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We consider the problem of reconstructing the time-dependent history of electromagnetic fields from Maxwell’s
system of equations for an homogeneous anisotropic medium. As additional information, the Fourier image
of electric and magnetic field intensity vectors for values ν = 0 of transformation parameter are given. It is
shown that if the given functions satisfy some conditions of agreement and smoothness, the solution of the
posed problem is uniquely defined in a class of continuously differentiable functions.
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1. Setting up the problem and main result

The unique dependence of D and B (the electric displacement and the magnetic
induction, respectively) on E and H (the intensities of the respective fields) at the same
instance of time is violated in rapidly varying electromagnetic fields whose frequencies are
not small compared with the electric and magnetic polarization onset frequencies typical
for the medium. The values of D and B at a given time have been proven to not only
depend on E and H, but also on the entire time history of these fields (such a medium is
called a medium with aftereffect) [1]:

D(x, t) = ε̂E +

t∫
0

ϕ(t− τ)E(x, t)dτ,

B(x, t) = µ̂H +

t∫
0

ψ(t− τ)H(x, t)dτ,

E = (E1, E2, E3), H = (H1, H2, H3), D = (D1, D2, D3),

B = (B1, B1, B3), x = (x1, x2, x3),

(1)

where ε̂ = (ε̂ij)3×3 and µ̂ = (µ̂ij)3×3 are the permittivity and permeability matrices, respec-
tively; ϕ(t) = diag(ϕ1, ϕ2, ϕ3) and ψ(t) = diag(ψ1, ψ2, ψ3) are diagonal matrices represent-
ing the memory.
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Many technically important materials and crystals which have become popular in
new technologies are anisotropic. The physical properties of homogeneous isotropic crystals
do not depend on the direction and the position inside the medium. At the same time,
physical properties of anisotropic crystals essentially depend on orientation and position. An
anisotropic crystal is called homogeneous when its physical properties depend on orientation
and do not depend on position.

Suppose that, according to (1), the vectors E and H form a solution of the Cauchy
problem for the system of Maxwell’s equations for homogeneous anisotropic crystals with
zero initial data:

∇×H =
∂D(x, t)

∂t
+ j, ∇× E = −∂B(x, t)

∂t
, (x, t) ∈ R4,

E|t≤0 = 0, H|t≤0 = 0.
(2)

where j = (j1, j2, j3) is the density of the electric current with components ji = ji(x, t). The
matrices ε̂ and µ̂ in equations (1) are assumed to be known constant matrices. Moreover,
ε̂ – is a symmetric positive definite matrix. We will solve problems (1) and (2) for the case
in which the function j(x, t) has the form:

j(x, t) = ~eδ(x)δ(t), (3)
where ~e = (1, 0, 0) is unit vector; δ(x) = δ(x1)δ(x2)δ(x3) is the Dirac delta function of the
space variable concentrated at x1 = 0, x2 = 0, x3 = 0; δ(t) is the Dirac delta function of the
time variable concentrated at t = 0.

The problem in which the vectors E(x, t), H(x, t) should be determined from (1) –
(3) for a given matrix functions ϕ(t), ψ(t) will be called the direct problem.

Let Ẽ =
(
Ẽ1, Ẽ2, Ẽ3

)
(ν, t), H̃ =

(
H̃1, H̃2, H̃3

)
(ν, t) be the Fourier image of E(x, t),

H(x, t) with respect to x = (x1, x2, x3) ∈ R3, respectively, i.e.:

Ẽj(ν, t) =

∫
R3

Ej(x, t)e
i(x,ν)dx, H̃j(ν, t) =

∫
R3

Hj(x, t)e
i(x,ν)dx,

ν = (ν1, ν2, ν3) ∈ R3, (x, ν) =
3∑

λ=1

xλνλ, j = 1, 2, 3.

We pose the following inverse problem: find the functions ϕ(t) = diag(ϕ1, ϕ2, ϕ3),
ψ(t) = diag(ψ1, ψ2, ψ3) occurring in the integral in equations (1) from the information on
the Fourier image Ẽ, H̃ of the electric and magnetic fields at an arbitrary time t ≥ 0 for
the values ν = 0 of the Fourier transformation:(

Ẽ1, Ẽ2, Ẽ3, H̃1, H̃2, H̃3

)
(0, t) = g(t), g(t) = (g1, g2, ..., g6). (4)

Definition. Solutions of the inverse problem are matrix functions ϕ(t) and ψ(t), such
that the corresponding solution of problem (1) –(3) satisfies condition (4).

Among the problems devoted to determining a sub-integral function, belonging to
hyperbolic equations, we note works [2,3]. In work [2], the problem of determining the
memory, belonging to a three-dimensional wave equation with delta function at the right
side is investigated. Furthermore, in work [3], this problem is generalized in the case of
hyperbolic equation of the second order with constant main part and variable coefficients
at minor derivatives. Similar problems with distributed sources of disturbance are seen in
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works [4,5]. In article [6], the problem of reconstructing the time history of an electric
field from the electrodynamic equation is investigated. Also, we recall that papers [7,8,9,10]
are concerned with the determination of memory kernel from integro-differential equations
with an integral of convolution type. In the present paper, we consider the problem of
reconstructing the time-dependent history of the electromagnetic fields from Maxwell’s
system of equations for an anisotropic medium. It is shown that if the vector function g(t)
satisfies some conditions of agreement and smoothness, the solution to the inverse problem
is uniquely defined in a class of continuously differentiable functions on the intercept [0, T ],
where T is any positive fixed number.

The main result of the present paper is the following theorem.

Theorem. Suppose that g(t) ∈ C2[0, T ], g(0) 6= 0 and the agreement conditions:

3∑
k=1

ε̂1kgk(0) = −1,
3∑

k=1

ε̂ikgk(0) = 0, i = 2, 3;
3∑

k=1

µ̂jkg3+k(0) = 0, j = 1, 2, 3

hold. Then, the inverse problem (1) –(4) has a unique solution (ϕ(t), ψ(t)) ∈ C1[0, T ] for
any fixed T > 0.

2. Maxwell’s equations as a first order symmetric hyperbolic system

Equations (1) –(3) can be written as the following first order symmetric hyperbolic
system:

A0
∂V

∂t
+

3∑
i=0

Ai
∂V

∂xi
+ Φ0V +

t∫
0

Φ′(t− τ)V (x, τ)dτ = F (x, t), (5)

with the initial condition:

V |t≤0 = 0, (6)
where:

A0 :=

(
ε̂ 0
0 µ̂

)
6×6

, Aj :=

(
0 A1

j(
A1
j

)∗
0

)
6×6

, A1
1 :=

0 0 0
0 0 1
0 −1 0

 ,

A1
2 :=

0 0 −1
0 0 0
1 0 0

 , A1
3 :=

 0 1 0
−1 0 1
0 0 0

 , Φ0 :=

(
ϕ(0) 0

0 ψ(0)

)
6×6

,

Φ′(t) :=

(
ϕ′(t) 0

0 ψ′(t)

)
6×6

, V := (E,H)∗, F := (−j, 01×3)
∗ ;

∗ is the symbol of transposition; 01×3 denote the vector line with elements 0, 0, 0;
Φ′(t) := (∂/∂t)Φ(t).

We apply to both parts of (5) and (6) the Fourier transformation. The Fourier
transform of the vector function V (x, t) exists at any finite t, since the vector function
V (x, t) as the solution of the direct problem (5) and (6) is a sum of a certain singular
generalized vector function and a regular vector function, the support of the vector function
V (x, t) being finite [11, chapter 4]. For any fixed ν, the vector function Ṽ (ν, t) ((Ṽ (ν, t) –
the Fourier transformation of V (x, t) with respect to x) satisfies differential equation:
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A0
∂Ṽ

∂t
− iBṼ +

t∫
0

Φ
′
(t− τ)Ṽ (ν, τ)dτ = F̃ (t), (7)

the initial, and as follows from (4), the supplementary conditions, respectively:

Ṽ |t≤0 = 0, (8)

Ṽ |ν=0 = g(t), g(t) = (g1, g2, ..., g6), t ≥ 0. (9)

In equation (7), we denoted B :=
∑3

j=1 νjAj + Φ0, F̃ (t) = −~e0δ(t), ~e0 := (1, 0, 0, 0, 0, 0)∗.
We compute A−10 , which is the inverse to A0. If we denote by ε = (εij), µ = (µij)

the matrices which are the inverse to ε̂, µ̂, respectively, then:

A−10 =

(
ε 0
0 µ

)
6×6

.

When we multiply the left-hand side of (7) by A−10 , we get:

I
∂Ṽ

∂t
− iCṼ +

t∫
0

Ψ(t− τ)Ṽ (ν, τ)dτ = F0, (10)

where I is the identity matrix,

C :=

(
εϕ(0) εΣ3

i=0νiA
1
i

µΣ3
i=0νi (A

1
i )
∗

µψ(0)

)
6×6

,

Ψ(t) := A−10 Φ′(t), F0 := A−10 F̃ = −A−10 ~e0δ(t).
Thus, inverse problems (1) – (4) are reduced to the problem of determining the

kernel Ψ(t) of the integral part in equation (10) on the bases of equalities (8) – (10).

3. Proof of the main result

We integrate the differential equation (10). Using the initial condition (8), one gets:

Ṽ (λ, t) = −A−10 ~e0 + iC

t∫
0

Ṽ (λ, τ)dτ −
t∫

0

τ∫
0

Ψ(α)Ṽ (λ, τ − α)dαdτ. (11)

Taking into account (9), from the equality (11) we obtain:

g(t) = −A−10 ~e0 + iC0

t∫
0

g(τ)dτ +

t∫
0

Ψ(α)

t∫
α

g(τ − α)dτdα, t > 0, (12)

where C0 := A−10 Φ0. By differentiating the equation (12), we derive:

t∫
0

Ψ(τ)g(t− τ)dτ = g′(t)− iC0g(t). (13)

In the equality, assuming t = 0 and taking into account C0 = A−10 Φ0, we get:

g′ = iA−10 Φ0g(0).
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It follows from the last equation that the elements of the matrix Φ0 are expressed by the
known numbers:

ϕi(0) = − i

gi(0)

3∑
k=1

ε̂ikg
′
k(0); ψi(0) = − i

g3+i(0)

3∑
k=1

µ̂ikg
′
3+k(0), i = 1, 2, 3.

Furthermore, constants ϕi(0), ψi(0), i = 1, 2, 3 will be assumed as knowns.
From (13), by differentiating, we obtain:

Ψ(t)g(0) +

t∫
0

Ψ(τ)g′(t− τ)dτ = g′′(t)− iA−10 g′(t).

When we multiply the left-hand part of the last equality by A0, we find:

Φ′(t)g(0) +

t∫
0

Φ′(τ)g′(t− τ)dτ = A0g
′′(t)− iΦ0g

′(t).

The last equality is the linear integral second-order equation of Volterra type with respect
to the matrix function Φ′(t). It can be written relative to the components of matrix Φ′(t).
They are as follows:

ϕ′j(t) +

t∫
0

ϕ′j(τ)
g′j(t− τ)

gj(0)
dτ =

1

gj(0)

{
3∑

k=1

ε̂jkg
′′
k − iϕj(0)g′k(t)

}
, j = 1, 2, 3; (14)

ψ′j(t) +

t∫
0

ψ′j(τ)
g′3+j(t− τ)

g3+j(0)
dτ =

1

g3+j(0)

{
3∑

k=1

µ̂jkg
′′
3+k(t)− iψj(0)g′3+k(t)

}
, j = 1, 2, 3.

(15)
To integral equations (14) and (15), we combine the following obvious relations:

ϕj(t)−
t∫

0

ϕ′j(τ)dτ = ϕj(0), ψj(t)−
t∫

0

ψ′j(τ)dτ = ψj(0), j = 1, 2, 3. (16)

Equations (14) – (16) are the linear integral second-order equations of the Volterra
type with respect to unknown functions ϕ′i, ϕi, ψ

′
i, ψi, i = 1, 2, 3. As known, these equations

have unique solutions.
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