes [12-13],
was applied to tailor ultra-short SH pulses by spatially varying the size of the nonlinearity.
More recently, a similar approach was employed to design QPM gratings for picosecond SHG
from femtosecond (fs) input FF pulses [14-19].

In this work, we discuss arbitrary fs pulse shaping based on SHG in engineered
QPM in the regime of strongly depleted FF pump, taking into account both group velocity
mismatch (GVM) and dispersion (GVD). To accomplish this, in contrast to previous work
on the topic, we employ a simulated annealing algorithm (SAA), using simple fast Fourier
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transform and fourth-order Runge—Kutta algorithms. We improved the SAA, which was
developed in previous work [18].

2. Coupled-wave equations for SHG in arbitrary QPM gratings; numerical
approach

The slowly varying envelope equations describing pulse evolution under collinear fre-
quency doubling in QPM are:
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with boundary conditions:
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where A, and A, are the complex amplitudes of FF and SH pulses, respectively; A, the peak
amplitude of the FF excitation; V; and oy (Vg and ay) the group velocity and the dispersive
GVD spreading at FF (SH), respectively; 7 input pulse duration (FWHM in intensity)

v, and 7o nonlinear coupling coefficients, with v ~ v, ~ 7, =~ n(w:) 'l ~ n(2w0 def I

n(w,) and n(2w,) the refractive indices of FF and SH waves, respectively; d// the effectlve
nonlinearity d*//=x2/2; Ak = 2k;(w,) — k2(2w,) the phase-mismatch; ¢; an initial FF
phase and 0(z) the unitary sign-changing function defining the arbitrarily sized domains of
the QPM grating (see Fig. 1).
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F1G. 1. Scheme of the arbitrary QPM grating, with §(z) the dimensionless
sign-changing aperiodic function of amplitude |§(z)| = 1. The grating is com-
prised of N inverted domains with individual lengths q,, (1 < m < N)

Set (2) could be numerically integrated by various methods. The fast Fourier trans-
form for the linear portion and the fourth-order Runge-Kutta (RK) method for the nonlinear
regime ensure high accuracy and reduced iteration times. However, because of the aperiodic
nature of §(§), we resort to RK with variable integration steps dé(m) (m is the domain
number) inside each domain (see Fig. 2). GVM and GVD are accounted for by the fast
Fourier transform.
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FiG. 2. Integration scheme. Here the number of steps in each domain is j=4

3. Results

We used SAA, which was developed earlier in [18]. This stems from the high accuracy
of the PG-FROG traces used in calculating the RMS error [18]. Figure 3 shows the results
obtained for a case of FF (1560 nm) for a 100 fs FF to a Gaussian SH pulse with duration
of 100 fs with a efficiency conversion of 20 %. Here and below, for all our calculations,
we chose a 1 GW/cm? peak intensity for FF time profile. However, for the domain size,
we adopted a coarse resolution of 100 nm, two orders of magnitude larger than what is
achievable with the algorithm; we obtained an excellent convergence to the desired profile
and conversion efficiency. Figure 3 (left) plots time profiles of FF (dotted) and desired
(dashed) and calculated SH profiles (solid); Figure 3 (center) shows power evolutions of
the interaction pulses in arbitrary designed QPM grating; Figure 3 (right) shows change of
domain sizes as a function of their numbers.
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F1G. 3. Results of SAA algorithm for 100 fs SH pulse with a 20 % efficiency
(center) for Lithium Niobate crystal at 1550 nm FF wavelength: (left) FF in-
tensity distributions (doted), desired target SH profiles (dashed) and obtained
SH profile (solid); (right) change of domain sizes as a function of their numbers

Noticeably, the required grating length increased as compared to a case, when we
chose higher efficiency conversion (Fig. 4. shows these results). The grating is even longer
than above; the agreement between the target and output pulses is quite satisfactory, despite
the small but appreciable discrepancy between their PG-FROG traces. The results above
demonstrate the good performance of the algorithm when simple Gaussian SH pulses are
desired as the output, owing to the lack of sharp (temporal or spectral) features. Fig. 4.
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shows results for higher SH efficiency conversion (~40%) other parameters with the same
condition as Fig. 3. But here, the desired SH profile is chosen to be 150 fs.
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Fia. 4. Results for higher SH efficiency conversion (40%). All curves are
determined as Fig. 3. Here desired SH profile is chosen to be 150 fs

We also studied the chosen problem for shorter FF (50 fs) and SH (50 fs) pulses with
10% efficiency conversion. For this case, we could get results faster than previous cases as
shown in Fig. 5. This results from the fact that shorter nonlinear QPM crystals generate
shorter SH pulses, due to GVM between the interacting harmonics. For this we could initially
get excellent results, and secondly, faster run times than in previous cases.
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Fic. 5. Results for shorter FF (50 fs) and desired SH (50 fs) pulses with
efficiency conversion of 10%. All curves are determined as Fig. 3 and 4

It is necessary to note that for fs FF pulses it is easy to obtain the desired SH pulses
of almost the same duration with high efficiency up to 50% (we did not present that result
here). This is caused by smaller influence of GVM. But when we concentrate longer desired
SH pulses than FF pulse, the codes run for a longer time and give worse results due to
large number of domains. We believe this comes from our program interface, which was
Matlab without parallel computing. So, if we could use some program interface with parallel
computing, we could obtain excellent results more quickly for “heavy” target SH pulses.

4. Conclusions

In conclusion, we were able to design a variety of femtosecond pulse profiles through
second-harmonic generation of 100 fs and 50 fs Gaussian inputs at the FF using improved
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SAA. PG-FROG spectrograms were used to calculate RMS errors and lead to rapid conver-
gence of the method with high accuracy. The results, outlined for the relevant case of an
aperiodically poled Lithium Niobate crystal, demonstrate that proper engineering of a quasi-
phase-matched grating is feasible even under severe pump depletion and in the presence of
limited fabrication resolution. The presented results can be used for obtaining femtosecond
pulses with desired amplitude and phase profiles.
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