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FROM THE EDITORIAL BOARD 
 

In memory of Vadim Petrovich Romanov 

Vadim Petrovich Romanov, a 

wonderful person and an outstanding 

scientist, Doctor of Physics and 

Mathematics, Professor of Statistical 

Physics, St. Petersburg State University, 

Honored Scientist of Russian Federation, 

member of Editorial Board of the 

Journal “Nanosystems: Physics, 

Chemistry, Mathematics” passed away 

on February 1, 2015, at 78 years of age.  

Vadim Petrovich was born on 

January 8, 1938 in Leningrad. In 1961, 

he graduated from the Physical Faculty 

of the Leningrad State University. In that 

same year, he started to work at the 

Physical Faculty as a junior researcher. 

Since 1962, he has worked as an 

Assistant Professor and from 1971 as an 

Associate Professor in the Department of 

General Physics. In 1975, he was elected 

Associate Professor at the newly created 

Department of Statistical Physics. From 

1983 until his death, he has worked as a professor in this Department. In 1967, 

V.P. Romanov defended his PhD thesis, and in 1980 his habilitation thesis. In 

1983 he was awarded the title of professor in the Department of Statistical 

Physics. 

Professor V.P. Romanov was a renowned expert on the statistical physics 

of liquid crystals, the theory of electromagnetic and acoustic wave propagation 

and scattering in strongly inhomogeneous media. He developed the theory of 

sound propagation in non-ideal liquid solutions, which explained numerous 

experimental data for the acoustic properties of binary mixtures, and gave new 

means to investigate the spatial structure of such solutions. Together with the 

experimentalists, he proposed and successfully implemented a method for 

extracting high order contributions in light scattering spectra, which provides 

detailed information about opalescent systems in the vicinity of second order 

phase transition. These works open new opportunities for finding the equations 

of state for liquid mixtures. Vadim Petrovich developed a theory of interference 

and correlation effects in strongly inhomogeneous media, which found 

application in the study of biological objects by optical methods. He published a 

series of papers on the propagation of light in liquid crystals with a smoothly 



varying characteristics. These studies are important for the creation of next 

generation liquid crystal displays. 

V. P. Romanov published more than 150 scientific papers in the leading 

Russian and foreign journals. Among them, 5 reviews in the journals “Physics-

Uspekhi” and “Physics Reports” on modern problems of physics, book 

“Exercises in Statistical Physics”, published by  “Nauka” publishing house. 

Vadim Petrovich has been repeatedly awarded by the title of “Soros 

Professor”. His research was supported by grants of Russian Foundation of 

Basic Research, the Government of St. Petersburg, Saint Petersburg State 

University programs. In the framework of international cooperation, V.P. 

Romanov organized joint research with Cranfield University in the UK, 

supported by grants of the Royal Society of Great Britain. In 1996, he received a 

prize of Saint Petersburg State University for the pedagogical skills, and in 2010 

he won the University Award for scientific works. He also was awarded the title 

“Honored Worker of Higher Professional Education of the Russian Federation”. 

For a long time professor, Romanov was a member of the Academic Council of 

the SPbSU Faculty of Physics and a member of the scientific committee of this 

Faculty, and in 2013, he became a chairman of the Dissertation Council for 

doctoral and PhD  theses at SPbSU. 

V.P. Romanov gave much time and effort to teaching, work with students 

and graduate students. Over the years, he read the general course “Statistical 

physics and thermodynamics” for students of the Faculty of Physics of SPbSU, a 

number of special courses for students of Statistical Physics Department. 

Professor Romanov was the supervisor for 17 PhD theses and scientific advisor 

of 4 Doctor of Science dissertations. For his students, he always was a real 

mentor displaying a rare care and kindness. 

The bright memory of Vadim Romanov will remain forever in our hearts. 

 

L.Ts. Adzhemyan, E.V. Aksenova, A.P. Kovshik, A.E. Kuchma, V.L. Kuzmin, 

M.Yu. Nalimov, E.I. Rjumtsev, A.K. Shchekin, A.Yu. Val'kov,  

P.N. Vorontsov- Velyaminov, S.V. Ulyanov, V.M. Uzdin.  



 

International conference 

"Wave dynamics in low-dimensional branched structures" 
 

This issue contains papers presented at the “Wave dynamics in low-

dimensional branched structures” workshop held in September 24-25, 2014 in 

Tashkent. The talks presented at this conference were mainly focused on 

different aspects of linear and nonlinear evolution equations on networks and 

confined domains.  

Particle and wave transport in branched structures is of importance for 

different topics of contemporary physics, chemistry and biology. Due to recent 

progress made in nanoscale and mesoscopic physics, heat, charge, spin and 

information transport in branched and discrete systems has attracted much 

attention during the last decade. Remarkably, such processes can be modeled by 

linear and nonlinear evolution equations on graphs, billiards and chains. This 

makes the problem of partial differential equations on graphs and confined 

domains attractive in the contexts of mathematics, physics and chemistry. 

The main objective of the Workshop was the bringing together of various 

ideas, problems and expertise on applications of nonlinear evolution equations 

and quantum mechanical wave equations to a wide spectrum of systems from 

condensed matter physics, cold atoms, optics and nanoscale physics. Talks 

presented at the Workshop covered such topics as linear and nonlinear evolution 

equations on graphs, spin transport in networks, Dirac and Majorana fermions in 

branched structures, inverse problems for quantum graphs, BEC and solitons in 

low-dimensional traps. 

A total of 28 talks were presented at the meeting, with 18 invited and 10 

short plenary talks.  

Panel discussions attracted broad auditorium experts and young 

researchers working on different topics of physics, mathematics and chemistry.  

We would like to thank the members of the organizing Committee, 

Workshop Secretary, Dr. Olga Karpova and main sponsor of the meeting, 

Volkswagen Foundation. 

 

 

 

Davron Matrasulov 

Zarif Sobirov.  
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We treat the Nonlinear Schrödinger equation (NLSE) on Metric graph. An approach developed earlier for
NLSE on interval [14], is extended for star graph. Dirichlet boundary conditions are imposed at the ends of
bonds are imposed, while continuity conditions are chosen at the vertex of graph.

Keywords: metric graphs, nonlinear Schrödinger equation, solitons.

Received: 2 February 2015

1. Introduction

Wave transport in the nonlinear regime, described by nonlinear evolution equations,
such as the nonlinear Schrödinger, Korteweg de Vries and sine Gordon equations, has
attracted much attention in different areas of physics over the past five decades (see, e.g.
books [1] – [5]).

Recently, one can observe a growing interest in particle and wave transport in
branched, network type structures [6] – [13]. Such problem is of importance for different
topics in physics, such as hydrodynamics, acoustics, optics, cold atom physics and con-
densed matter physics. Soliton solutions and connection formulae were derived for simplest
graphs in the Ref. [6]. The problem of fast solitons on star graphs was treated in the
Ref. [7], where the estimates for the transmission and reflection coefficients were obtained
in the limit of very high velocities. The problem of soliton transmission and reflection
was studied in [9] by numerically solving the stationary NLSE on graphs. The dispersion
relations for linear and nonlinear Schrödinger equations on graphs were discussed in [10].
Ref. [11] treated the stationary NLSE in the context of scattering from nonlinear net-
works. The stationary NLSE with power focusing nonlinearity on star graphs was studied
in recent papers [7, 8], where the existence of nonlinear stationary states were shown for
δ−type boundary conditions. In [13], the exact analytical solutions of the stationary NLSE
for simplest graphs were obtained.

In this work, we treat time dependent NLSE on metric graphs by considering the
simplest topology, a star graph. Unlike the case of the NLSE on an interval, in the case of
the graph, the NLSE becomes a multicomponent equation, with the components related to
each other through the boundary conditions given at the graph vertex.

Our aim is to solve the (cubic) nonlinear Schrödinger equation on metric graphs.
The latter are systems consisting of bonds which are connected at the vertices [16] to a
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rule which is called the topology of a graph. The topology of a graph can be relayed in
terms of a so-called adjacency matrix, which can be written as [17]:

Cij = Cji =

{
1, if i and j are connected;
0, otherwise, i, j = 1, 2, . . . , V.

In the following, we consider the so-called primary star graph, consisting of three
bonds connected at single vertex. However, our results can be extended to any arbitrary
topology. Our approach is based on extending the method proposed by Fokas and its
solution for the NLSE on a finite interval [14]. In Refs. [14, 15], an effective method
allowing one to obtain a general solution for the NLSE on a finite interval [14] and on a
half-line [15] was developed. As it will be shown below, this method can be adapted to
the case of the NLSE on a metric graph. Thus, the problem we are going to solve is the
nonlinear Schrödinger equation on a graph with bonds bj ∼ (0, Lj), j = 1, 2, 3, which can
be written as:

i
∂

∂t
qj +

∂2

∂x2j
qj − 2λ|qj|2qj = 0, (1)

λ = ±1, j = 1, 2, 3, L1 < x1 < 0, 0 < x2,3 < L2,3, 0 < t < T.

The initial conditions are given as:

qj(xj, 0) = q0j(xj), j = 1, 2, 3, L1 < x1 < 0, 0 < x2,3 < L2,3, (2)

The following boundary conditions provide matching of the bonds at the vertex:

q1(0, t) = q2(0, t) = q3(0, t) = g0(t), 0 < t < T (3)

qj(Lj, t) = f0j(t), 0 < t < T, j = 1, 2, 3, (4)
∂

∂x1
q1(0, t) =

∂

∂x2
q2(0, t) +

∂

∂x3
q3(0, t), 0 < t < T (5)

Furthermore, we define the following functions:

g1j(t) =
∂

∂xj
qj(0, t), g1j(t) =

∂

∂xj
qj(Lj, t).

These functions are considered to be unknown and will be found subsequently.
The difference between Eq. (1) and with that treated in Ref. [14] is caused by bond

indices, j. In other words, Eq. (1) is a multicomponent equation in which each component
is related to others through the boundary conditions (3) – (5). As we will see below,
this makes it possible to rewrite most of the results derived in [14] for the case of metric
graphs.

2. Description of the approach

The method we are going to utilize includes three steps [14]. The first step consists
of Riemann-Hilbert (RH) problem formulation under the assumption of existence. Follow-
ing Ref. [14], we assume that there exists a smooth solution q(x, t) = {q1(x1, t), q2(x2, t),
q3(x3, t)}.

Applying the spectral analysis to the Lax pair, we write q(x, t) = {q1(x1, t), q2(x2, t),
q3(x3, t)} in terms of the solution of a 2 × 2-matrix RH problem defined in the complex
k-plane [14]. Such a problem is uniquely defined in terms of the spectral functions which
are given as:

{aj(k), bj(k)}, {Aj(k), Bj(k)}, {Aj(k),Bj(k)}. (6)
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These functions are defined in terms of the functions:

q0j(xj), {g0(t), g1j(t)}, {f0j(t), f1j(t)}, (7)

respectively. Here, the functions g0(t, g1j(t) and f1j(t) denote the unknown boundary
values for the solution to the NLSE and its derivatives (see Eqs. (3)).

Following Ref. [14], one can show that the spectral functions (6) are not indepen-
dent, but they satisfy the global relation:

(ajAj + λb̄je
2ikLjBj)Bj − (bjAj + āje

2ikLjBj)Aj = e4ik
2T c+j (k), k ∈ Cj, (8)

where c+j (k) has the same meaning as in [14].
The second step implies proof of the existence of the solution to the NLSE, as-

suming that the above spectral functions satisfy the global relation. The spectral func-
tions given in (6) can be written in terms of the (smooth) functions (7). We also define
q(x, t) = {q1(x1, t), q2(x2, t), q3(x3, t)} in terms of the solution of the RH problem formulated
in Step 1. Assuming that smooth functions g1j(t) and f1j(t) exist such that the spectral
functions (6) satisfy the global relation (8), one can prove that:
(i) q(x, t) = {q1(x1, t), q2(x2, t), q3(x3, t)} is defined globally for all L1 < x1 < 0, 0 < x2,3 < L2,3,
0 < t < T .
(ii) q(x, t) = {q1(x1, t), q2(x2, t), q3(x3, t)} solves the NLSE.
(iii) q(x, t) = {q1(x1, t), q2(x2, t), q3(x3, t)} satisfies the given initial and boundary condi-
tions:

qj(xj, 0) = q0j(x), qj(0, t) = g0(t), qj(Lj, t) = f0j(t).

A byproduct of this proof is that:

∂

∂xj
qj(0, t) = g1j(t) and

∂

∂xj
qj(Lj, t) = f1j(t).

Finally, the third step presents an analysis of the global relation treated in the second
step. Namely, for given q0j, g0, f0j, one can show that the global relation (8) characterizes
g1j and f1j through the solution of a system of nonlinear Volterra integral equations.

Furthermore, following the Ref. [14], we introduce the eigenfunctions,{
µ
(n)
j (x, t, k)

}4

n=1
, such that:

µ
(1)
j (0, T, k) = I, µ

(2)
j (0, 0, k) = I,

µ
(3)
j (Lj, 0, k) = I, µ

(4)
j (Lj, T, k) = I, j = 1, 2, 3, (9)

with µ(n)
j being the 2× 2 matrices, I = diag(1, 1). One can show that these eigenfunctions

can be written in terms of the matrices sj, Sj, SLj as:

sj(k) = µ
(3)
j (0, 0, k), Sj(k) =

(
e2ik

2Tσ3µ
(2)
j (0, T, k)e−2ik

2Tσ3
)−1

,

SLj (k) =
(
e2ik

2Tσ3µ
(3)
j (Lj, T, k)e−2ik

2Tσ3
)−1

, (10)

where σ3 = diag(1,−1).
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3. Lax pair and its solutions

The Lax pair for our problem can be written as [20]:

∂

∂x
µj + ikσ̂3,jµj = Qjµj,

∂

∂t
µj + 2ik2σ̂3,jµj = Q̃jµj, (11)

where µj(x, t, k) is a 2× 2 matrix-valued function, σ̂3,j is defined by:

σ̂3,j· = [σ3,j, ·] σ3,j = diag(1,−1), (12)

and the 2× 2 matrices Qj, Q̃j are given as:

Qj(xj, t) =

(
0 qj(xj, t)

λq̄j(xj, t) 0

)
,

Q̃j(xj, t, k) = 2kQj − i
∂

∂x
Qjσ3,j − iλ|qj|2σ3,j, λ = ±1. (13)

Furthermore, we assume that there exists a sufficiently smooth solution qj(xj, t),
j = 1, 2, 3, x1 ∈ [L1, 0], x2,3 ∈ [0, L2,3], t ∈ [0, T ], of NLSE.

A solution of equation (11) is given by [14]:

µ
(∗)
j (xj, t, k) = I +

(xj ,t)∫
(xj∗,t∗)

e−i(kxj+2k2t)σ̂3,jWj(y, τ, k), (14)

where the closed 1-form Wj is defined by:

Wj = ei(kx+2k2t)σ̂3,j(Qjµjdx+ Q̃jµjdt), (15)

(xj∗, t∗) is an arbitrary point in the domain x1 ∈ [L1, 0], x2,3 ∈ [0, L2,3], t ∈ [0, T ], and the
integral denotes a line integral connecting smoothly the points indicated.

Following Ref. [14], it can be shown that the functions µ(n)
j are related by these

equations:

µ
(3)
j (xj, t, k) = µ

(2)
j (xj, t, k)e−i(kxj+2k2t)σ̂3,jsj(k), (16)

µ
(1)
j (xj, t, k) = µ

(2)
j (xj, t, k)e−i(kxj+2k2t)σ̂3,jSj(k), (17)

µ
(4)
j (xj, t, k) = µ

(3)
j (xj, t, k)e−i(kxj+2k2t)σ̂3,jSLj (k), (18)

and one can find from Eq. (16) at xj = t = 0, s(k) = µ
(3)
j (0, 0, k). Finally, from Eqs. (17)

and (18) at xj = Lj, t = T we have:

SLj (k) =
(
e2ik

2T σ̂3,jµ
(3)
j (Lj, T, k)

)−1
and

µ
(4)
j (xj, t, k) = µ

(2)
j (xj, t, k)e−i(kxj+2k2t)σ̂3,j

(
s(k)eikLj σ̂3,jSLj (k)

)
. (19)
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4. The global relation

As was mentioned before, the spectral functions aj(k), bj(k), Aj(k), Bj(k), Aj(k),
Bj(k) are not independent, but they satisfy the global relation (8), where c+j (k) denotes the

element of −
∫ Lj

0

[exp(ikyσ̂3,j)](Qjµ
(4)
j )(y, T, k)dy, and µ(4)

j is defined by an equation similar

to µ(3)
j with

∫ t

0

replaced by −
∫ T

0

. The proof is the same as in the case of the NLSE for

the finite interval treated in [14]. We now introduce Mj(xj, t, k), defined by:

M
(+)
j =

(
µ
(2)(1)
j

αj(k)
, µ

(4)(1)
j

)
, arg k ∈

[
0,
π

2

]
,

M
(−)
j =

(
µ
(1)(2)
j

dj(k)
, µ

(3)(2)
j

)
, arg k ∈

[π
2
, π
]
,

M
(+)
j =

(
µ
(3)(3)
j ,

µ
(1)(3)
j

dj(k̄)

)
, arg k ∈

[
π,

3π

2

]
,

M
(−)
j =

(
µ
(4)(4)
j ,

µ
(2)(4)
j

αj(k̄)

)
, arg k ∈

[
3π

2
, 2π

]
, (20)

where the scalars dj(k) and αj(k) are defined below. These definitions imply:

detMj(xj, t, k) = 1 (21)

and

Mj(xj, t, k) = I +O

(
1

k

)
, k →∞. (22)

As in the case of the NLSE on a finite graph studied in [14], it can be shown that
Mj satisfies the jump condition:

M
(−)
j (xj, t, k) = M

(+)
j (xj, t, k)Jj(xj, t, k), k ∈ R ∪ iR, (23)

where the 2× 2 matrix Jj is defined by:

Jj =


J
(2)
j , arg k = 0;

Jj(1), arg k =
π

2
;

J
(4)
j ≡ J

(3)
j (J

(2)
j )−1J

(1)
j , arg k = π;

J
(3)
j , arg k =

3π

2

(24)
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and

J
(1)
j =


δj(k)

dj(k)
−Bj(k)e2ikLje−2iθj

λBj(k̄)

dj(k)αj(k)
e2iθj

aj(k)

αj(k)

 ,

J
(3)
j =


δj(k̄)

d(k̄)

−Bj(k)

dj(k̄)αj(k̄)
e−2iθj

λBj(k̄)e−2ikLje2iθj
a(k̄)

αj(k̄)

 ,

J
(2)
j =

 1 −βj(k)

αj(k)
e−2iθj

λ
βj(k)

αj(k)
e2iθj

1

|αj(k)|2

 ,

θj(xj, t, k) = kxj + 2k2t, (25)

αj(k) = aj(k)Aj(k) + λbj(k̄)e2ikLjBj(k),

βj(k) = bj(k)Aj(k) + λaj(k̄)e2ikLjBj(k) (26)

dj(k) = aj(k)Aj(k̄)− λbj(k)e2ikLjBj(k̄),

δj(k) = αj(k)Aj(k̄)− λβj(k)e2ikLjBj(k̄). (27)

The above expressions are the same as those for the NLSE on a finite interval, except for
the bond index, j.

Following Ref. [14], one can prove
Theorem. Let q0j(x) be a smooth function. We assume that that the set of functions g0(t),
g1j(t), f0j(t), f1j(t), is admissible with respect to q0j(x) and define the spectral functions
aj(k), bj(k), Aj(k), Bj(k), Aj(k), Bj(k) in terms of q0j(x), g0(t), g1j(t), f0j(t), f1j(t). We
assume that

• aj(k) has at most simple zeros, {k(n)j }, for =k(n)j > 0 and has no zeros for =k = 0.

• Aj(k) has at most simple zeros, {K(n)
j }, for argK

(n)
j ∈

(
0,
π

2

)
∪
(
π,

3π

2

)
and has

no zeros for arg k = 0,
π

2
, π,

3π

2
.

• Aj(k) has at most simple zeros, {K(n)
j }, for argK

(n)
j ∈

(
0,
π

2

)
∪
(
π,

3π

2

)
and has

no zeros for arg k = 0,
π

2
, π,

3π

2
.

• The function

dj(k) = aj(k)Aj(k)− λbj(k)Bj(k) (28)

has at most simple zeros, {λ(n)j }, for arg λ
(n)
j ∈

(π
2
, π
)

and has no zeros for

arg k =
π

2
and arg k = π.

• The function

αj(k) = aj(k)Aj(k) + λb(k)e2ikLjBj(k) (29)
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has at most simple zeros, {v(n)j }, for arg v
(n)
j ∈

(
0,
π

2

)
and has no zeros for arg k = 0,

arg k =
π

2
.

• None of the zeros of aj(k) for arg k ∈
(π

2
, π
)

coincides with a zero of dj(k).

• None of the zeros of aj(k) for arg k ∈
(

0,
π

2

)
coincides with a zero of αj(k).

• None of the zeros of αj(k) for arg k ∈
(

0,
π

2

)
coincides with a zero of Aj(k) or a

zero of Aj(k).

• None of the zeros of dj(k) for arg k ∈
(π

2
, π
)

coincides with a zero of Aj(k) or a

zero of Aj(k).

We define Mj(xj, t, k) as the solution of the following 2× 2 matrix RH problem:

• Mj is sectionally meromorphic in C/{R ∪ iR}, and has unit determinant.
•

M
(−)
j (xj, t, k) = M

(+)
j (xj, t, k)Jj(xj, t, k), k ∈ R ∪ iR, (30)

where Mj is M (−)
j for arg k ∈

[π
2
, π
]
∪
[

3π

2
, 2π

]
, Mj is M (+)

j for arg k ∈
[
0,
π

2

]
∪[

π,
3π

2

]
, and Jj is defined in terms of aj, bj, Aj, Bj, Aj, Bj, by equations (24)

and (25).
•

Mj(xj, t, k) = I +O

(
1

k

)
, k →∞. (31)

• Let [Mj]1 and [Mj]2 denote the first and the second column of the matrix Mj. Then
residue conditions:

Res
k=v

(n)
j

[Mj(xj, t, k)]1 = c
(n)(1)
j e4i(v

(n)
j )2t+2iv

(n)
j xj [Mj(xj, t, v

(n)
j )]2, (32)

Res
k=v

(n)
j

[Mj(xj, t, k)]2 = λc
(n)(1)
j e−4i(v

(n)
j )2t−2iv(n)

j xj [Mj(xj, t, v
(n)
j )]1, (33)

Res
k=λ

(n)
j

[Mj(xj, t, k)]1 = c
(n)(2)
j e4i(v

(n)
j )2t+2iv

(n)
j xj [Mj(xj, t, λ

(n)
j )]2, (34)

Res
k=λ

(n)
j

[Mj(xj, t, k)]2 = λc
(n)(2)
j e−4i(v

(n)
j )2t−2iv(n)

j xj [Mj(xj, t, λ
(n)

j )]1, (35)

where:

c
(n)(1)
j =

aj(v
(n)
j )

e2iv
(n)
j LjBj(v

(n)
j )α̇j(v

(n)
j )

, c
(n)(2)
j =

λBj(λ
(n)

j )

aj(λ
(n)
j )ḋj(λ

(n)
j )

. (36)

Then, Mj(xj, t, k) exists and is unique. We define qj(xj, t) in terms of Mj(xj, t, k)
by

qj(x, t) = 2i · lim
k→∞

k(Mj(x, t, k))12. (37)

Then, qj(x, t), together with the following functions:
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qj(x, 0) = q0j(x), qj(0, t) = g0(t),
∂

∂x
qj(0, t) = g1j(t),

qj(Lj, t) = f0j(t),
∂

∂x
qj(Lj, t) = f1j(t) (38)

present the solution for the nonlinear Schrödinger equation (1) with initial and boundary
conditions given by Eqs.(2) – (5), respectively. The proof of the theorem is similar to that
of the NLSE for a finite interval treated in [14]).

Furthermore, repeating the same steps as in [14] ( for aj(k) ≡ 1,bj(k) ≡ 0), we get
the following expressions for f1j, g1j:

iπ

4
f1j =

∫
∂D0

1

2k2

∆j(k)

[
M̂

(1)
j (t, k)− g0(t)

2ik2

]
dk −

∫
∂D0

1

k2
Σj(k)

∆j(k)

[
M̂

(1)
j (t, k)− f0j(t)

2ik2

]
dk +

+

∫
∂D0

1

k

∆j(k)
[Fj(t, k)− Fj(t,−k)] dk, (39)

−iπ
4
g1j =

∫
∂D0

1

2k2

∆j(k)

[
M̂

(1)
j (t, k)− f0j(t)

2ik2

]
dk −

∫
∂D0

1

k2
Σj(k)

∆j(k)

[
M̂

(1)
j (t, k)− g0(t)

2ik2

]
dk −

−
∫
∂D0

1

k

∆j(k)

[
e−2ikLjFj(t, k)− e2ikLjFj(t,−k)

]
dk, (40)

where:

Σj(k) = e2ikLj + e−2ikLj , (41)

Fj(t, k) =
if0j(t)

2
e2ikLjM̂

(2)
j −

ig0(t)

2
M̂

(2)
j +

+

[
L̂

(2)
j − iλ

f0j(t)

2
M̂

(1)
j + kM̂

(2)
j

]
·
[
L̂
(1)
j − i

g0(t)

2
M̂

(2)
j + kM̂

(1)
j

]
−

−e2ikLj

[
L̂
(2)
j − iλ

g0(t)

2
M̂

(1)
j + kM̂

(2)
j

]
·
[
L̂

(1)
j − i

f0j(t)

2
M̂

(2)
j + kM̂

(1)
j

]
.(42)

Finally, from Eqs. (40) and (5) we obtain:
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g0(t) =

∫
∂D0

1

k2
Σ1(k)

∆1(k)
M̂

(1)
1 dk −

∫
∂D0

1

2k2

∆1(k)

[
M̂

(1)
1 −

f01(t)

2ik2

]
dk

1

2i

∫
∂D0

1

Σ1(k)

∆1(k)
dk − 1

2i

3∑
j=2

∫
∂D0

1

Σj(k)

∆j(k)
dk

−

−

3∑
j=2


∫
∂D0

1

k2
Σj(k)

∆j(k)
M̂

(1)
j dk −

∫
∂D0

1

2k2

∆j(k)

[
M̂

(1)
j −

f0j(t)

2ik2

]
dk


1

2i

∫
∂D0

1

Σ1(k)

∆1(k)
dk − 1

2i

3∑
j=2

∫
∂D0

1

Σj(k)

∆j(k)
dk

+

+

∫
∂D0

1

k

∆1(k)

[
e−2ikL1F1(t, k)− e2ikL1F1(t,−k)

]
dk

1

2i

∫
∂D0

1

Σ1(k)

∆1(k)
dk − 1

2i

3∑
j=2

∫
∂D0

1

Σj(k)

∆j(k)
dk

−

−

3∑
j=2

∫
∂D0

1

k

∆j(k)

[
e−2ikLjFj(t, k)− e2ikLjFj(t,−k)

]
dk

1

2i

∫
∂D0

1

Σ1(k)

∆1(k)
dk − 1

2i

3∑
j=2

∫
∂D0

1

Σj(k)

∆j(k)
dk

. (43)

We note that µ(1)
j (0, t, k) and µ(2)

j (0, t, k) are solutions of:

∂

∂t
µj + 2ik2σ̂3,jµj = Q̃j(0, t, k)µj, (44)

where:

Q̃j(0, t, k) =

 −iλ|qj(0, t)|2 2kqj(0, t) + i
∂

∂xj
qj(0, t)

2kq̄j(0, t)− i
∂

∂xj
q̄j(0, t) iλ|qj(0, t)|2

 . (45)

Therefore, it satisfies:

Q̃j(0, t, k) = σ3,jΣQ̃j(0, t, k̄)Σσ3,j, (46)

where Q̃j(0, t, k̄) =

 iλ|qj(0, t)|2 2kq̄j(0, t) + i
∂

∂xj
q̄j(0, t)

2kqj(0, t)− i
∂

∂xj
qj(0, t) −iλ|qj(0, t)|2

 , Σ =

(
λ 0
0 λ

)
.

This implies the following symmetry for boundary scattering matrix:

Sj(k) = σ3,jΣSj(k̄)Σσ3,j, (47)
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where Sj(k̄) =

(
Aj(k) Bj(k̄)

λBj(k) Aj(k̄)

)
.

5. Conclusions

In this paper, we treated the nonlinear Schrödinger equation with cubic nonlinearity
on a metric graph. The boundary conditions were imposed to provide continiuty and current
conservation at the graph vertex. Our approach is based an extension applied earlier by
Fokas [14] for the solution to the NLSE on a finite interval with Dirichlet boundary
conditions. Unlike the case of the NLSE on the interval in [14], in the case of our graph,
we have:
i) Multicomponent NLSE, whose components are related to each other through the vertex
boundary conditions.
ii) Additional, Neumann type boundary conditions at the graph vertex.
iii)Additional unknown functions, g0, g1, f0, f1 in the initial and boundary conditions.
However, this doesn’t lead to serious complication for adopting method of [14] for the case
of graphs, although results obtained are completely different from those of NLSE for finite
interval. We note that the above treatment of NLSE on star graph can be extended to other
graph topologies as well.
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1. Introduction

Quantum particle dynamics in nanoscale networks and discrete structures is of funda-
mental and practical importance. Usually, such systems are modeled by so-called quantum
graphs. These systems have attracted much attention in physics [1–3] and mathematics [5–7]
over the past two decades.

In physics, quantum graphs were introduced as a toy model for studies of quantum
chaos by Kottos and Smilansky [1]. However, the concept of studying a system confined to
a graph dates back to Pauling [4], who suggested the use of such systems for modeling free
electron motion in organic molecules. Over the last two decades, quantum graphs have found
numerous applications in modeling different discrete structures and networks in nanoscale
and mesoscopic physics (e.g., see reviews [1–3] and references therein).

Mathematical properties of the Schrödinger operators on graphs [5–7] and inverse
problems for quantum graphs [8,9], were also the subject of extensive research recently. Also,
an experimental realization of quantum graphs is discussed in Ref. [5, 10, 11]. Despite the
certain progress made in the study of quantum graphs, some important aspects still remain
relatively unexplored. This is especially true for problems of driven graphs, i.e. graphs
perturbed by time-dependent external forces. An important example of such a driving force
is that caused by driven (moving) boundaries. Treatment of such system requires solving
the Schrödinger equation with time-dependent boundary conditions. Earlier, the problem
of time-dependent boundary conditions in the Schrödinger equation has attracted much
attention in the context of quantum Fermi acceleration [12–14], although different aspects
of the problem were treated by many authors [16–27]. Detailed study of the problem can be
found in a series of papers by Makowski and co-authors [21–23]. It was pointed out in the
above Refs. that the problem of 1D box with a moving wall can be mapped onto that of an
harmonic oscillator with time-dependent frequency confined inside the static box [21].

In this paper, we treat a similar problem for quantum star graph, i.e. we study
the problem of quantum graphs with time-dependent bonds. In particular, we consider
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harmonically breathing quantum star graphs, cases of monotonically contracting and ex-
panding graphs. The latter can be solved exactly analytically. Motivation for the study of
time-dependent graphs comes from such practically important problems as quantum Fermi
acceleration in nanoscale network structures, tunable particle transport in quantum wire
networks, molecular wires, different lattices and discrete structures. In particular, sites, ver-
tices, nodes of such discrete structures can fluctuate, which makes them time-dependent.
We will study the time-dependence of the average kinetic energy and wave packet dynamics
in harmonically breathing graphs.

Graphs are systems consisting of bonds which are connected at the vertices. The
bonds are connected according to a rule which is called the topology of a graph. The
topology of a graph is given in terms of adjacency matrix [1, 2]:

Cij = Cji =

{
1, if i and j are connected;

0, otherwise.
i, j = 1, 2, ..., V. (1)

Quantum dynamics of a particle on a graph is described by a one-dimensional Schrödinger
equation [1, 2] (in the units ~ = 2m = 1):

−i d
2

dx2
Ψb(x) = k2Ψb(x), b = (i, j), (2)

where b denotes a bond connecting ith and jthe vertices, and for each bond b, the component
Ψb of the total wavefunction Ψb is a solution of Eq.(2).

The wavefunction, Ψb, satisfies boundary conditions at the vertices, which ensures
continuity and current conservation [1]. The general scheme for finding eigenfunctions and
eigenvalues for such boundary conditions can be found in Ref. [1]. Different types of boundary
conditions for the Schrodinger equation on graphs are discussed in the Refs. [5–7]. In the
following, we restrict our consideration to the simplest graph, the so-called star graph. The
star graph consists of three or more bonds connected at a single vertex which is called the
branching point. Other points are called edge vertices. The eigenvalue problem for a star
graph with N bonds is given by the following Schrödinger equation:

− d2

dx2
ϕj(y) = k2ϕj(y), 0 6 y 6 lj, j = 1, ..., N. (3)

Here we consider the following boundary conditions [11]:
ϕ1|y=0 = ϕ2|y=0 = ... = ϕN |y=0,

ϕ1|y=l1 = ϕ2|y=l2 = ... = ϕN |y=lN = 0,
N∑
j=1

∂
∂y
ϕj|y=0 = 0.

(4)

The eigenvalues can be found by solving the following equation [11]:

N∑
j=1

tan−1(knlj) = 0, (5)

where the corresponding eigenfunctions are given as [11]:

ϕ
(n)
j =

Bn

sin(knlj)
sin(kn(lj − y)), (6)
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where normalization coefficients are given as:

Bn =

[∑
j

(Lj + sin (2knLj)) sin
−2 (knLj)/2

]−1/2

. (7)

2. Time-dependent graph

A time-dependent graph implies that the lengths of the bonds of a graph are time-
varying, i.e., when Lj is a function of time. In this case, the particle dynamics in graph are
described by the following time-dependent Schrödinger equation:

i
∂

∂t
Ψj(x, t) = − ∂2

∂x2
Ψj(x, t), 0 < x < Lj(t), j = 1, ..., N, (8)

with N being the number of bonds.
In the following, we will consider the boundary conditions given by:

Ψ1|x=0 = Ψ2|x=0 = ... = ΨN |x=0,

Ψ1|x=L1(t) = Ψ2|x=L2(t) = ... = ΨN |x=LN (t) = 0,
N∑
j=1

∂
∂x
Ψj|x=+0 = 0.

(9)

These boundary conditions imply that only edge vertices of the graph are moving
while the center (branching point) is fixed. Furthermore, we assume that Lj(t) is given as
Lj(t) = ljL(t), where L(t) is a continuous function and lj are positive constants. Then, using
the coordinate transformation:

y =
x

L(t)
, (10)

Eq.(8) can be rewritten as:

i
∂

∂t
Ψj(y, t) = − 1

L2

∂2

∂y2
Ψj(y, t) + i

L̇

L
y
∂

∂y
Ψj(y, t), 0 < y < lj, j = 1, ..., N. (11)

It is clear that the Schrödinger operator in the right hand side of Eq.(11) is not Hermitian
due to the presence of a second term. Therefore, using the transformation:

Ψj(y, t) =
1√
L
ei

LL̇
4

y2φj(y, t), (12)

we can make it Hermitian as:

i
∂

∂t
φj(y, t) = − 1

L2

∂2

∂y2
φj(y, t) +

LL̈

4
y2φj(y, t), 0 < y < lj, j = 1, ..., N. (13)

We note that the functions φj(y, t) satisfy the boundary conditions (9) with y = lj instead
of x = Lj(t).

Time and coordinate variables in Eq.(13) can be separated only in the case when L(t)
obeys the equation:

L3L̈

4
= −C2 = const, (14)

In this case, using the substitution φj(y, t) = ϕj(y) exp

(
−ik2

t∫
0

L−2(s)ds

)
, we get:

d2

dy2
ϕj + (k2 − C2y2)ϕj = 0, y ∈ (0, lj). (15)
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For C ̸= 0 from Eq.(14), we have:

L(t) =
√
αt2 + βt+ γ, C2 =

1

16
(β2 − 4αγ), (16)

and

L(t) =
√
βt+ γ, C2 =

1

16
β2. (17)

In both cases, exact solutions of Eq.(13) can be obtained in terms of confluent hyper-
geometric functions. In particular, for the case when the time-dependence of L(t) is given
by Eq.(17), fundamental solutions of Eq.(13) can be written as:

ϕj,1 = y exp

(
C

2
y

)
M

(
3

4
− k

4C
,
3

2
,−Cy2

)
,

and

ϕj,2 = exp

(
C

2
y

)
M

(
1

4
− k

4C
,
1

2
,−Cy2

)
.

Therefore, the general solution of Eq.(13) is given as:

ϕj(y) = Djϕj,1 +Gjϕj,2, Dj, Gj = const. (18)

From the boundary conditions given by Eq.(4), we have:

Gj = A, Dj = A · αj(k), j = 1, 2, 3, ..., N,

where A is an arbitrary constant and:

αj(k) = −
M

(
1
4
− k

4C
, 1
2
,−Cl2j

)
ljM

(
3
4
− k

4C
, 3
2
,−Cl2j

) , j = 1, 2, ..., N.

Taking into account the relations:

dϕj,1(y)

dy

∣∣∣∣
y=0

= 1,
dϕj,2(y)

dy

∣∣∣∣
y=0

=
C

2
,

from Eq.(4), we obtain the following spectral equation for finding the eigenvalues, kn of
Eq.(13):

N∑
j=1

1

lj

M
(
1
4
− k

4C
, 1
2
,−Cl2j

)
M

(
3
4
− k

4C
, 3
2
,−Cl2j

) =
CN

2
. (19)

Thus, the eigenfunctions of Eq.(13) can be written as:

ϕj(y, kn) = A [αj(kn)ϕj,1(y) + ϕj,2(y)] , j = 1, 2, ..., N. (20)

Furthermore, we provide the solution for Eq.(13) for the simplest case L(t) = at+ b,
which corresponds to C = 0 in Eq.(14). In this case, the eigenvalues for Eq.(13), which can
be written in terms of the time-dependence of the wall are given as:

ϕj(y, kn) =
A

sin(knlj)
sin(kn(lj − y)), j = 1, 2, ..., N, (21)

where kn is the nth positive root of the equation:

N∑
j=1

tan−1(ljk) = 0. (22)

and L(t) > 0, A is the normalization constant.
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Now, let us consider the harmonically breathing graph, i.e. the case when the time-
dependence of L(t) is given as:

L(t) = b+ a cosωt,

with ω = 2πT−1 being oscillation frequency and T is the oscillation period. It is clear that
in this case, the time and coordinate variables in Eq.(13) cannot be separated. Expanding
φ(y, t) in Eq.(13) in terms of the complete set of static graphs solutions gives the wave
functions as:

φj(y, t) =
∑
n

Cn(t)ϕ
(n)
j (y), (23)

and inserting this expansion into Eq.(13) we have:

Ċm(t) =
∑
n

MmnCn(t),

where

Mmn = −i k
2
m

L2(t)
− i

LL̈

4

∑
j

lj∫
0

y2ϕ
(n)
j ϕ

(m)
j dy.

3. Wave packet evolution in harmonically breathing graph

The quantity we are interested in computing is the average kinetic energy, which is
defined as:

E(t) = ⟨ψ|H|ψ⟩ =
N∑
j=1

Lj(t)∫
0

∣∣∣∣∂ψj(x, t)

∂x

∣∣∣∣2 dx. (24)

In Figure 1, the time dependence of the average kinetic energy of the harmonically
breathing star graph is presented for different breathing frequency and amplitude values.
As can be seen from these plots, ⟨E(t)⟩ is almost periodic for ω = 0.5 and a = 1, while for
ω = 10 and a = 1, such periodicity is completely broken and energy increases with time.
For ω = 10 and a = 20, ⟨E(t)⟩ demonstrates “quasiperiodic behavior”. The appearance of
periodic behavior in ⟨E(t)⟩ can be explained by synchronization of the particle motion with
the frequency. Over time, the lack of such synchronization causes break in the periodicity
of the average energy.

Additionally, we consider wave packet evolution in an harmonically breathing star
graph by taking the wave function at t = 0 (for the first bond) as the following Gaussian
wave packet:

Ψ1(x, 0) = Φ(x) = (2πσ2)−1/2 exp (−(x− µ)2/2σ), (25)

with σ being the width of the packet. For other bonds, the initial wave function is assumed
to be zero, i.e. Ψ2(x, 0) = Ψ3(x, 0) = 0. Then, for the initial values of the functions φ(j)(y, t)
in Eq.(23) we have:

φj(y, 0) = L(0)e−i
L(0)L̇(0)

4
y2Φ(y).

Correspondingly, the expansion coefficients at t = 0 can be written as:

Cn(0) =
∑
j

∫ lj

0

φj(y, 0)ϕ
(n)
j

∗
(y).

In calculating the wave packet evolution, we choose the initial condition as the Gauss-
ian wave packet being on the first bond only, while for the other two bonds, the wave functions
at t = 0 are taken as zero. In Figure 2, the time evolution of the wave packet is plotted for
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Fig. 1. Time-dependence of the average kinetic energy for an harmonically
oscillating primary star graph. Time is presented in the units of the oscillation
period T = 2π/ω

a) b)

Fig. 2. Time evolution of the Gaussian wave packet given by Eq.(25) for the
parameters: a) Wave packet evolution in static star graph b) ω = 0.5, a = 1;.
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a) b)

Fig. 3. Time evolution of the Gaussian wave packet given by Eq.(25) for the
parameters: a) ω = 10, a = 20; b) ω = 10, a = 1;.

an harmonically breathing primary star graph whose bonds oscillate according to the law
L(t) = 40 + a cosωt . The oscillation parameters (frequency and amplitude) are chosen as
follows: a) ω = 10, a = 20; b) ω = 10, a = 1; c) ω = 0.5, a = 1. Figure 2a presents
wave packet evolution in a static(time-independent) star graph. At t = 0, a Gaussian packet
of width σ and velocity v0 is assumed being in the first bond. As can be seen from these
plots, for higher frequencies, dispersion of the packet and its transition to other bonds occurs
more quickly compared to that of smaller frequencies. Again, an important role is played
here by the possible synchronization between the bond edge and wave packet motions. The
existence or absence of such synchronization defines how the collision of the packet with the
bond edges will occur and how extensively it gains or loses its energy. Therefore, a more
detailed treatment of the wave packet dynamics in harmonically breathing graphs should be
based on the analysis of the role of synchronization and its criteria. Figure 4 presents time
evolution of the probability densities corresponding to plots in Figure 2 and Figure 3. The
parameters of the wave packet and oscillation parameters are the same as those in Figure 2
and Figure 3.

4. Conclusions

In this paper, we have treated a time-dependent quantum network by considering
monotonically expanding and harmonically breathing quantum star graphs. Edge boundaries
were considered to be time-dependent, while the branching point was assumed to be fixed.
The time-dependence of the average kinetic energy and space-time evolution of the Gaussian
wave packet were studied by solving the Schrodinger equation with time-dependent boundary
conditions. It was found that for certain frequencies, energy is a periodic function of time,
while for others, it can be a non-monotonically growing function of time. Such a feature
can be caused by possible synchronization of the particles’ motion and the motions of the
moving edges of graph bonds. A similar feature can also be seen in the analysis of wave
packet evolution. The above study can be useful for the treatment of particle transport
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Fig. 4. Time evolution of the probability density: a) for static graph; b)
time-dependent graph with ω = 10 and a = 20; c) time-dependent graph with
ω = 10, and a = 1; d) time-dependent graph with ω = 0.5, and a = 1.

in different discrete structures, such as molecular and quantum wire networks, networks of
carbon nanotubes, crystal lattices, and others nanoscale systems that can be modeled by
quantum graphs.
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1. Introduction

The current text is a brief introduction to the spectral asymptotics of the damped
wave equation on metric graphs. Our paper summarizes the main results of the paper [1]
and gives ideas of their proofs. If the reader wants a detailed study of this problem or proofs
of certain theorems, we refer to this paper. Its main results were obtained in collaboration
with prof. Pedro Freitas during my stay in Lisbon.

Our aim is to study the damped wave equation

∂ttu(t, x) + 2a(x)∂tu(t, x) = ∂xxu(t, x) + b(x)u(t, x) (1)

on a metric graph. The problem of damped wave equation was studied in detail for a
segment with Dirichlet conditions on both ends [2]. Paper [1], to the author’s knowledge, is
the first attempt to treat the problem for the graph. In the case of a segment, there exists a
sequence of eigenvalues with imaginary parts going to plus and minus infinity and real part
approaching the negative average of the damping function on the segment. In paper [2], an
asymptotic expansion of the eigenvalues was obtained.

We show that in the case of a metric graph, there are several sequences of eigenvalues
which we call high frequency abscissas. Our main results are three theorems on the number
of these high frequency abscissas. This paper is structured as follows: in the second section
we describe the model, next we give theorems on the asymptotics of eigenvalues and eigen-
functions and locations of eigenvalues and high frequency abscissas; next, we introduce the
method of pseudo orbit expansion; in section 5, we give three main theorems on the number
of high frequency abscissas; and finally, we show two particular examples to illustrate their
behavior.
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2. Description of the model

Let us consider a metric graph Γ with N <∞ finite edges {ej}Nj=1 of lengths {lj}Nj=1.
On each edge we consider a damped wave equation:

∂ttwj(t, x) + 2aj(x)∂twj(t, x) = ∂xxwj(t, x) + b(x)wj(t, x), (2)

with damping functions aj(x) and potentials bj(x) real and bounded. The functions at the
j-th vertex are connected by coupling conditions similar to the case of quantum graphs

(Uj − I)Ψj + i(Uj + I)Ψ′
j = 0 ,

where Uj is a unitary square matrix, I is a unit matrix, Ψj is the vector of limits of functional
values in the vertex from all neighboring edges and, similarly, Ψ′

j is the vector of outgoing
derivatives. The coupling on the whole graph can be described by a large 2N × 2N unitary
matrix U (for more details see [3, 4]), which describes not only the coupling, but also the
topology of the graph. Then, the coupling conditions are:

(U − I)Ψ + i(U + I)Ψ′ = 0 . (3)

The ansatz wj(t, x) = eλtuj(x) leads to the differential equation:

∂xxuj(x)− (λ2 + 2λaj(x)− bj(x))uj(x) = 0 . (4)

Our aim is to solve this equation and find complex numbers λ. Its real parts give the time
decay for the solutions to the damped wave equation.

There exists a second approach to the problem, which is equivalent to the previous
approach. One finds the eigenvalues of a non-self-adjoint operator:

H =

(
0 I

I d2

dx2 +B −2A

)
,

where A and B are N × N diagonal matrices with aj(x) and bj(x) on the diagonal. The
domain of this operator consists of functions (ψ1(x), ψ2(x))

T with components of both ψ1

and ψ2 in W 2,2(ej) for the corresponding edge and satisfying coupling conditions (3) at the
vertices.

In the following text, we will sometimes use the term standard conditions. These
conditions (sometimes referred to in the literature as Kirchhoff, Neumann or free coupling)
imply that the function is continuous at the vertex and the sum of outgoing derivatives is
equal to zero. The corresponding vertex coupling matrix is U = 2/dJ − I, where d is the
degree of a given vertex and J has all entries equal to one.

3. Eigenfunction and eigenvalue asymptotic properties and the locations of
high frequency abscissas

First, we present a theorem from [2] on the asymptotic behavior of eigenfunctions on
a segment.

Theorem 3.1. Let a ∈ Cm+1[0, 1] and b ∈ Cm[0, 1]. Then there exist two linearly independent
solutions u±(x, λ) of equation (4) satisfying the initial condition u±(0, λ) = 1 having the
asymptotics:

u±(x, λ) = e±λx±∫ x
0
φ±(t,λ) dt, (5)
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in the C2[0, 1] norm as Im λ→ ∞ with:

φ±(x, λ) =
m∑
i=0

φ±
i (x)

λi
+O(λ−m−1), (6)

and

φ
(±)
0 (x) = a(x) , φ

(±)
1 (x) = −1

2
(±a′(x) + a2(x) + b(x)) ,

φ
(±)
i (x) = −1

2

(
±φ′(±)

i−1 +
i−1∑
s=0

φ(±)
s φ

(±)
i−s−1

)
.

Now, we can formulate the theorem on the asymptotics of eigenvalues for a graph
with all the edges of lengths equal to one.

Theorem 3.2. Let us assume a graph with N finite edges of lengths 1 with the coupling
between vertices given by matrix U . Let on each edge be damping aj ∈ CN+1([0, 1]) and
potential bj ∈ CN([0, 1]). Then, there exists such a K0 ∈ R+ that for K > K0, if λ = r+ iK
is an eigenvalue, then λ + 2πi +O(1/K) is also an eigenvalue. Similarly, if λ = r − iK is
an eigenvalue, then λ − 2πi + O(1/K) is also an eigenvalue. This means that there exist
sequences of eigenvalues with the asymptotics λns = 2πin + cs0 +O(1/n).

Idea of the proof: Since two linearly independent solutions exist, according to the previous
theorem, one can write the general solution as their linear combination. Substituting for the
coupling conditions, one finds the secular equation in the form:

P0e
λ+〈a1〉+λ+〈a2〉+···+λ+〈aN 〉+O(1/λ) + P11e

−λ−〈a1〉+λ+〈a2〉+···+λ+〈aN 〉+O(1/λ)+

P12e
λ+〈a1〉−λ−〈a2〉+···+λ+〈aN 〉+O(1/λ) + · · ·+ P21e

−λ−〈a1〉−λ−〈a2〉+···+λ+〈aN 〉+O(1/λ)+

· · ·+ PN1e
−λ−〈a1〉−λ−〈a2〉−···−λ−〈aN 〉+O(1/λ) = 0 ,

where Pmn is a polynomial in λ of degree 2N with m minuses before λ; n only distinguishes
different polynomials. Since 1/λ = O(1/K), one finds that the first term of the asymptotics
is equal to zero for λ0+2πi if λ0 is an eigenvalue. Hence, such λ = λ0+2πi+O(1/λ0) exists
for which the secular equation is equal to zero. �

Now, we define the notion of a high frequency abscissa, which will be very important
in subsequent sections.

Definition 3.3. We say that c0 is a high frequency abscissa of the operator H if there exists
a sequence of eigenvalues of H , say {λn}∞n=1, such that:

lim
n→∞

Imλn = ±∞ and lim
n→∞

Reλn = c0.

The next theorem says that only the average of the damping function on each edge
is important for the location of high frequency abscissas.

Theorem 3.4. Let Γ be a graph with N commensurate edges of lengths lj = mjl0, mj ∈ N,
j = 1, . . . , N , with the coupling conditions (3). Let the damping functions aj(x) and bj(x)
be bounded and continuous on each edge. Let λn be eigenvalues of the corresponding problem
(4) and μn eigenvalues for aj and bj replaced by their averages. Then, the constant terms
c0 in the asymptotic expansion of λn coincide with the corresponding constant terms in the
asymptotic expansion of μn.
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Now, we write a theorem on the location of nonreal eigenvalues, which has a nice
corollary. It shows that the high frequency abscissas are located between the negative max-
imum of the averages of the damping functions on each edge and the negative minimum of
these damping functions.

Theorem 3.5. Let us consider a damped wave equation on a graph with N edges of lengths
lj, bounded damping coefficients aj(x) and potentials bj(x), and the coupling conditions given
by (3). If λ is an eigenvalue of H with nontrivial imaginary part �(λ) �= 0, then its real part
satisfies:

�(λ) = −
∑N

j=1

∫ lj
0
aj(x)|uj(x)|2 dx∑N

j=1 ‖uj(x)‖22
,

where uj(x) denotes the corresponding wavefunction components.

Idea of the proof: The main idea of the proof is to take the equation (4), multiply it on the
left by ūj(x), integrate over each edge and sum over all the edges. The imaginary part of
the result is:

0 = 2i�(λ)
N∑
j=1

∫
ej

(aj(x) + �(λ)) |uj(x)|2 dx,

from which the conclusion follows. �
Corollary 3.6. Let us consider a damped wave equation on graph Γ with damping functions
on the edges aj(x) and potentials bj(x). We denote the average of the damping function on
each edge by āj. Then, the real part of nonreal eigenvalues of H (and therefore also all high
frequency abscissas) lie in the interval [−maxj āj,−minj āj ].

4. Pseudo orbit expansion

There is a different approach to the secular equation than the one shown in the
previous sections. The secular equation can be constructed by the method of pseudo orbit
expansion, which has been developed for quantum graphs [5–7]. This theory was adapted
for the damped wave equation in [1], and now, we summarize its main ideas.

First, the metric graph Γ is replaced by a directed graph Γ2, each edge is replaced by
two edges ej and êj in both directions. The functional values on both corresponding directed
edges must be the same, hence if we use the ansatz:

fej(x) = αin
ej
eλ̃jx + αout

ej
e−λ̃jx ,

fêj (x) = αin
êj
eλ̃jx + αout

êj
e−λ̃jx ,

we have from fej (x) = fêj (lj − x) the relation between the coefficients of this ansatz:

αout
êj

= eλ̃j ljαin
ej
, αout

ej
= eλ̃j ljαin

êj
, (7)

where λ̃j =
√
λ2 + 2λaj − bj . Furthermore, we will now define several variables. The

vertex scattering matrix maps the vector �αin
v into �αout

v by the relation �αout
v = σv(λ)�α

in
v .

Here, �αin,out
v = (αin,out

ev1
, . . . , αin,out

evd
)T and v denotes the vertex. The matrix Σ(λ) is block-

diagonalizable and it is written in the basis corresponding to:

�α = (αe1 , . . . , αeN , αê1, . . . , αêN )
T .

This is block diagonal with blocks σv(λ) if written in the following basis:

(αin
ev11

, . . . , αin
ev1d1

, αin
ev21

, . . . , αin
ev2d2

, . . . , )T.
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Furthermore, we define

J =

(
0 I

I 0

)
and L = exp

(
diag (−λ̃1l1, . . . ,−λ̃N lN ,−λ̃1l1, . . . ,−λ̃N lN )

)
,

which then allows us to write:(
�αin
e

�αin
ê

)
= L

(
�αout
ê

�αout
e

)
= LJ

(
�αout
e

�αout
ê

)
= LJΣ(λ)

(
�αin
e

�αin
ê

)
,

where we have used the definition of the matrix L and relations (7), then the definition of
the matrix J and finally the definition of the matrix Σ. Since the vectors on the left and the
right side are the same, we obtain the secular equation:

det (LJΣ(λ)− I2N×2N) = 0 . (8)

Next, following the terminology of [7], we define the following notions.

Definition 4.1. A periodic orbit is a closed trajectory on the graph Γ2. An irreducible
pseudo orbit γ̄ is a collection of periodic orbits where none of the directed bonds is contained
more than once. Let mγ̄ denote the number of periodic orbits in γ̄, Lγ̄ =

∑
e∈γ̄ λ̃ele where the

sum is over all directed bonds in γ̄ and λ̃e =
√
λ2 + 2aeλ− be. The coefficients Aγ̄ = Πγj∈γ̄Aγj

with Aγj given as multiplication of entries of S(λ) = JΣ(λ) along the trajectory γj.

We give without the proof a theorem which gives the secular equation (8) in the terms
of pseudo orbit expansion.

Theorem 4.2. The secular equation for the damped wave equation on a metric graph is
given by: ∑

γ̄

(−1)mγ̄ Aγ̄(λ) exp(−Lγ̄(λ)) = 0

with Lγ̄ being the sum of the lengths of all directed edges along a particular irreducible pseudo
orbit γ̄.

5. Number of distinct high frequency abscissas

In this section, we state the three main theorems of this paper. These theorems give
upper and lower bounds on the number of distinct high frequency abscissas for a graph which
has all edges of lengths 1. The first theorem gives an upper bound for a graph with general
coupling conditions.

Theorem 5.1. Let Γ be an equilateral graph with N edges of the length 1. Let us assume a
damped wave equation on Γ with damping and constant potential functions constant on each
edge aj(x) ≡ aj, bj(x) ≡ bj and with general coupling given by (3) for a given unitary matrix
U . Then there are at most 2N high frequency abscissas.

Idea of the proof: We perform an expansion according to the theorem 3.2. In the first term
of the n-asymptotics of the secular equation (written by the pseudo orbit expansion) is
a polynomial equation in y = ec0 of order 2N . This polynomial equation has 2N complex
solutions, therefore, there are at most 2N different numbers c0 and 2N distinct high frequency
abscissas. �

For a special type of graphs, the bound can be improved. In the second theorem,
we consider a bipartite graph, the graph which can be colored by only two colors, with the
neighboring vertices having different colors. Another definition is that there is not a loop of
edges of odd length. In this case, there are at most N distinct high frequency abscissas.
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Theorem 5.2. Let Γ be a graph with N edges all of which have lengths equal to 1, (general)
Robin coupling at the boundary and standard coupling otherwise. Let us suppose that the
graph is bipartite. Then, for any damping functions bounded and C2 at each edge, there are
at most N high frequency abscissas.

Idea of the proof: Similarly to the previous theorem, we can construct the leading term of
the n asymptotics of the secular equation. In the pseudo orbit expansion, we obtain only
pseudo orbits, which have even length. Due to this fact there are only terms with e2c0 in the
secular equation. The first term of the n-expansion is a polynomial equation in e2c0 of order
N . Hence, there are at most N high frequency abscissas. �

The third theorem gives a lower bound on the number of high frequency abscissas.
A tree graph with vertices of odd degree is considered.

Theorem 5.3. Let Γ be a tree graph with N edges all with unit length, Robin coupling at the
boundary and standard coupling otherwise. Let us suppose that all vertices have odd degree.
Then, there always exists such a damping, for which the number of high frequency abscissas
is greater than or equal to N .

Idea of the proof: The main idea is that the contribution of the pseudo orbits to the coefficient
in the secular equation cancels if and only if there is a vertex of Γ with a degree 2v and the
pseudo orbit contains exactly v edges which emanate from this vertex. This can be proven
using rather technical lemma 6.3 from the paper [1]. Hence, if a tree graph has all vertices of
odd degree, then there is no cancellation and all the coefficients in the secular equation are
nonzero. Now, we construct the damping function. We choose constant damping on each
edge with 0 � aN � aN−1 � · · · � a1. Now we can rewrite the first term of the secular
equation as:

CNe
2a1+2a2+···+2aN yN + CN−1e

2a1+2a2+···+2aN−1
[
1 +O (e−2(aN−1−aN )

)]
yN−1+

+ · · ·+ C2e
2a1+2a2

[
1 +O (e−2(a2−a3)

)]
y2 + C1e

2a1
[
1 +O (e−2(a1−a2)

)]
y + C0 = 0 ,

with y = e2c0 . We recall that none of the coefficients Ci are equal to zero. Now, if y is close
to e−2a1 , the last two terms are dominant, for y close to e−2a2 the terms with C2 and C1 are
dominant, etc. Hence we have

yj = −Cj−1

Cj
e−2aj

[
1 +O (e−2(aj−aj+1)

)]
.

We obtain N distinct numbers yj and hence N distinct numbers c0 and N distinct high
frequency abscissas. �

6. Examples

Now, we present two particular examples, which illustrate the behavior of the eigen-
values.

6.1. Two loops with different damping coefficients

The first example of a graph consists of two loops, each loop having three edges of
lengths 1 (see figure 1). Let us assume that there is constant damping a1 on the first loop

and a2 on the second loop. Therefore, one can use the ansatz fj(x) = αj sinh (λ̃j(λ)x) +
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a1a2

a1

a1a2

a2

Fig. 1. Graph with two loops

βj cosh (λ̃j(λ)x), where j distinguishes the loop. We choose x = 0 at the middle of each loop.
From the continuity at the central vertex, we have:

αj sinh

(
3

2
λ̃j(λ)

)
+ βj cosh

(
3

2
λ̃j(λ)

)
= −αj sinh

(
3

2
λ̃j(λ)

)
+ βj cosh

(
3

2
λ̃j(λ)

)
.

Therefore, we either have α1 = α2 = 0 or sinh
(

3
2
λ̃1(λ)

)
= 0 or sinh

(
3
2
λ̃2(λ)

)
= 0.

First, we will assume α1 = α2 = 0. From the standard conditions at the central
vertex we have:

β1 cosh
3λ̃1(λ)

2
= β2 cosh

3λ̃2(λ)

2
,

β1λ̃1(λ) sinh
3λ̃1(λ)

2
+ β2λ̃2(λ) sinh

3λ̃2(λ)

2
= 0 .

where
λ̃j ≡ λ̃j(λ) =

√
λ2 + 2ajλ− bj .

This set of equations is solvable under the condition:

λ̃2 sinh
3λ̃2
2

cosh
3λ̃1
2

+ λ̃1 sinh
3λ̃1
2

cosh
3λ̃2
2

= 0 .

or, equivalently by:

(λ̃1 + λ̃2) sinh
3(λ̃1 + λ̃2)

2
+ (λ̃1 − λ̃2) sinh

3(λ̃1 − λ̃2)

2
= 0 .

Using the asymptotic expansion λn = 2πin+ c0 +O ( 1
n

)
one obtains

4πin
(
e6πin+

3
2
(a1+a2+2c0) − e−6πin− 3

2
(a1+a2+2c0)

)
+O(1) = 0,

and therefore:

3(a1 + a2 + 2c0) + 2πin = 0 , (9)

c
(s)
0 = −a1 + a2

2
+
sπi

6
, s ∈ {0, . . . , 5}

Now, let us return to the condition sinh
(

3
2
λ̃j(λn)

)
= 0. This leads to:

3aj + 3c
(s)
0 +O

(
1

n

)
= 2πis ⇒ cs0 = −aj + 2πis

3
, s ∈ {0, 1, 2}
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�1.8 �1.6 �1.4 �1.2 �1.0
Re Λ

�40

�20

20

40
Im Λ

Fig. 2. Spectrum of a graph in figure 1, a1 = 2, a2 = 1, b1 = 0, b2 = 0

Hence, we have three high frequency abscissas at −a1, −a2 and −a1+a2
2

. The eigen-
functions for the first two abscissas are supported on the first loop or the second loop,
respectively. The third one has eigenfunction supported on both loops. Eigenvalues for
particular choice a1 = 2 and a2 = 1 are shown in figure 2.

6.2. Star graph with different lengths of the edges

The second example illustrates eigenvalue behavior in the case when the lengths of
the edges are not equal to one. Let us consider a star graph consisting of three edges of
lengths l1, l2 and l3. We assume Dirichlet coupling at the free ends and standard coupling
in the central vertex.

If we use the ansatz fj(x) = αj sinh λ̃jx on each edge with x = 0 at the free end, we
obtain the secular equation:

3∑
j=1

λ̃j cosh λ̃jlj

3∏
i=1
i �=j

sinh λ̃ili = 0 .

In figure 3, we show the eigenvalues for particular choice of the damping a1 = 3, a2 = 4,
a3 = 5 and the lengths of the edges l1 = 1, l2 = 1, l3 = 1.03. If we wanted to apply the
theorems from the previous sections, we would have 303 edges of lengths 0.01, which means
that the bound on the number of the high frequency abscissas would be 606. In figures 4
and 5, the behavior is shown for other combinations of edge lengths.

7. Conclusion

We have summarized the main results of a paper [1]. The main results are three
theorems in section 5 on graphs with edges of unit lengths. If we have a graph with general
coupling, the number of high frequency abscissas is bounded from above by 2N . For a
bipartite graph with standard coupling, the bound can be improved to N . And finally, for
a tree graph with vertices of odd degree, one can find such a damping for which there is at
least N high frequency abscissas.



190 J. Lipovský

�5.0 �4.5 �4.0 �3.5 �3.0
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950

1000

1050

1100
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Fig. 3. Spectrum of a star graph with different edges lengths, l1 = 1, l2 = 1,
l3 = 1.03

�5.0 �4.5 �4.0 �3.5 �3.0
Re Λ

900

950

1000

1050

1100

Im Λ

Fig. 4. Spectrum of a star graph with different edges lengths, l1 = 1, l2 = 1,
l3 = 1.41

�5.0 �4.5 �4.0 �3.5 �3.0
Re Λ1040

1045

1050
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Fig. 5. Spectrum of a star graph with different edges lengths, l1 = 1.5, l2 =
2.1, l3 = 3.1
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1. Introduction

The study of particle and wave transport in branched structures and networks is
of fundamental and practical importance in different topics of contemporary physics. In
particular, transport in such nanoscale systems as quantum networks, molecular chains,
networks of carbon nanotubes or quantum wires and the problem of charge transport in
a DNA double helix can be successfully modeled by quantum mechanical wave equations
on metric graphs. Initially, the concept of quantum graphs was introduced by Pauling
more than half a century ago to describe electron transport in complex molecular chains of
organic molecules. The difference between the usual graph and the quantum graph (both
from the mathematical term) is that the dynamics of particles in such systems are described
with quantum-mechanical wave equations. Quantum graphs can be considered as a class of
confined quantum systems where the dynamics strongly depends on the topology of a graph.
The topology of the graph can be given in terms of adjacency matrix:

Ci,j = Cj,i =

{
1, if i, j are connected,

0, otherwise.

Direct spectral and scattering problems on quantum graphs have been studied earlier
in the context of quantum chaos theory (see reviews [1,2] and references therein). The inverse
problem for quantum graphs can be divided into two types: the problem of the recovering the
potential in the wave equation and the problem of finding the topology of a graph using the
given spectral data. The latter is a more difficult problem because of possible isospectrality
of graphs for different topologies [3]. In this paper, we solve the inverse scattering problem
for the massless Dirac equation, given on the graph of the simplest topology, the so-called
star graph. The importance of this problem is a result of its application for modeling
charge, information and spin transport in branched nanostrctures (e.g., networks of graphene
nanoribbons, carbon nanotubes (CNT) and quantum wires). The dynamics of quasi-particles
in such systems are described by the massless Dirac equation. In this paper, we propose an
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algorithm for reconstructing the potential of the Dirac equation using the available elements
of the scattering matrix.

2. Formulation of the problem

Consider a star graph consisting of three semi-infinite edges connected at one point
(see. Fig. 1). On each edge, we bj determine the coordinates xj ∈ [0, ∞) where xj = 0
corresponds to the vertex of the graph. The Dirac equation on the each edge bj is given as:(

−1 0

0 1

)
d

dx
fj(xj) +

(
0 qj(xj)

−pj(xj) 0

)
fj(xj) = iζfj(xj), (1)

where fj(xj) =

(
fj,1(xj)

fj,2(xj)

)
, j = 1, 2, 3. The following boundary conditions are imposed at

the branching point:

f1,1(0) = f2,1(0) = f3,1(0),

f1,2(0) + f2,2(0) + f3,2(0) = 0.
(2)

Let us define scattering matrices on each bond as:

Sj(ζj) =

(
aj(ζ) bj(ζ)

b̄j(ζ) −āj(ζ)

)
, j = 1, 2, 3. (3)

Fig. 1. Star graph

3. The direct scattering problem

We find three solutions f (m)(x, ζ) =
{
f

(m)
1 (x1, ζ), f

(m)
2 (x2, ζ), f

(m)
3 (x3, ζ)

}
, m = 1, 2, 3

for the problem given by Eqs. (1)–(3). Furthermore, we define the functions ψj(xj, ζ), ψ̄j(xj, ζ)
as solutions of the following integral equations:

ψj,1(xj, ζ) =
∫ +∞
xj

qj(t)e
−iζ(xj−t)ψj,2(t, ζ)dt,

ψj,2(xj, ζ) = eiζxj +
∫ +∞
xj

∫ +∞
t

pj(t)qj(z)e−iζ(2t−xj−z)ψj,2(z, ζ)dzdt,
(4)

ψ̄j,1(xj, ζ) = e−iζxj +
∫ +∞
xj

∫ +∞
t

qj(t)pj(z)eiζ(2t−xj−z)ψ̄j,1(z, ζ)dzdt,

ψ̄j,2(xj, ζ) =
∫ +∞
xj

pj(t)e
iζ(xj−t)ψ̄j,1(t, ζ)dt.

(5)

Also, we introduce the solutions ϕj(xj, ζ), ϕ̄j(xj, ζ) obeying the following integral equations:

ϕj,1(xj, ζ) = e−iζxj +
∫ xj

0

∫ t
0
qj(t)pj(z)eiζ(2t−xj−z)ϕj,1(z, ζ)dzdt,

ϕj,2(xj, ζ) =
∫ x

0
pj(t)e

iζ(xj−t)ϕj,1(t, ζ)dt,
(6)
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ϕ̄j,1(xj, ζ) =
∫ xj

0
qj(t)e

−iζ(xj−t)ϕ̄j,2(t, ζ)dt,

ϕ̄j,2(xj, ζ) = −eiζxj +
∫ x

0

∫ t
0
pj(t)qj(z)e−iζ(2t−xj−z)ϕ̄j,2(z, ζ)dzdt.

(7)

It is easy to see that if qj, pj ∈ L1, then the functions eiζxjϕj(xj, ζ), e−iζxjψj(xj, ζ) are
analytic on the upper plane Imζ > 0, e−iζxj ϕ̄j(xj, ζ), eiζxj ψ̄j(xj, ζ) are analytic on the
lower plane Imζ < 0.

Since the functions ψj(xj, ζ), ψ̄j(xj, ζ) obey the boundary conditions:

ψj(xj, ζ) ∼

(
0

1

)
eiζxj

ψ̄j(xj, ζ) ∼

(
1

0

)
e−iζxj

 at xj → +∞, (8)

the solutions ψj(xj, ζ), ψ̄j(xj, ζ) are linearly independent. This follows from the condition
for the Wronskian: W (ψj, ψ̄j) = −1. Therefore we have:

ϕj = aj(ζ)ψ̄j + bj(ζ)ψj,

ϕ̄j = −āj(ζ)ψj + b̄j(ζ)ψ̄j.
(9)

It follows from Eqs. (6)–(7) that functions ϕj(xj, ζ), ϕ̄j(xj, ζ) satisfy conditions:

ϕj(0, ζ) =

(
1

0

)
,

ϕ̄j(0, ζ) =

(
0

−1

)
.

(10)

Furthermore, from W (ϕj, ϕ̄j) = −1 we have:

aj āj + bj b̄j = 1, (11)

which implies that:

ψj(0, ζ) =

(
b̄j
aj

)
,

ψ̄j(0, ζ) =

(
āj
−bj

)
.

(12)

The solutions f (m)(x, ζ) =
{
f

(m)
1 (x1, ζ), f

(m)
2 (x2, ζ), f

(m)
3 (x3, ζ)

}
, m = 1, 2, 3 can be written

as:

f
(m)
j (xj, ζ) = t

(m)
j (ζ)ψ̄j(xj, ζ), m 6= j, j = 1, 2, 3,

f
(m)
m (xm, ζ) = ϕm(xm, ζ) + r

(m)
m (ζ)ψm(xm, ζ)e−2iζxm , m = 1, 2, 3.

(13)

The coefficients r
(m)
m , t

(m)
j (m 6= j, m, j = 1, 2, 3) can be found from the boundary conditions

for f (m)(x, ζ). For example, at m=1 we have:

ϕ1,1(0, ζ) + r
(1)
1 (ζ)ψ1,1(0, ζ) = t

(1)
2 (ζ)ψ̄2,1(0, ζ) = t

(1)
3 (ζ)ψ̄3,1(0, ζ),

ϕ1,2(0, ζ) + r
(1)
1 (ζ)ψ1,2(0, ζ) + t

(1)
2 (ζ)ψ̄2,2(0, ζ) + t

(1)
3 (ζ)ψ̄3,2(0, ζ) = 0.

(14)
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Using Eqs. (11)-(12), one can obtain:

r
(1)
1 (ζ) = ā2b3+b2ā3

a1ā2ā3−b̄1ā2b3−b̄1b2ā3
,

t
(1)
2 (ζ) = a1ā3

a1ā2ā3−b̄1ā2b3−b̄1b2ā3
,

t
(1)
3 (ζ) = a1ā2

a1ā2ā3−b̄1ā2b3−b̄1b2ā3
.

(15)

The above analysis is usually called the direct scattering problem. In the following, we will
treat the inverse scattering problem.

4. The inverse scattering problem

Using the following integral representations for the functions ψj(xj, ζ), ψ̄j(xj, ζ):

ψj(x, ζ) =

(
0

1

)
eiζxj +

∫ +∞

xj

Kj(xj, s)e
iζsds, (16)

ψ̄j(x, ζ) =

(
1

0

)
e−iζxj +

∫ +∞

xj

K̄j(xj, s)e
−iζsds, (17)

where Kj(xj, s) =

(
Kj,1(xj, s)

Kj,2(xj, s)

)
, K̄j(xj, s) =

(
K̄j,1(xj, s)

K̄j,2(xj, s)

)
are two-component vectors.

To obey fy the boundary conditions (8), we assume that Kj(xj, s) = 0 at xj > s. Now,
we will prove the existence of representations (16)–(17). To do that, it is enough to insert
Eqs. (16)–(17) into (1). Then, from Eq. (16) we obtain:∫ +∞

xj
eiζs

[(
∂xj − ∂s

)
Kj,1(xj, s)− qj(xj)Kj,2(xj, s)

]
ds−

− [qj(xj) + 2Kj,1(xj, xj)] e
iζxj + lim

s→∞

[
Kj,1(xj, s)e

iζs
]

= 0
(18)

∫ +∞
xj

eiζs
[(
∂xj + ∂s

)
Kj,2(xj, s)− pj(xj)Kj,1(xj, s)

]
ds−

− lim
s→∞

[
Kj,2(xj, s)e

iζs
]

= 0
. (19)

Thus, for the existence of representations (16)–(17), it is necessary and sufficient that func-
tions Kj(xj, s) obey the following equations:(

∂xj − ∂s
)
Kj,1(xj, s)− qj(xj)Kj,2(xj, s) = 0,(

∂xj + ∂s
)
Kj,2(xj, s)− pj(xj)Kj,1(xj, s) = 0,

(20)

with the boundary conditions:

Kj,1(xj, xj) = −1
2
qj(xj),

lim
s→+∞

Kj(xj, s) = 0.
(21)

Solutions for problems (20)–(21) (the Gursah problem) exist and are unique. The above
treatment can be done for the function K̄j(xj, s), as well.

Let given Cj contour that begins from −∞+ i0+, rounds above all zeros of aj(ζ) and

poles of r
(j)
j (ζ), and ends at +∞+ i0+. We introduce the following function:

g
(1)
1 (x1, ζ) = ϕ1(x1, ζ) + r

(1)
1 (ζ)ψ1(x1, ζ)e−2iζx1 (22)

Then, from Eq. (9) we have:

g
(1)
1 (x1, ζ) = ϕ1(x1, ζ) + r

(1)
1 (ζ)ψ1(x1, ζ)e−2iζx1 =

= a1(ζ)ψ̄1(x1, ζ) +
{
b1(ζ) + r

(1)
1 (ζ)e−2iζx1

}
ψ1(x1, ζ)

. (23)



196 K.K. Sabirov, Z.A. Sobirov, O.V. Karpova, A.A. Saidov

The last equation can be rewritten as:

g
(1)
1 (x1,ζ)

a1(ζ)
= ψ̄1(x1, ζ) +

{
b1(ζ)
a1(ζ)

+
r
(1)
1 (ζ)

a1(ζ)
e−2iζx1

}
ψ1(x1, ζ) =

= ψ̄1(x1, ζ) +R
(1)
1 (x1, ζ)ψ1(x1, ζ).

(24)

where R
(1)
1 (x1, ζ) = b1(ζ)

a1(ζ)
+

r
(1)
1 (ζ)

a1(ζ)
e−2iζx1 . Inserting Eqs. (16) and (17) into (24):

g
(1)
1 (x1,ζ)

a1(ζ)
=

(
1

0

)
e−iζx1 +

∫ +∞
x1

K̄1(x1, s)e
−iζsds+

+R
(1)
1 (x1, ζ)

((
0

1

)
eiζx1 +

∫ +∞
x1

K1(x1, s)e
iζsds

) , (25)

multiplying Eq. (25) by 1
2π
eiζydζ and integrating along the contour C1 at y>x 1, by taking

into account the representation δ(x) = 1
2π

∫
C1
eiζxdζ the Dirac-δ function we have:

1
2π

∫
C1

g
(1)
1 (x1,ζ)

a1(ζ)
eiζydζ =

(
1

0

)
δ(y − x1) +

∫ +∞
x1

K̄1(x1, s)δ(y − s)ds+

+

(
0

1

)[
1

2π

∫
C1
R

(1)
1 (x1, ζ)eiζ(x1+y)dζ

]
+
∫ +∞
x1

K1(x1, s)
[

1
2π

∫
C1
R

(1)
1 (x1, ζ)eiζ(y+s)dζ

]
ds.

(26)
Since the functions eiζxjϕj(xj, ζ), e−iζxjψj(xj, ζ) are analytic on the upper half of the plane

Imζ > 0, y>x 1 and the contour C1 round above zeros of a1(ζ) and poles of r
(1)
1 (ζ), the

integral of the left hand side of equality (26) is equal to zero. Therefore we get:

K̄1(x1, y) +

(
0

1

)
F1(x1, x1 + y) +

∫ +∞

x1

K1(x1, s)F1(x1, y + s)ds = 0, (27)

where F1(x, y) = 1
2π

∫
C1
R

(1)
1 (x, ζ)eiζydζ.

Repeating the same procedure for the function f̄
(1)
1 (x, ζ), we obtain:

K1(x1, y)−

(
0

1

)
F̄1(x1, x1 + y)−

∫ +∞

x1

K̄1(x1, s)F̄1(x1, y + s)ds = 0, (28)

where F̄1(x, y) = 1
2π

∫
C̄1
R̄

(1)
1 (x, ζ)e−iζydζ and C̄1 is the same contour as C1, but rounds below

the zeros of ā1(ζ) and poles of r̄
(1)
1 (ζ).

Similarly, one can obtain the following equations for the functions K 2 and K 3:

K̄j(xj, y) +

(
0

1

)
Fj(xj, xj + y) +

∫ +∞
xj

Kj(xj, s)Fj(xj, y + s)ds = 0,

Kj(xj, y)−

(
0

1

)
F̄j(xj, xj + y)−

∫ +∞
xj

K̄j(xj, s)F̄j(xj, y + s)ds = 0,

(29)

where

Fj(x, y) =
1

2π

∫
Cj

R
(j)
j (x, ζ)eiζydζ, F̄j(x, y) =

1

2π

∫
C̄j

R̄
(j)
j (x, ζ)e−iζydζ,

R
(j)
j (x, ζ) =

bj(ζ)

aj(ζ)
+
r

(j)
j (ζ)

aj(ζ)
e−2iζxj , R̄

(j)
j (x, ζ) =

b̄j(ζ)

āj(ζ)
+
r̄

(j)
j (ζ)

āj(ζ)
e2iζxj , j = 2, 3.
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From Eq. (21), we obtain:
qj(xj) = −2Kj,1(xj, xj). (30)

Using the same approach used for Eqs. (18) and (19), we get the following formula for the
potential pj(xj):

pj(xj) = −2K̄j,2(xj, xj). (31)

5. Conclusions

In this paper, we developed a procedure for finding the unknown potential in the
Dirac equation on metric graphs using a given scattering matrix. In this case, the solutions
for the inverse scattering problem were obtained by solving Gelfand-Levitan-Marchenko in-
tegral equations. The above results can be used in different practically important problems
for emerging nanotechnologies. In addition, they can be useful for solving some nonlinear
evolution equations on metric graphs such as nonlinear Schrodinger and KdV equations.
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1. Introduction

The Korteweg-de Vries (KdV) equation has attracted much attention in the literature,
both in the context of physics and mathematics. This equation was found to permit soliton
solutions and allow the modeling of solitary wave propagation on a water surface, a phenomena
first discovered by Scott Russell in 1834. The KdV equation is also used, e.g., to model
the unidirectional propagation of small amplitude long waves in nonlinear dispersive systems
such as ion-acoustic waves in a collisionless plasma, and magnetosonic waves in a magnetized
plasma etc [11]. The linearized KdV provides an asymptotic description of linear, undirectional,
weakly dispersive long waves, for example, shallow water waves. Earlier, it was proven that
via normal form transforms, the solution of the KdV equation can be reduced to the solution
for the linear KdVequation [12]. Belashov and Vladimirov [12] numerically investigated the
evolution of a single disturbance u(0, x) = u0 exp(−x2/l2) and showed that in the limit l → 0,
u0l

2 = const, the solution of the KdV equation is qualitatively similar to the solution of the
linearized KdV equation. Boundary value problems on half lines were considered in [2, 5, 7].

Here, summarizing and extending the results in [13], we investigate the linearized KdV
equation on star graphs Γ with m + k semi-infinite bonds connected at one point, called the
vertex. The bonds are denoted by Bj , j = 1, 2, ..., k + m, the coordinate xj on Bj is defined
from −∞ to 0 for j = 1, 2, ..., k, and from 0 to +∞ for j = k + 1, ..., k +m such that on each
bond, the vertex corresponds to 0. On each bond we consider the linear equation:

(
∂

∂t
+

∂3

∂x3
j

)
uj(xj, t) = fj(x, t), t > 0, xj ∈ Bj. (1)

Below, we will also use x instead of xj (j = 1, 2, ..., k + m). We investigate an initial
value problem, and using the method of potentials, construct solution formulas.
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2. Formulation of the problems

To solve linear KdV equation on an interval, one needs to impose three boundary
conditions (BC): two on the left end of the x-interval and one on the right end, (see, e.g., [5,6]
and references therein). For the star graph with m + k semi-infinite bonds, we need to impose
k + 2m BCs, which should also provide connection between the bonds. In detail, we require:

u1(0; t) = ajuj(0; t), j = 2, k +m, (2)

u+
x (+0; t) = Bu−x (−0; t), (3)

k∑
i=1

a−1
i uixx(−0; t) =

k+m∑
i=k+1

a−1
i uixx(+0; t), (4)

for t > 0, where u−(x; t) = (u1(x, t), . . . , uk(x, t))
T , u+(x; t) = (uk+1(x, t), . . . , uk+m(x, t))T ,

subscripts x and double x mean the first and the second order partial derivatives with respect
to x, ak are non-zero constants, B is a m× k matrix.

Furthermore, we assume that the fj(x, t) and the initial conditions:

uj(x, 0) = u0j(x), x ∈ Bj, (j = 1, 2, ..., k +m), (5)
are sufficiently smooth enough and bounded, and that u0,j satisfies the vertex conditions (2) –
(4).

It should be noted that the above vertex conditions are not the only possible ones. The
main motivation for our choice is caused by the fact that they guarantee uniqueness of the
solution and, if the solutions decay (to zero) at infinity,the norm (energy) conservation.

Here, we introduce some notation that will be useful in the following. For any vector,
v = (v1, v2, . . . , vk+m)T we put ṽ = (v2, . . . , vk+m)T , v− = (v1, . . . , vk)

T , ṽ− = (v2, . . . , vk)
T ,

v+ = (vk+1, . . . , vk+m)T .

3. Existence and uniqueness of solutions

Lemma 1. Let Ik − BTB be negatively defined matrix. Then the problem has at most one
solution in H3(Γ).
Proof of Lemma 1. Using the equation (1) one can easily get:

∂

∂ t

b∫
a

u2
j(x, t)dx =

(
2ujujxx − u2

jx

) ∣∣∣x=b

x=a
+2

b∫
a

fj(x, t)uj(x, t)dx

for appropriate values of constants a and b. From this equality and vertex conditions (2) – (4)
we have:

d

dt
‖u(·, t)‖2

Γ ≤
(
∂u−(0, t)

)T (
Ik −BTB

)
∂u−(0, t) + 2 ‖u(·, t)‖Γ ‖f(·, t)‖Γ .

According to condition of Lemma 1, we get:

‖u(·, t)‖Γ ≤ ‖u(·, 0)‖Γ +

t∫
0

‖f(·, τ)‖Γ dτ. (6)

The inequality (6) proves the lemma.
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Notice that equality in (6) (i.e. energy conservation) holds iff BTB = Im.
We shall construct solutions and prove existence theorems for data from the Schwartz

class of smooth decreasing functions, and for data in Sobolev classes.
Let S(Bk) be the Schwartz space of rapidly decaying functions on the closure of Bk,

k = 1, 2, 3. We say v(x, t) ∈ C1([0, T ]; S(Bk)) (T > 0) if v and
∂v

∂t
in C([0, T ]; S(Bk)).

Theorem 1. Assume that Ik − BTB is negatively defined matrix, u0k(x) ∈ S(Bk), fk(x, t) ∈

C1([0, T ]; S(Bk)) for some T > 0 and that u(p)
0k ≡

∂3p

∂x3p
u0k(x) and f (p)

k =
∂3p

∂x3p
fk(x, t) satisfy

vertex conditions (1) – (5) for any nonnegative integer p. Then (1) – (5) has a solution in
C1([0, T ]; S(Bk)).

To treat the case of Sobolev data consider function v = (v1(x1), v2(x2), . . . , vk+m(xk+m))

defined on the graph. We suppose that vk ∈ S(Bk) and the functions v(p)
k ≡

∂3p

∂x3p
vk(x) satisfy

vertex conditions (2) –(4) for any non-negative integer p. We denote the set of all such functions
v by S−(Γ) (S+(Γ)), and define W−(Γ) (or W+(Γ)) as the closure of the set S−(Γ) ( or S+(Γ))
with respect to the norm ‖v‖3,Γ =

∑3
k=1 ‖vk‖H3(Bk).

Theorem 2. Let Ik −BTB be negatively defined matrix,
u0 ≡ (u01(x1), u02(x2), . . . , u0,k+m(xk+m)) ∈ W±(Γ). Then (1) – (5) has a unique solution in
L∞(0, T,W±(Γ)).

First, we construct exact solutions, using the results from the theory of potentials for the
linearized KdV equation. For that purpose, we give some preliminaries from [1,3, 5].

4. Some preliminaries from potentials theory

The following functions are called fundamental solutions of the equation ut − uxxx = 0
(see [1, 3, 5, 12]):

U(x, t; ξ, η) =


1

(t− η)1/3
f

(
x− ξ

(t− η)1/3

)
, if t > η;

0, if t ≤ η,

V (x, t; ξ, η) =


1

(t− η)1/3
φ

(
x− ξ

(t− η)1/3

)
, if t > η;

0, if t ≤ η,

where f(x) =
π

31/3
Ai
(
− x

31/3

)
, φ(x) =

π

31/3
Bi
(
− x

31/3

)
for x ≥ 0, φ(x) = 0 for x < 0

and Ai(x) and Bi(x) are the Airy functions. The functions f(x) and φ(x) are integrable and∫ 0

−∞ f(x)dx =
π

3
,
∫ +∞

0
f(x)dx =

2π

3
,
∫ +∞

0
φ(x)dx = 0. We summarize some properties of

potentials for (1) from [3, 5]. For given ω, f and φ let:

u(x, t) =

b∫
a

U(x, t; ξ, 0)ω(ξ)dξ, v(x, t) =

t∫
0

b∫
a

U(x, t; ξ, τ)f(ξ, τ)dξdτ,

w(1)(x, t) =

t∫
η

Uxξ(x, η; a, t)φ(η)dη, w(2)(x, t) =

t∫
η

Vxξ(x, η; a, t)φ(η)dη.
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Lemma 2. a) Let ω ∈ BV ([a, b]). Then u(x, t) satisfies ut − uxxx = 0 for t > 0 and:

lim
(x,y)→(x0,0)

u(x, t) =

{
πω(x0), if x0 ∈ (a, b);

0, if x0 6∈ (a, b).

b) Let f ∈ L2((a, b)×(0, T ). Then, v(x, t) satisfies ut−uxxx = πf(x, t) in (a, b)×(0, T ],
T > 0 and initial condition u(x, 0) = 0, x ∈ (a, b).

c) If φ ∈ H1(0, T ), then :

lim
x→a+0

w(1)(x, t) =
2π

3
φ(y), lim

x→a−0
w(1)(x, t) = −π

3
φ(y), lim

x→a+0
w(2)(x, t) = 0.

Now, we are ready to construct exact solutions for the considered problems. We assume
that initial data and source terms in each bond are sufficiently smooth and bounded functions.

5. Integral formula for exact solution

We look for solution in the form:

u(x, t) =

t∫
0

U(x, t; 0, η)φ(η)dη +

t∫
0

V (x, t; 0, η)ψ(η)dη + F(x, t), (7)

where

Fk(x, t) =
1

π

∫
Bk

U(x, t; ξ, 0)uk(ξ, 0)dξ +
1

π

t∫
0

∫
Bk

U(x, t; ξ, η)fk(ξ, η)dξdη.

φ(t) = (φ1(t), . . . , φk+m(t))T , ψ(t) = (0, . . . , 0, ψk+1(t), . . . , ψk+m(t))T are unknown vector
functions.

According to vertex conditions (2) – (4), we get:

C̃·
t∫

0

f(0)

(t− τ)1/3
φ1(τ)dτ =

t∫
0

f(0)

(t− τ)1/3
φ̃(τ)dτ+

t∫
0

ϕ(0)

(t− τ)1/3
ψ̃(τ)dτ−

(
C̃F1 − F̃

)∣∣∣
x=0

, (8)

t∫
0

f ′(0)

(t− τ)2/3
φ+(τ)dτ +

t∫
0

ϕ′(0)

(t− τ)2/3
ψ+(τ)dτ =

B

t∫
0

f ′(0)

(t− τ)2/3
φ−(τ)dτ −

(
∂F+(0, t)−B · ∂F−(0, t)

)
,

(9)

2(C−)Tf−(t) + (C+)Tf+(t) =
3

π

(
−C−

∣∣C+
)
∂2F(0, t), (10)

where C =

(
1,

1

a2

,
1

a3

, . . . ,
1

ak+m

)
.

Abel’s integral equations (8), (9) can be written in terms of fractional integrals [9]:

Jα(0,t)f(t) :=
1

Γ(α)

t∫
0

(t− τ)α−1f(τ)dτ, 0 < α < 1,
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and solved using the inverse operators, i.e. the Riemann-Liouville fractional derivatives [8, 9]
defined by:

Dα
(0,t)f(t) :=

1

Γ(1− α)

d

dt

t∫
0

(t− τ)−αf(τ)dτ, 0 < α < 1.

Using the relation Dα
(0,t)J

α
(0,t) = I from (8) and (9), we obtain the linear algebraic

equations:

f(0)
(
C̃
∣∣− Im+k−1

)
φ(t)−

(
0(m+k−1)×1

∣∣Im+k−1

)
ϕ(0)ψ(t) =

− 1

Γ(1/3)

(
C̃
∣∣− Im+k−1

)
D

2/3
(0,t)F(0, t), (11)

f ′(0)
(
B
∣∣− Im

)
φ(t) + ϕ′(0)

(
0m×k

∣∣− Im
)
ψ(t) = − 1

Γ(2/3)
D

1/3
(0,t)

(
B
∣∣− Im

)
∂F(0, t). (12)

We rewrite the system of equations (10), (11) and (12) in the following matrix form:

M ·

(
φ(t)

ψ+(t)

)
= G(t), G(t) =


− 1

Γ(1/3)

(
C̃
∣∣− Im+k−1

)
D

2/3
(0,t)F(0, t)

− 1

Γ(2/3)
D

1/3
(0,t)

(
B
∣∣− Im

)
∂F(0, t)

3

π
(−C−

∣∣C+)∂2F(0, t)

 ,

where

M =


f(0)C̃−

∣∣ −f(0)Ik−1

∣∣ 0(k−1)×m
∣∣ 0(k−1)×m

f(0)C+
∣∣ 0m×(k−1)

∣∣ −f(0)Im
∣∣ −φ(0)Im

f ′(0)B
∣∣ −f ′(0)Im

∣∣ −φ′(0)Im
2C−

∣∣ C+
∣∣ 01×m


Now we must prove that det(M) 6= 0.
Suppose that det(M) = 0. Then, the homogenous equation Mα = 0 has a non-

trivial, time independent solution α = (α1, α2, . . . , αk+m) (notice that M is constant ma-
trix). Therefore, putting in (7) φ(t) = φ0 = (α1, . . . , αk+m)T = const, ψ(t) = ψ0 =
(0, . . . , 0, αk+m+1, . . . , αk+2m) = const, we obtain a solution for the problem with u0(x) ≡ 0,
f(x, t) ≡ 0. According to the uniqueness theorem, we have:

φ0

t∫
0

1

(t− τ)1/3
f

(
x

(t− τ)1/3

)
dτ +ψ0

t∫
0

1

(t− τ)1/3
ϕ

(
x

(t− τ)1/3

)
dτ = 0,

or

φ0f
( x

t1/3

)
+ψ0ϕ

( x

t1/3

)
= 0,

for any fixed t. The last equality contradicts the condition of linear independence for the Airy
functions Ai(x) and Bi(x). This proves the statement det(M) 6= 0.
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Summarizing the above studies, we obtain:

u(x, t) = F(x, t) +

t∫
0

U(x, t− τ)M−1G(τ)dτ

with

U(x, t) =

(
U(x, t; 0, 0)Ik | 0k×m | 0k×m

0m×k | U(x, t; 0, 0)Im | V (x, t; 0, 0)Im

)
.

6. Proof of existence theorems

Proof of Theorem 1. According to the theory of potentials [3, 5], the solutions constructed in
the previous sections and their x-derivatives, up to the second order, are continuous functions
in the closure of each bondof the graph.

Now, we consider the functions vj(xj, t) that are solutions of the considered problem

with initial conditions vj(x, 0) =
d3

dx3
u0j(x), and with fj replaced by

∂3

∂x3
fj . According to the

conditions of the theorem, one can easily obtain
∂3uj
∂x3

(x, t) = vj(x, t). From this, we conclude

that the functions uj(x, t), j = 1, 2, 3 and their x-derivatives of any order are continuous
functions in the closure of Bj .

Now, we consider the half lines corresponding to each bond separately. Notice that
uj(x, t) is a solution of the linearized KdV equation on the half line Bj and satisfies compati-
bility conditions at the point x = 0, t = 0. Applying Theorem 1.1 from [7], we get that these
solutions define a C1 map from [0, T ] into S(B̄j).

Proof of Theorem 2. Above, we proved the estimate:

‖u(·, t)‖Γ ≤ ‖u(·, 0)‖Γ +

t∫
0

‖f(·, τ)‖Γ dτ.

Note that for the function v, constructed above, the same estimate holds.
Summing up these two estimates, we have:

‖u(·, t)‖3,Γ ≤ ‖u(·, 0)‖3,Γ +

t∫
0

‖f(·, τ)‖3,Γ dτ. (13)

By construction, S±(Γ) is dense in W±(Γ). This, together with the a priori estimate (13)
proves the theorem. Thus, we have shown the existence and uniqueness of the solution for the
linearized KdV equation on a metric star graph and derived its explicit solution. The above
approach can also be extended to cases of graphs with different topologies.
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The uncertainty relation between angle and orbital angular momentum had not been formulated in a similar
form as the uncertainty relation between position and linear momentum because the angle variable is not
represented by a quantum mechanical self-adjoint operator. Instead of the angle variable operator, we introduce

the complex position operator Ẑ = x̂+iŷ and interpret the order parameter µ = 〈Ẑ〉/
√
〈Ẑ†Ẑ〉 as a measure of

certainty of the angle distribution. We prove the relation between the uncertainty of angular momentum and
the angle order parameter. We also prove its generalizations and discuss experimental methods for testing
these relations.
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1. Introduction

Uncertainty relations elucidate the difference between classical physics and quantum
physics. In classical physics, accuracy of measurement is not limited in principle and it is
assumed that any observables can be measured simultaneously and precisely. However, in
quantum physics, the accuracy of simultaneous measurements of two observables is limited
by the uncertainty relation.

Originally, Heisenberg [1] formulated the uncertainty relation between position Q
and linear momentum P as:

∆Q∆P & h, (1)
with the Planck constant h. He deduced this relation via a Gedankenexperiment. Later,
Weyl, Kennard, and Robertson [2] gave a rigorous proof of this relation. In the context
of quantum mechanics, the position is represented by a self-adjoint operator Q̂ and the
uncertainty of the position is defined as the variance:

(∆Q)2 :=
〈
ψ
∣∣∣(Q̂− 〈ψ|Q̂|ψ〉)2∣∣∣ψ〉 = 〈ψ|Q̂2|ψ〉 − 〈ψ|Q̂|ψ〉2, (2)

for a normalized state vector |ψ〉. The uncertainty ∆P of momentum is defined in a similar
way.

It is natural to expect a similar relation:

∆φ∆L & h, (3)

holds for the angle φ and the angular momentum L as shown in the textbook [3]. However,
in a plane, the coordinate values {φ + 2πn} with any integer n represent the same point
as φ indicates. In other words, the angle variable φ is a multivalued function. In quantum
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mechanics, the spectrum of a self-adjoint operator should have one-to-one correspondence
with the values of an observable. Hence, there is no self-adjoint operator φ̂ corresponding
to the multivalued angle variable φ. Therefore, the angle uncertainty ∆φ cannot be defined
as the position uncertainty ∆Q was defined.

The uncertainty relation between angle and orbital angular momentum is a long-
standing issue in physics. Many people have proposed other definitions of the angle uncer-
tainty and have formulated several versions of the uncertainty relation between angle and
angular momentum [4] – [9]. However, most of these relations treat a particle moving
on a one-dimensional circle. They did not consider a particle moving in two- or three-
dimensional spaces. Thus, we do not yet have an angle-angular momentum uncertainty
relation that is applicable for a realistic situation.

In this paper, we introduce the moment of position distribution in a plane, which
is an arbitrary two-dimensional subspace in the configuration space of the particle. We
propose to use the moment of position as an indicator of certainty or bias of angle distri-
bution. The main results of this work are inequalities (27), (32), (36), which represent the
uncertainty relation between the moments of position and the orbital angular momentum.
Our results are applicable for a particle moving in configuration space having more than
two dimensions.

2. Robertson inequality

The Robertson inequality [2] is one formulation of general uncertainty relations.
The Robertson inequality has a clear meaning and it is applicable to any kind of observable.
Hence, it is regarded as the universal formulation of uncertainty relations. Although
the Robertson inequality is well known and its proof is rather simple, here, we write its
derivation to make a comparison with our uncertainty relation of the angle and angular
momentum, which is derived in the next section.

For any vectors |α〉 and |β〉 of a Hilbert space H , the Schwarz inequality:

〈α|α〉〈β|β〉 ≥
∣∣∣〈α|β〉∣∣∣2, (4)

holds. The equality holds if and only if the two vectors |α〉 and |β〉 are linearly dependent.
Let ψ ∈ H be an arbitrary normalized vector satisfying 〈ψ|ψ〉 = 1. For self-adjoint
operators Â and B̂ on H , we set:

〈Â〉 := 〈ψ|Â|ψ〉, (5)

∆Â := Â− 〈Â〉Î , (6)

|α〉 := ∆Â|ψ〉, (7)

|β〉 := ∆B̂|ψ〉, (8)

where Î is the identity operator on H . Then, the Schwarz inequality (4) becomes:

〈ψ|(∆Â)2|ψ〉〈ψ|(∆B̂)2|ψ〉 ≥
∣∣∣〈ψ|∆Â∆B̂|ψ〉

∣∣∣2. (9)

The standard deviation of the observable Â is defined as:

σ(Â) :=
(
〈ψ|(∆Â)2|ψ〉

) 1
2
. (10)
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Then, it is easy to see that:

∆Â∆B̂ =
1

2

(
∆Â∆B̂ + ∆B̂∆Â

)
+

1

2

(
∆Â∆B̂ −∆B̂∆Â

)
=

1

2
{∆Â,∆B̂}+

1

2
[∆Â,∆B̂]. (11)

Since 〈ψ|{∆Â,∆B̂}|ψ〉 is a real number and 〈ψ|[∆Â,∆B̂]|ψ〉 is a pure imaginary number,
the right-hand side of (9) can be rewritten as:∣∣∣〈ψ|∆Â∆B̂|ψ〉

∣∣∣2 =
1

4
〈ψ|{∆Â,∆B̂}|ψ〉2 +

1

4

∣∣∣〈ψ|[∆Â,∆B̂]|ψ〉
∣∣∣2. (12)

Moreover, we can see that:

[∆Â,∆B̂] = [Â, B̂]. (13)

Therefore, (9) implies

σ(Â)2σ(B̂)2 ≥
∣∣∣〈ψ|∆Â∆B̂|ψ〉

∣∣∣2 =
1

4
〈ψ|{∆Â,∆B̂}|ψ〉2 +

1

4

∣∣∣〈ψ|[∆Â,∆B̂]|ψ〉
∣∣∣2

≥ 1

4

∣∣∣〈ψ|[Â, B̂]|ψ〉
∣∣∣2. (14)

By taking squre roots of the both sides, we obtain the Robertson inequality:

σ(Â) · σ(B̂) ≥ 1

2

∣∣∣〈ψ|[Â, B̂]|ψ〉
∣∣∣, (15)

which means that the two observables cannot have precise values simultaneously if
〈ψ|[Â, B̂]|ψ〉 6= 0. On the other hand, the following quantity:

Cs(Â, B̂) :=
1

2
〈ψ|{∆Â,∆B̂}|ψ〉 =

1

2
〈ψ|{∆Â, B̂}|ψ〉 =

1

2
〈ψ|{Â,∆B̂}|ψ〉

=
1

2
〈ψ|{Â, B̂}|ψ〉 − 〈ψ|Â|ψ〉〈ψ|B̂|ψ〉, (16)

is called the symmetrized covariance of Â and B̂. Then, (14) can be rewritten as:

σ(Â)2 · σ(B̂)2 ≥
∣∣∣Cs(Â, B̂)

∣∣∣2 +
1

4

∣∣∣〈ψ|[Â, B̂]|ψ〉
∣∣∣2. (17)

Sometimes this is referred to as the Schrödinger inequality [10].

3. Angular order parameter and orbital angular momentum

In this section, we show our main result. Let us consider a quantum mechanical
particle in a configuration space whose dimensionality is equal to or larger than two. The
system has four observables x̂, ŷ, p̂x, p̂y, which satisfy the canonical commutation relations
[x̂j, p̂k] = ih̄δjk. We introduce two operators:

Ẑ := x̂+ iŷ, L̂ := x̂p̂y − ŷp̂x. (18)

The operator Ẑ is not self-adjoint but it is related to position of the particle. The self-adjoint
operator L̂ is called the orbital angular momentum (OAM). They satisfy the following:

[L̂, Ẑ] = h̄Ẑ, (19)

and:

[L̂, Ẑn] = nh̄ Ẑn (20)
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for any natural number n = 1, 2, 3, . . . . With a normalized vector ψ ∈H we define:

〈L̂〉 := 〈ψ|L̂|ψ〉, ∆L̂ := L̂− 〈L̂〉Î . (21)

By substituting:

|α〉 = ∆L̂|ψ〉, |β〉 = Ẑ|ψ〉, (22)

into the Schwarz inequality (4) and by noting 〈α| = 〈ψ|∆L̂† = 〈ψ|∆L̂ and 〈β| = 〈ψ|Ẑ†, we
get:

〈ψ|(∆L̂)2|ψ〉〈ψ|Ẑ†Ẑ|ψ〉 ≥
∣∣∣〈ψ|∆L̂ Ẑ|ψ〉∣∣∣2. (23)

Hence: √
〈(∆L̂)2〉

√
〈Ẑ†Ẑ〉 ≥

∣∣∣〈∆L̂ Ẑ〉∣∣∣. (24)

In a similar way, by substituting:

|α〉 = Ẑ†|ψ〉, |β〉 = ∆L̂|ψ〉, (25)

into (4), we get: √
〈ẐẐ†〉

√
〈(∆L̂)2〉 ≥

∣∣∣〈Ẑ∆L̂〉
∣∣∣. (26)

Note that ẐẐ† = Ẑ†Ẑ. The triangle inequality |a| + |b| ≥ |a − b| holds for any complex
number a, b. The commutation relation (19) implies [∆L̂, Ẑ] = [L̂, Ẑ] = h̄Ẑ. By adding (24)
with (26) and multiplying 1/2, we obtain:√

〈(∆L̂)2〉
√
〈Ẑ†Ẑ〉 ≥ 1

2

{∣∣〈∆L̂ Ẑ〉∣∣+
∣∣〈Ẑ∆L̂〉

∣∣}
≥ 1

2

{∣∣〈∆L̂Ẑ − Ẑ∆L̂〉
∣∣}

=
1

2
h̄
∣∣〈Ẑ〉∣∣. (27)

This is one of our main results.
By replacing the operator Ẑ with Ẑn, we can derive more general inequalities:√

〈(∆L̂)2〉
√
〈(Ẑ†Ẑ)n〉 ≥ 1

2
nh̄
∣∣〈Ẑn〉

∣∣ (n = 1, 2, 3, . . . ), (28)

via a similar inference. The nonnegative number:

σ(L̂) :=

√
〈ψ|(∆L̂)2|ψ〉 = 〈ψ|L̂2|ψ〉 − 〈ψ|L̂|ψ〉2, (29)

is the standard deviation of the orbital angular momentum. The complex number

〈Ẑn〉 = 〈ψ|(x̂+ iŷ)n|ψ〉 =

∫ ∞∫
−∞

(x+ iy)n
∣∣∣ψ(x, y)

∣∣∣2 dx dy (30)

is the n-th moment of probability density for the wave function ψ(x, y)1. If the probability
density |ψ(x, y)|2 is rotationally invariant, all the moments vanish 〈Ẑn〉 = 0 (n = 1, 2, 3, . . . ).
Conversely, if the system exhibits a nonvanishing moment 〈Ẑn〉 6= 0 for some n, the
probability density, |ψ(x, y)|2, is not rotationally invariant. Hence, the expectation value

1If the dimension of the configuration space is larger than two, it is necessary to use a suitable wave
function ψ(x, y, x, . . . ).
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〈Ẑn〉 is interpreted as an order parameter to measure the degree of breaking of the rotational
symmetry. The complex number:

µn :=
〈Ẑn〉√
〈(Ẑ†Ẑ)n〉

=
〈(x̂+ iŷ)n〉√
〈(x̂2 + ŷ2)n〉

, (31)

is called the normalized n-th moment of position distribution or the normalized angular
order parameter, which indicates bias or asymmetry of angular distribution of the particle.
Then, we have:

σ(L̂) ≥ 1

2
nh̄

∣∣〈Ẑn〉
∣∣

〈(Ẑ†Ẑ)n〉1/2
=

1

2
nh̄
∣∣∣µn

∣∣∣ (n = 1, 2, 3, . . . ). (32)

This is the main result of our work. This inequality implies that if the uncertainty σ(L̂)
of OAM is small, the normalized moment |µn| must be small. In this case, the angular
distribution is not strongly biased and hence the uncertainty of angle must be large.

However, if the uncertainty of angle is small, the angular distribution is strongly
biased and hence, the normalized moment |µn| becomes large, then the inequality (32)
implies that the uncertainty σ(L̂) of OAM must become large.

4. Tighter inequality

The necessary and sufficient conditions for the equality in (27) are the two equalities
in (24), (26) and the other equality 〈∆L̂Ẑ〉 = −〈Ẑ∆L̂〉. Actually, there is no state vector
satisfying these three conditions simultaneously, and hence, the equality in (27) is never
attained. In this sense, the inequality (27) is not tight.

It is desirable to find a tighter inequality. For this purpose, we introduce self-adjoint
operators:

x̂n :=
1

2

(
Ẑn + Ẑ†n

)
ŷn :=

1

2i

(
Ẑn − Ẑ†n

)
, (33)

for n = 1, 2, 3, . . . . Then, we have:

Ẑn =
(
x̂+ iŷ

)n
= x̂n + iŷn. (34)

Using these, it is easy to see that:

∆L̂ Ẑn =
1

2
{∆L̂, Ẑn}+

1

2

[
∆L̂, Ẑn

]
=

1

2
{∆L̂, (x̂n + iŷn)}+

1

2
nh̄Ẑn

=
1

2
{∆L̂, x̂n}+ i

1

2
{∆L̂, ŷn}+

1

2
nh̄(x̂n + iŷn). (35)

Hence, (23) is equivalent to:

〈(∆L̂)2〉 · 〈Ẑ†Ẑ〉 ≥
∣∣∣1
2
〈{∆L̂, x̂n}〉+

1

2
nh̄〈x̂n〉

∣∣∣2 +
∣∣∣1
2
〈{∆L̂, ŷn}〉+

1

2
nh̄〈ŷn〉

∣∣∣2
=

∣∣∣Cs(L̂, x̂n) +
1

2
nh̄〈x̂n〉

∣∣∣2 +
∣∣∣Cs(L̂, ŷn) +

1

2
nh̄〈ŷn〉

∣∣∣2. (36)

This is the tightest inequality whose equality can be attained. However, the equality holds
if and only if the state is an eigenstate of L̂. In this case, both sides of (36) are zero.
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5. Experimental realization

We have formulated the uncertainty relations (27), (32), (36). In order to test these
relations, we need to have a method for controlling and measuring angular momenta of
particles.

In optics, there is a method for controlling and measuring angular momenta of
photons. Franke-Arnold and Padgett et al. [11, 12] have tested the uncertainty relation of
Judge [4] and Berbett, Pegg [7], by using an analyzer of photon angular momentum.

Uchida and Tonomura [13] first made a coherent electron beam carrying nonzero
orbital angular momentum. Such electron beam has a wave front whose shape looks like
a vortex. Verbeeck et al. [14] and McMorran et al. [15] developed fork-shaped diffraction
gratings, which control orbital angular momenta of electrons. They observed circularly
symmetric diffraction patterns for eigenstates of orbital angular momentum. Thus, they
verified that the uncertainty in angular distribution was maximum when the uncertainty
of angular momentum was minimum.

Recently, Hasegawa and Saitoh et al. [16,17] made a superposition of two coherent
electron beams carrying different angular momenta. As a result, they produced a quantum
state that has an uncertain orbital angular momentum. They observed an interference
pattern that was circularly asymmetric. Thus, they verified that the uncertainty in angular
distribution became smaller when the uncertainty of angular momentum became larger.
Yet, quantitative analysis of the uncertainty relation was not performed in experiments
using electrons.

6. Generalization

The angular momentum L̂ is a generator of rotational transformations, which trans-
form the angle variable (x̂ + iŷ)/

√
x̂2 + ŷ2. A nonzero value of the order parameter

µ = 〈x̂ + iŷ〉/
√
〈x̂2 + ŷ2〉 indicates breaking of rotational symmetry, or certainty of the

angle distribution, which accompanies uncertainty of the angular momentum. The rela-
tion between the angle order parameter and the uncertainty of the angular momentum is
expressed by the inequality (32).

This kind of relation between a symmetry generator and a symmetry-breaking order
parameter can be formulated in a more general form. Suppose that we have a self-adjoint
operator Ĝ, which is a generator of symmetry transformations and is called charge. Also,
suppose that we have another operator, Φ̂. It is not necessary to assume that Φ̂ is a
self-adjoint operator. Then, the inequality:

σ(Ĝ) ≥ | 〈[Ĝ, Φ̂]〉 |√
〈Φ̂†Φ̂〉+

√
〈Φ̂Φ̂†〉

, (37)

holds. The expectation value 〈[Ĝ, Φ̂]〉 = 〈ψ|[Ĝ, Φ̂]|ψ〉 is taken with respect to a state |ψ〉.
This is a generalization of (27) and its proof is straightforward.

On the left-hand side of (37), the standard deviation σ(Ĝ) measures uncertainty
of the charge, while on the right-hand side of (37), the commutator [Ĝ, Φ̂] represents
transformation of Φ̂ by Ĝ. If the state |ψ〉 is invariant under the transformation generated
by Ĝ, then 〈ψ|[Ĝ, Φ̂]|ψ〉 = 0. If the order parameter 〈[Ĝ, Φ̂]〉 exhibits a nonzero value, then
the state is not invariant and the uncertainty of the charge must satisfy inequality (37).
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This formulation is applicable to the uncertainty relation between the particle num-
ber and the phase. In this case, we take Ĝ = â†â and Φ̂ = â, with the creation and
annihilation operators â† and â.

This formulation is applicable also to the complementarity relation [18] between the
particle and wave natures.

7. Summary

The uncertainty relation between angle and orbital angular momentum does not
have a formulation similar to the uncertainty relation between position and linear momen-
tum. The angle variable is not represented by a quantum mechanical self-adjoint operator,
although the other observables are represented by self-adjoint operators. We reviewed
the general formulation of the uncertainty relation between noncommutative observables,
which was proved by Robertson. Instead of the angle variable operator, we introduced the

complex position operator Ẑ = x̂+ iŷ and interpreted the order parameter µ = 〈Ẑ〉/
√
〈Ẑ†Ẑ〉

as a measure of certainty of angle distribution. Then, we have proven relation (27) between
the uncertainty of angular momentum and the certainty of angle. We proved relations (32),

which are generalizations to higher moments of angular distribution µn = 〈Ẑn〉/
√
〈(Ẑ†Ẑ)n〉.

We proved also the tightest inequality (36). A theoretical generalization to the uncertainty
relation (37) between a symmetry generator and an order parameter was shown. Methods
for controlling angular momenta of photons and electrons were discussed. Quantitative
experimental tests of the relations will be discussed in future publications.

In this paper, we considered uncertainties of values of observables that are inherent
in quantum states. However, we did not consider measurement process of observables.
An actual measurement process involves measurement error and causes disturbance on the
state of the measured system. Ozawa [19] formulated a quantitative relation between the
measurement error and the disturbance. Branciard [20] established the tightest inequality
that the error and the disturbance obey. We do not yet know this kind of error-disturbance
relation for the angle and angular momentum.

Hayashi [21] formulated quantum estimation theory for the group action, which can
be regarded as a generalization of the problem that was considered in our work. This aspect
warrants further investigation.
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The Gross–Pitaevskii equation [1, 2]:

ih̄
∂ψ (x, t)

∂t
=

(
− h̄2

2m
∇2 + U (x) + g |ψ (x, t)|2

)
ψ (x, t) . (1)

is a powerful approach for the description of the Bose–Einstein condensate of the dilute ultra-
cold atomic Bose gases [3], which have been recently observed in many experiments on cooling
of atoms in magnetic traps and laser radiation (see references on experimental papers in [3]). In
Eq. (1), the term proportional to g describes the contact interaction between two atoms in the
s-scattering approximation.

With the existence of the external potential U (x) (confining trap or disorder potential)
and a fluidity flow, the condensate wave function ψ (x, t) =

√
n (x, t)eiS(x,t) becomes a function

not only of the condensate density n (x, t), but also of its phase S (x, t). For that case, it is
rather convenient to describe a system by the couple hydrodynamic equations for the condensate
density and its phase, originating from the Gross–Pitaevskii equation:

∂n

∂t
+∇ (nvs) = 0,

m
∂vs

∂t
+∇

(
1

2
mv2

s + U (x) + gn− h̄2

2m
√
n
∇2
√
n

)
= 0.

(2)

Here, m is the mass of an atom, the superfluid velocity is expressed by formula
vs = h̄∇S (x, t) /m and for simplicity, we have omitted arguments in expressions for n (x, t),
S (x, t), vs (x, t). For the stationary case, when time derivatives of the condensate density and
the superfluid velocity are equal to zero, Eq. (2) reduces to:
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∇ (nvs) = 0,

∇
(

1

2
mv2

s + U (x) + gn− h̄2

2m
√
n
∇2
√
n

)
= 0.

(3)

Here and below, the kinetic energy of a superfluidity and external potential are expressed
in gn0 units and we introduce y = (n/n0)

1/2. Condensate density n0 is the solution of the second
equation of Eqs. (3) obtained at U (x) = 0.

We will find the solution of Eqs. (3) using the perturbative approach, substituting in
them expansions: y (x) = 1 + ε1 (x) + ε2 (x) and vs (x) = vs0 + vs1 (x) + vs2 (x), where
numerical indexes mean the order of the correction, the superfluid velocity vs0 corresponds
to case U (x) = 0, and using in these expansions the Fourier integral transforms. For weak
disorder, we consider U (x) as the first order correction and also use its Fourier transform.

Our interest is in the calculation of the total density of particles and the condensate

density of particles
〈n (x)〉
n0

=
〈
y2 (x)

〉
,
〈n0 (x)〉
n0

= 〈y (x)〉2, respectively, averaged over the en-

semble of the disorder potential. We denote the averaging procedure by 〈· · · 〉. We point out the
property 〈U (x)〉 = 0 for the disorder potential and existence of its correlator 〈U (x)U (x′)〉 =
R (|x− x′|), whose Fourier transform is 〈U (k)U (k′)〉 = (2π)1 δ (k + k′)R (k).

We obtain expressions for the total density, condensate density, and condensate density
depletion, respectively:

〈n (x)〉
n0

= 1 +
1

1−mv2
s0

∫
dk

2π

R (k)
[

h̄2k2

2mgn0 − 6mv2
s0

]
[

h̄2k2

2mgn0 + 2 (1−mv2
s0)
]2 ,

〈n0 (x)〉
n0

= 1 +
1

1−mv2
s0

∫
dk

2π

R (k)
[

h̄2k2

2mgn0 − 1− 5mv2
s0

]
[

h̄2k2

2mgn0 + 2 (1−mv2
s0)
]2 ,

〈n (x)− n0 (x)〉
n0

=

∫
dk

2π

R (k)[
h̄2k2

2mgn0 + 2 (1−mv2
s0)
]2

(4)

and the expression for the superfluid velocity:

〈vs (x)〉 = vs0 −
vs0

1−mv2
s0

∫
dk

2π

R (k)
[

h̄2k2

2mgn0 − 4− 2mv2
s0

]
[

h̄2k2

2mgn0 + 2 (1−mv2
s0)
]2 . (5)

We consider the Bose–Einstein condensate in the one dimensional ring trap, whose torus
circumference is given by the length L. The trap of this geometry has a periodic boundary
condition. Thus, all properties and quantities of the system must appear with periodic length L.
For instance, the delta correlated disorder potential correlation function is:

R (x) = r

j=∞∑
j=−∞

δ (x− Lj) , (6)

where r = U2
0 for the average strength U0 of the disorder potential. According to this, they

must be expanded to the Fourier series with discrete values for the wave vectors. However,
for a limit of the infinite length L → ∞, these series on discrete wave values can easily be



Perturbative hydrodynamic Gross–Pitaevskii treatment for Bose–Einstein condensate . . . 215

transformed into the integral expressions on the continuous wave vector for quantities, in which
we have interest, by replacing

∑
→
∫
Ldk/2π.

For L→∞, the asymptotic expressions for the ring geometry total density, condensate
density, and condensate density depletion, respectively, are:

〈n (x)〉
n0

= 1 +
πp1/2r (1− 4mv2

s0)

23/2L (gn0)2 (1−mv2
s0)

5/2
,

〈n0 (x)〉
n0

= 1 +
πp1/2r (1− 7mv2

s0)

25/2L (gn0)2 (1−mv2
s0)

5/2
,

〈n (x)− n0 (x)〉
n0

=
πp1/2r

25/2L (gn0)2 (1−mv2
s0)

3/2
,

(7)

where p = 2mL2gn0/
(
(2π)2 h̄2

)
.

In conclusion, we have developed the perturbative approach for the stationary state
hydrodynamic Gross–Pitaevskii equations in the external disorder potential and applied it to
investigate the one dimensional Bose–Einstein condensate of ring geometry. We have found
expressions for the total density, condensate density, condensate density depletion and superfluid
velocity of that condensate for the disorder potential, which has a general form, considering this
potential perturbatively. For the delta correlated disorder, the explicit analytical forms of these
quantities (except the superfluid velocity) have been obtained. It is interesting that for the
superfluid velocity vs0 = 0, i.e. no initial superfluid flow in the condensate, above expressions
for the total density, condensate density, and condensate density depletion reproduce the same
expressions for the static Bose–Einstein condensate [4].
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We study kicked particle dynamics in a rectangular quantum billiard. The kicking potential is chosen as

localized at the center of the billiard. The exact solution for the time-dependent Schrödinger equation for a

single kicking period is derived. Using this solution, the time-dependence of the average kinetic energy and

probability density as a function of spatial coordinates are computed. Different regimes for trapping of the

particle in kicking area are analyzed. It is found that depending of the values of kicking parameters, the

average kinetic energy can be a periodic or a monotonically growing function of time or can be suppressed.

Such behavior is explained in terms of particle trapping regimes. Wave packet dynamics are also studied.
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1. State of the art and statement of the problem

The study of particle dynamics in driven confined quantum systems is of practical
importance for different newly emerging topics of nanoscale physics and nanotechnology. In
fact, many nanoscale systems, materials and devices are subject to the influence of different
external perturbations and environmental effects. The role of such effects in particle trans-
port is relevant to the problem of tuning electronic, optic and acoustic properties of different
nanoelectronic devices. Conversely, in confined quantum systems, particle dynamics also
depend also on the geometry of the confinement boundaries. Due to these two facts driven
confined systems have become an ideal testing ground for solving the problem of tunable
particle transport in low-dimensional functional materials, such as quantum dots, wires net-
works etc. The most convenient tool for modeling of confined systems are so-called billiard
geometries, or simply billiards. These are finite-size spatial domains with hard or soft walls
providing confinement.

Earlier, billiards were the subject of extensive study in nonlinear dynamics [1] and
quantum chaos theory [10]. In particular, it was found that classical particle dynamics in
billiards strongly depended on the geometry of its boundaries. For instance, dynamics can
be regular or chaotic depending on the shape of the billiard. In the quantum case, such a
feature is on display in the energy spectrum of the system, implying that for billiards whose
dynamics are integrable in the classical limit, level spacing distribution is always of the
Poisson type, while for classically chaotic billiards, the distribution is Gaussian in nature [4].

Later, quantum billiards have found effective application as models for quantum
dots in nanoscale physics [16]. Quantum dots are nanoscale domains in semiconducting
structures of molecular systems, in which electronic motion is restricted to a finite domain
by providing constant electric fields. It was found that by changing the shape and size of the
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dot to be modeled by the quantum billiard, one can manipulate electron transport in the
dot. Despite the fact that both quantum dots and billiards have been extensively studied,
most of the works on this topic are restricted by considering isolated systems, i.e. in the
absence of external forces. However, driven quantum systems are more attractive from the
viewpoint of environmental effects and external perturbation effects on particle transport.
We note that classical and quantum dynamics of periodically driven systems were also the
subject of extensive research in the past. It was found that for a periodically driven classical
system, the average kinetic energy increased linearly with time, while for the corresponding
quantum system, such growth is suppressed [1]. The latter is called a quantum localization
phenomenon, which is, to some extent, an analog of the well-known Anderson localization
in solid state physics.

In this paper, we study the quantum dynamics of a periodically driven particle
confined in a square-shaped billiard. We derive an exact analytical solution for the time-
dependent Schrödinger equation which describes the dynamics of such a system. Using the
obtained solution, we compute the average kinetic energy as function of time. Also, we
analyze wave packet evolution in our system.

2. Kicked square billiard

Before starting the treatment of driven billiard, let us briefly recall the corresponding
unperturbed system. The motion of a quantum particle in a square billiard is described by
the following stationary Schrödinger equation:

H0ψnm = εnmψnm, (1)

where

H0 = −1

2

(
∂2

∂x2
+

∂2

∂y2

)
, (2)

ψnm =
2

a
sin

nπx

a
sin

mπy

a
, (3)

a is the side of square,

εnm =
π2

a2
(n2 +m2) (4)

are the eigenfunctions and eigenvalues, respectively.
The external potential is chosen in the form of delta kicks as:

V (x, y, t) = ε(cosx+ cos y)

∞∑
l=0

δ(t− lT ). (5)

This potential is a two dimensional generalization of the well-known delta-kicks stud-
ied earlier in the Ref. [1]. Schematically, the kicked billiard we are going to study can be
represented as in Fig.1.

Particle dynamics in such a billiard are described by the following time-dependent
Schrödinger equation:

i
∂Ψ

∂t
= [H0 + V (x, y, t)]Ψ, (6)

where

Ψ = Ψ(x, y, t)
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Fig. 1. Profile of the external kicking potential

The wave function of the system, i.e. the solution of Eq.(6) can be expanded in terms of
unperturbed billiard wave functions given by Eq.(3) as:

Ψ(x, y, t) =
∑

Anm(t)ψnm(x, y), (7)

This allows us to find expansion coefficients explicitly and exactly:

Anm(t + T ) =
∑
n′,m′

An′m′(t)Vnmn′m′e−iεn′m′T , (8)

where

Vnmn′m′ =

∫ ∫
ψ∗
nm(x, y)e

iε(cosx+cos y)ψn′m′(x, y)dxdy. (9)

In the derivation of this expression, we used the relation:

eiεcosx =
∑
l

ilJl(ε)e
ilx, (10)

We note that the expansion coefficients obey the normalization condition:∑
n,m

|Anm(0)|2 = 1. (11)

One important characteristic of the dynamics in driven systems is the average kinetic energy
of a driven particle. For our system, it can be defined as:

E(t) =

∫
Ψ∗(x, y, t)H0Ψ(x, y, t)dxdy =

∑
n,m

|Anm(t)|2εnm. (12)
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Fig. 2. Time dependence of the average kinetic energy (ε = 0.001, T = 0.1)
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Fig. 3. Time dependence of the average kinetic energy for fixed ε at different
values of the kicking period (ε = 0.001, T1 = 0.01, T2 = 0.001)

3. Particle dynamics in a kicked square billiard

We are interested in analyzing this quantity as a function of time. In calculating the
average kinetic energy, we take a few non-zero initial values of the expansion coefficients
which obey the above normalization conditions given by (11). In Fig.2, E(t) is plotted.

As is seen from these plots, E(t) is periodic in time with a period much higher than
that of the kicking force. Figs. 3 and 4 present the average kinetic energy as a function of
time for fixed T at fixed kicking strength, ε.
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One can observe from these plots that the profile of E(t) depends on the kicking
period. The dependence of the average kinetic energy upon the kicking parameters can
clearly be seen from the plot in Fig. 5, where it is plotted as a function of T and ε. This plot
shows that the growth of E(t) is as intense as higher ε and as shorter T . To explain the above
behavior of E(t), we analyzed the spatio-temporal evolution of the probability density for our
system, |Ψ(x, y, t)|2. Figs. 6 and 7 present comparison of |Ψ(x, y, t)|2 at different moments of
time with the profile of the kicking potential. It is clear from these plots that the localization
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Fig. 6. Probability density versus coordinates (t = 20T, ε = 0.001, T = 1.26)
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Fig. 7. Probability density versus coordinates. (t = 100T, ε = 0.001, T = 1.26)

of the probability density is periodic in time, i.e. probability density is periodically localized
on the areas of billiard where the kicking potential is negative and positive. If the particle
motion is localized on the area where the kicking potential is repulsive (positive), it gains the
energy, while on the area where the potential is negative, it looses energy. In other words,
particle is periodically trapped on the areas where it gains and loses energy. This is the
reason for the time-periodic behavior of the average kinetic energy.

4. Wave packet evolution

Another characteristic of particle transport in driven systems is the wave packet
dynamics, i.e. the evolution of the packet profile in space and time. In this work, we
consider evolution of Gaussian wave packets, i.e. we assume that at t = 0 the wave packet
has a Gaussian profile as:

Ψ(x, y, 0) = Φ(x, y) =
1

π
√
π
exp

(
−x

2 + y2

2d2

)∑
n,m

sin
πnx

a
sin

πmy

a
. (13)

Then, the expansion coefficients at t = 0 can be expressed via the wave packet as:

Amn(0) =
1

π
√
π
exp

(
−x

2 + y2

2d2

)
, (14)

where d is the width of packet.



222 S. Rakhmanov, D. Babajanov, O. Karpova, F. Khoshimova

(t = 0, ε = 0.001, T = 100) (t = 3T, ε = 0.001, T = 100)

-2

 0

 2

 4

 6

 8

 10

 12

 14

-2  0  2  4  6  8  10  12  14

y

x

t=0

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

-2

 0

 2

 4

 6

 8

 10

 12

 14

-2  0  2  4  6  8  10  12  14

y

x

t=3T

 0

 0.005

 0.01

 0.015

 0.02

 0.025

(t = 31T, ε = 0.001, T = 100) (t = 46T, ε = 0.001, T = 100)

-2

 0

 2

 4

 6

 8

 10

 12

 14

-2  0  2  4  6  8  10  12  14

y

x

t=31T

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

-2

 0

 2

 4

 6

 8

 10

 12

 14

-2  0  2  4  6  8  10  12  14

y

x

t=46T

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

Fig. 8. Wave packet evolution

In upper left panel of Fig. 8, the time evolution of the wave packet is presented
for the moment t = 0 for the values of the kicking parameters ε = 0.001, T = 100. Other
panels of Fig. 8 depict the time evolution of the wave packet for the following time points
t1 = 3T, t2 = 31T, t3 = 46T for the values of the kicking parameters ε = 0.001, T = 100. As
is seen from these plots, the dispersion of the packet occurs after certain number of kicks.

5. Conclusions

Summarizing, in this work, we have studied the quantum dynamics of a particle
confined in a square billiard and interacting with an external time-periodic force having the
form of delta-kicks. The system is described by the time-dependent Schrödinger equation.
An exact solution for this time-dependent Schrödinger equation is found during single kicking
period. Using the obtained solution, characteristics of the particle dynamics, such as the
average kinetic energy, solution of the single state energy, probability density and wave
packet transport can be computed. The average kinetic energy was found to be periodic in
time. This periodicity was shown to be a result of particle interaction, which is periodically
located in areas where the kicking force is attractive or repulsive. When particle is confined
to a negative force area, it continuously loses its energy, and conversely, when trapped on
a positive force area, it gains energy. Similar behavior was found for single state energy.
Analysis of the wave packet profile in time and space showed that after a certain number
of kicks and collisions with the billiard wall, dispersion of the Gaussian wave packet occurs.
The results obtained in this work can be useful for the problem of tunable Fermi acceleration
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in quantum systems, and tunable electronic transport in nanoscale devices, e.g. quantum
dots, wires, wells etc.
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The motion of a quantum particle in a time-dependent circular billiard is studied on the basis of the

Schrödinger equation with time-dependent boundary conditions. The cases of monotonically expanding

(contracting), non-harmonically, harmonically breathing circles the case when billiard wall suddenly disap-

pears are explored in detail. The exact analytical solutions for monotonically expanding and contracting

circles are obtained. For all cases, the time-dependence of the quantum average energy is calculated. It is

found that for an harmonically breathing circle, the average energy is time-periodic in the adiabatic regime

with the same period as that of the oscillation. For intermediate frequencies which are comparable with the

initial frequency of the particle in unperturbed billiard, such periodicity is broken. However, for very high

frequencies, the average energy once again becomes periodic. A qualitative analysis of the border between

adiabatic and non-adiabatic regimes is provided.
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1. Introduction
Billiards are convenient models for the study of classical and quantum dynamics of

non-integrable systems. They have been extensively studied in both experimental [1] and the-
oretical contexts [2,3]. A remarkable feature of particle motion in billiards is the dependence
of the dynamics on the geometry of the billiard boundaries. Depending on the geometry, the
dynamics can be regular, mixed or chaotic in the classical case. The corresponding quantum
dynamics exhibit certain features in the statistical properties of the energy spectrum. For
those systems, whose classical dynamics are chaotic, the nearest-neighbor energy level spac-
ing distribution function of the corresponding quantum system is of Wigner type, while for
regular systems this distribution is Poissonian [2,3]. Most of the studies on billiards deal with
static billiards. However, in recent years there is a growing interest in the classical dynamics
of time-dependent billiards [4]- [8]. One of the key questions that has been investigated
is whether there will be Fermi acceleration in such two-dimensionally confined geometries.
Studies of time-dependent billiards with a regular static counterpart, such as the breathing
circle, show that there is no unbounded growth of the velocity, while for some non-integrable
geometries, like the stadium [4,5] and the (eccentric) annular billiard [6], Fermi acceleration
is possible. Recently, the classical dynamics of particles in time-dependent elliptic billiard
have been studied and tunable Fermi acceleration has been shown to exist in such a system,
even though the static counterpart is integrable [7, 8]. Despite certain progress made in the
study of the classical dynamics of time-dependent billiards, the quantum dynamics of such
systems are still an open problem. At the present time , no detailed treatment of the problem
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on the basis of two-dimensional time-dependent Schrödinger equation has yet been done. In
the quantum case, the problem of time-dependence is reduced to solving the two-dimensional
Schrödinger equation with time-dependent boundary conditions. The one-dimensional coun-
terpart of this problem has been extensively studied [10] - [28]. These studies showed that
even for the one-dimensional case, the Schrödinger equation with time-dependent boundary
conditions cannot be solved exactly for an arbitrary time-dependence of the boundary condi-
tions. In the case of the 1D box, the time-dependent boundary conditions can be reduced to
static ones, leading to a Schrödinger equation which can be interpreted as a time-dependent
confined harmonic oscillator [13, 16–18]. Makowsky et al. solved this problem for special
cases of the time-dependence of the boundaries [16]. In particular, they classified the types
of time-dependent boundary conditions for which an exact analytical solution of the problem
can be obtained.

In the case of periodic (harmonic) time-dependence of the boundaries, the problem
can be solved numerically by an expansion of the wave function in terms of Gaussian wave
packets [17]. Scheininger and Kleber treated the case of a special type of periodically time-
dependent boundaries by solving the problem in terms of the full-circle propagator [15]. Seba
studied the case of time-periodic boundary conditions in terms of Floquet operators [24]. In
a very recent work, Ref. [28], the quantum infinite square well with an oscillating wall was
studied. It was shown that three types of regimes are possible in such a system, which can be
classified as adiabatic (for low oscillation frequencies), chaotic (for intermediate frequencies)
and periodic (for high oscillation frequencies). In particular, the average energy was found
to be time-periodic for the adiabatic and periodic regimes, while for the chaotic regime,
periodicity was broken.

In this work, we address the two-dimensional extension of the problem considered
by Makowski et al. [16]. We solve the Schrödinger equation for the circular billiard with a
time-dependent radius. In particular, we consider the following cases:
i) monotonically expanding (contracting) circle;
ii) non-harmonically breathing circle;
iii) harmonically breathing circle.

The classical counterpart of this system has been studied earlier Ref. [30], where it was
shown that unbounded velocity gain is not possible. In Ref. [31] dynamics, statistical prop-
erties of quasi-energy levels and wave functions for the quantum system have been studied
for harmonically oscillating circle. The ”scars” in the quantum quasi-energy eigenfunctions
corresponding to classical unstable periodic orbits were found in [31].

This paper is organized as follows: in the next section we briefly recall the case of the
circular billiard with fixed boundaries. Section 3 presents the analytical solution when time
and coordinate variables can be separated. In section 4, we study the case when billiard wall
disappears suddenly. Non-harmonically breathing circle is studied in section 5. Section 6
provides detailed study of the circle with harmonically oscillating boundaries, by solving the
time-dependent Schrödinger equation numerically. Finally, section 7 presents the discussion
of the obtained results and some concluding remarks.

2. Static circular billiard

The circular billiard is defined by the potential:

V (r, θ) = V (r) =

{
0 for r < r0,

∞ for r � r0,
(1)
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where r0 is the radius of circle. The corresponding quantum mechanical eigenvalue problem
is given by:

− �
2

2μ

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
ψ(r, θ) = Eψ(r, θ), (2)

with μ being the mass of the particle. Angular and radial variables in this equation can be
separated with ψ(r, θ) = R(r)Θ(θ) (the system of units μ = � = 1 is used throughout the
paper)

−1

2

(
d2R

dr2
+

1

r

dR

dr

)
+
m2

2r2
R = ER, (3)

d2Θ(m)(θ)

dθ2
= −m2Θ(m)(θ), (4)

where R(r) and Θ(θ) are the radial and angular solutions, respectively, and m is the angular
quantum number. The boundary conditions for Eqs. 3 and 4 are given by:

R(r0) = 0,

Θ(m)(θ + 2π) = Θ(m)(θ).

We note that using the substitution R(r) = u(r)/
√
r, Eq.(3) can be reduced into a form

which does not contain the first derivative of the radial wave function:

−1

2

d2u

dr2
+
m2 − 1/4

2r2
u = Eu. (5)

The solution for the radial equation satisfying the above boundary condition can be written
in terms of the regular Bessel functions [29, 33–35]:

Rmn(r) = NmnJm(λmnr), (6)

where n is the radial quantum number and the eigenvalues are defined by:

Emn =
λ2mn

2r20
, (7)

λmn is the n-th zero of the m-th Bessel function Jm(r) and Nmn is the normalization constant
given by:

N2
mn

r0∫
0

| Jm(λmnr) |2 rdr = 1. (8)

The angular equation has normalized solutions of the form:

Θ(m)(θ) =
1√
2π
eimθ. (9)

Eqs. (6) -(9) completely define the solution of the time-independent quantum mechanical
circular billiard problem.
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3. Monotonically expanding circle

Now, we proceed to a time-dependent circle. The central symmetry of the circular
billiard allows us to solve the problem within the radial Schrödinger equation. We restrict
ourselves to the case when just the radius of the circle is time-dependent so that central
symmetry is remained. First, we consider a monotonically expanding (contracting) circle.
For circular billiards with time-dependent radius, the radial Schrödinger equation can be
written as:

i
∂R

∂t
= −1

2

∂2R

∂r2
− 1

2r

∂R

∂r
+
m2

2r2
R, (10)

and the boundary conditions are given by:

R(r(t), t) = 0 for r = r0(t).

As shown earlier for example in Refs. [11]- [18], to solve Eq.(10) we need to make the
boundary conditions time-independent. This is can done by using the coordinate transfor-
mation:

y =
r

r0(t)
. (11)

Thus, Eq.(10) reduces to:

i
∂R(y, t)

∂t
= − 1

2r20

∂2R

∂y2
−
(

1

2r20y
− i

ṙ0
r0
y

)
∂R

∂y
+

m2

2r20y
2
R. (12)

Inserting the substitution:

R(y, t) =
1

r0(t)
√
y
exp

(
i

2
ṙ0(t)r0(t)y

2

)
φ(y, t), (13)

into Eq.(12), we get:

ir20
∂φ

∂t
= −1

2

∂2φ

∂y2
+

(
1

2
r30 r̈0y

2 +
m2 − 1/4

2y2

)
φ. (14)

Eq.(14) can be interpreted as the Schrödinger equation for a time-dependent harmonic os-
cillator confined to a unit circle. Time and coordinate variables in Eq.(14) can be separated,
provided that the following condition is fulfilled:

r30 r̈0 = const = −C, C > 0. (15)

Separating variables by:

φ(y, t) = ϕ(y)T (t),

we get:

−1

2

d2ϕ

dy2
+

(
−1

2
Cy2 +

m2 − 1/4

2y2

)
ϕ = k2ϕ, (16)

and

ir20
dT

dt
= k2T (t), (17)

where k is the separation constant. The general solution for Eq.(15) can be written as:

r0(t) =
√
at2 + bt + c, (18)

where

C =
b2 − 4ac

4
.
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For C = b2

4
we have a circle expanding with non-constant velocity:

r0(t) =
√
at + b. (19)

For C = 0 this solution corresponds to a linearly expanding (contracting) circle:

r0(t) = at+ b.

For the linearly expanding (contracting) circle, Eq. (16) is formally the same as Eq. (5), the
one for the static circular billiard. However, because of the relation (13), the solution of
the original time-dependent radial equation (10) is different from that of the static circular
billiard. For the time-dependent radial wave function, we have:

Rmn(r, t) =
1

r0(t)Jm+1 (λmn)
exp

(
i

2

ṙ0(t)

r0(t)
r2
)
Jm

(
λmnr

r0(t)

)
exp

⎛
⎝−i

t∫
0

λ2mndτ

r20(τ)

⎞
⎠ . (20)

For a = 0, the solution coincides with the one of the static billiard given by Eq.(6). For
C �= 0, the solution of Eq. (16) is expressed in terms of the confluent hypergeometric
functions [35]:

ϕ(y) = ym+1/2e−0.5i
√
Cy2M(d,m+ 1, i

√
Cy2), (21)

where:

d =
m+ 1

2
+

k2

2
√
C
i.

The eigenvalues k are defined by the condition ϕ(1) = 0, or:

M(d,m+ 1, i
√
C) = 0, (22)

where only d depends on k. Thus the solution of Eq.(10) can be written as:

Rmn(r, t) = Nmn
rm

rm+1
0 (t)

exp

(
ir2

2

(
ṙ0(t)

r0(t)
−

√
C

r20(t)

))
×

×M
(
m+ 1

2
+

k2mn

2
√
C
i,m+ 1, i

√
C

r2

r20(t)

)
exp

⎛
⎝−ik2mn

t∫
0

dτ

r20(τ)

⎞
⎠ , (23)

where Nmn is the normalization constant given by∫
|Rmn|2 rdr = 1.

A quantity which is of interest from the viewpoint of Fermi acceleration in time-
dependent billiards, is the average kinetic energy, which is defined as:

〈Em(t)〉 = 〈ψ(r, t)|H|ψ(r, t)〉,
where:

H = −1

2

∂2

∂r2
− 1

2r

∂

∂r
+
m2

2r2
. (24)

The asymptotic behavior of the average energy for the linearly expanding (contracting) circle
in the limits t→ ∞ and r0(t) → ∞ can easily be estimated. Indeed, since radial and angular
variables are separated and H does not depend on the angular variables, the average energy
can be written in terms of the time-dependent radial wave functions as:

〈Emn(t)〉 =
∫ r0(t)

0

R∗
mn(r, t)HRmn(r, t)rdr =

1

2

∫ r0(t)

0

| ∂Rmn

∂r
|2 rdr + m2

2

∫ r0(t)

0

| Rmn |2
r

dr.
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Taking into account the relation:

| ∂Rmn

∂r
|2= 1

r20(t)J
2
m+1(λmn)

[(
ṙ0
r0

)2

J2
m

(
λmnr

r0

)
r2 +

(
∂

∂r
Jm

(
λmnr

r0

))2
]
, (25)

we get:

〈Emn(t)〉 = C1 + C2
1

(at + b)2
, (26)

where the constants C1 and C2 are given by:

C1 =
a2

J2
m+1(λmn)

∫ 1

0

y3J3
m(λmny)dy, (27)

C2 =
1

J2
m+1(λmn)

∫ 1

0

(
∂

∂y
Jm (λmny)

)2

ydy +
m2

J2
m+1(λmn)

∫ 1

0

1

y
J2
m(λmny)dy. (28)

From Eq.(26), the average energy of the particle in a linearly expanding (a > 0)
circle goes to Emn(t) → C1 for t→ ∞, while for the linearly contracting (a < 0, b > 0) circle
we get asymptotically Emn(t) → +∞ for t → − b

a
. Such asymptotic behavior is confirmed

by Fig. 1, where 〈Emn(t)〉 is shown for the linearly expanding and contracting circles for
different values of the expanding (contracting) velocities a. It is clear that the difference
between adiabatic (a << 1) and non-adiabatic (a >> 1) regimes is exhibited in the decay
rate of the curve. Furthermore, the curves are symmetric for the expanding and contracting
circles (for the same expanding/contracting velocities). We note that the above described
asymptotic behavior is true not only for linearly expanding (contracting) circles but also
for other types of monotonically expanding circles, as long as the radius is given by either
Eqs. (18) or (19).

4. Suddenly removed billiard walls

In the time-dependent billiard problem, it is important to explore differences between
adiabatic and non-adiabatic regimes of the wall’s motion. In this section, we consider the
case when the billiard wall is removed (disappears) suddenly. To some extent, this situation
is equivalent to when the billiard expands with infinite velocity, so that it can be considered
a highly non-adiabatic regime. A similar problem for the one-dimensional infinite well has
been previously considered [27] in the context of diffraction in time. Our purpose is to
explore the time-evolution of the wavefunction, mean position, and its time derivative for
such regime of wall’s motion. We assume that at t = 0 the initial state wavefunction of the
system is the eigenstate of the circular billiard given by:

ϕmn(r, θ) =

√
2

r0Jm+1(λmn)
Jm

(
λmnr

r0

)
eimθ. (29)

Time evolution of the wavefunction can be calculated using the Green’s function, G(r, t; r′, 0)
[27]

ψ(r, t) =

∫
dr′G(r, t; r′, 0)ψ(r′, 0). (30)

For the case of circular billiard the time evolution is given by [polyanin]

ψ(r, θ, t) =
1

2πit

∫ 2π

0

∫ r0

0

r′ exp
[
i
r2 + r′2 − 2rr′ cos(θ − θ′)

2t

]
ϕ(r′, θ′)dr′dθ′, (31)
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Fig. 1. The time-dependence of the quantum average energy for linearly ex-
panding r0(t) = b1 + at (left panel) and (with the same velocity as that of the
expanding circle) contracting r0(t) = b2 − at (right panel) circles. The initial
state is taken to be an eigenstate of (16) with m = 1, n = 1. The parame-
ters are: A) a = 0.01, b1 = 25, b2 = 75, B) a = 0.5, b1 = 25, b2 = 125, C)
a = 10.0, b1 = 25, b2 = 525

and for m = 0:

ψ(r, t) =
1

it

∫ r0

0

r′ exp
[
i
r2 + r′2

2t

]
I0

(
−irr

′

t

)
ϕ(r′)dr′, (32)

where I0(r
′) is the modified Bessel function. The wavefunction is normalized as:

N(t) =

∫ ∞

0

|ψ|2rdr = 1. (33)

The mean position can be calculated as:

〈r(t)〉 =
∫ ∞

0

|ψ|2r2dr. (34)

In Fig. 2, we show the r-dependence of them = 0, n = 3 circular billiard wavefunction
(with initial radius r0 = 40) at different moments of time (t = 100, t = 300, t = 500). It is
clear that the wavefunction decays with increasing r and completely disappears at upper r-
limit. The decay distance is longer as t is longer. In addition, we explored the time evolution
of the wavefunction, mean position and its time derivative after removing the wall. As an
initial state, we chose the static billiard wavefunction for m = 0, 1, 2, n = 1, 2, 3. The results
are shown in Fig. 3. As we can see in Fig 3, where the mean position (left panel) and its
time derivative (right panel), after some initial period the states will expand with constant
velocity. As can be seen from Fig. 3, 〈r(t)〉 grows monotonically in time. This implies that
the motion of the particle is not localized after the wall’s removal and can go to infinity; as
large as the initial state energy and as high as the growth rate of 〈r〉. Completely different
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behavior can be observed for d〈r(t)〉
dt

; unlike the mean position, d〈r(t)〉
dt

grows during some initial
time period, after which it becomes constant. Again, the growth rate is proportional to the
initial state energy. The accuracy of wavefunction evolution has been checked by monitoring
norm conservation.

Fig. 2. The wavefunction of m = 0, n = 3 state as a function of r (the real
part (black), the imaginary part (red), the absolute value of the wavefunction
(green)): A) t = 100, B) t = 300, C) t = 500

5. Non-harmonically breathing circle

In this section, we consider the following type of time- dependence:

r0(t) =

{
ρ0 + vt, 0 < t < 1

2
T,

ρ0 + v(T − t), 1
2
T < t < T.

(35)

This means that the time-law of the radius is periodic but not harmonic and it is still possible
to find an exact solution of Eq.(14). For a fixed value of T , it is clear that the oscillation
amplitude depends on the velocity, v: the higher the velocity the larger the amplitude will
be. The oscillation frequency is defined as ω = 2π/T . We have to solve Eq.(14) with the
boundary conditions φ(0, t) = φ(1, t) = 0. The boundary condition at y = 0 follows from
the substitution (13). It is clear that the motion of the boundary can be considered as the
(subsequent) combination of linearly expanding and contracting circles.
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Fig. 3. Mean position and its time-derivative (expansion rate). n = 1 (black),
n = 2 (red), n = 3 (green)

The one-dimensional Schrödinger equation with such a boundary condition is solved
in Ref. [15] in terms of the full-cycle propagator. Here, we use the same prescription as in
Ref. [15] to obtain the solution for Eq.(14). The solution for Eq.(14) can be found in each
time interval, 0 < t < 1

2
T and T < t < T , from which, general solutions can be constructed.

First, we note that for r30 r̈0 = 0, time and coordinate variables in Eq.(14) can be separated
and the solution can be written as:

φmn(y, t) =

√
2

Jm+1(λmn)

√
yJm (λmny) exp

⎛
⎝−2iλ2mn

t∫
0

dτ

r20(τ)

⎞
⎠ , (36)

where 0 < λm1, < λm2, < ... are zeros of the Bessel function given by Jm(λmn) = 0. In the
following, the angular quantum number m will be considered as fixed, and consequently,
we will omit the subscript m in the following. The solution of Eq.(14) in the time interval
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0 < t < 1
2
T can be written in terms of the functions (36) as:

φ(y, t) =

∞∑
n=1

Anφn(y, t).

The expansion coefficients can be found as Fourier coefficients using the initial value of φ
i.e. from the relation:

φ(y,+0) =
N∑

n=1

AnYn(y), (37)

that gives:

An =

1∫
0

Yn(y) · φ(y,+0) dy,

where:

Yn(y) =

√
2

Jm+1(λmny)

√
yJm (λmny) .

To find the solution in the general case, we note that:

r0r̈0y
2 = −2vy2

[
ρ1δ

(
t− 1

2
T

)
− ρ0δ(t− T ) + ...

]
, (38)

where ρ1 = ρ0 +
1
2
vT. The solution of Eq.(14) jumps at t = 1

2
T :

φ

(
y,

1

2
T + 0

)
= exp

(
ivy2ρ1

)
φ

(
y,

1

2
T − 0

)
. (39)

The solution of Eq.(14) in the interval 1
2
T < t < T can be written as:

φ(y, t) =

∞∑
n=1

ÃnYn(y) exp

⎛
⎜⎝−2iλ2mn

t∫
T/2

dτ

r20(τ)

⎞
⎟⎠ , (40)

where Fourier coefficients can be found as:

Ãn =

1∫
0

Yn(y)φ

(
y,

1

2
T + 0

)
dy =

1∫
0

Yn(y)e
ivy2ρ1φ

(
y,

1

2
T − 0

)
dy =

=
∑
l

Al exp

⎛
⎝−2iλ2ml

T/2∫
0

dτ

r20(τ)

⎞
⎠ 1∫

0

Yn(y)e
ivy2ρ1Yl(y)dy.

At t = T the solution has a jump:

φ(y, T + 0) = e−ivy2ρ0φ(y, T − 0).

Expanding φ(y, T + 0) in terms of φn(y, T + 0), we get:

φ(y, T + 0) =
∑
n

Ānφ(y,+0) =
∑
n

ĀnYn(y),

we can find expansion coefficients as:

Ān =

1∫
0

Yn(y)φ(y, T + 0)dy =

1∫
0

Yn(y)e
−ivρ0φ(y, T − 0)dy =
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=
∑
j

Ãj exp

⎛
⎜⎝−2iλ2mj

T∫
T/2

dτ

r20(τ)

⎞
⎟⎠

1∫
0

Yn(y)e
ivy2ρ1Yj(y)dy =

∑
l

AlUnl.

The full-cycle propagator is given by:

Unl =
∑
j

Cjl(ρ1) exp

(
−i T

ρ0ρ1
λ2ml

)
C∗

nj(ρ0) exp

(
−i T

ρ0ρ1
λ2mj

)
,

with

Cnj(ρ) =

1∫
0

Yn(y)e
ivy2ρYj(y)dy.

Fig. 4. Time-dependence of the quantum mechanical average energy for the
circular billiard with non-harmonically oscillating radius for different oscilla-
tion parameters, m = 1, l = 1, A) T = 500, v = 0.002, ρ0 = 1.0, B) T = 20,
v = 10, ρ0 = 30

Thus, we have derived the full-cycle propagator for the non-harmonically breathing
circle. Eq.(38) implies that the frequency of the harmonic oscillator in Eq.(14) has a periodic
delta-kicking form. This reduces our problem to solving the Schrödinger equation with a
delta-kicking potential (where between the kicks circle expands/contracts linearly), whose
solution can be obtained in terms of the full-cycle propagator describing the (exact) evolution
of the wave function within one period. Having obtained the full-cycle propagator, we can
find solutions for the full time-period 0 < t < T , from which one can construct the solutions
for any number of periods.
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Fig. 5. Magnification of the selected part in Fig.2(B)

In Fig. 4, the time-dependence of the average energy is plotted for different values of
v, T and ρ0. The expansion coefficients for the initial state (in Eq. (37)) are chosen as:

An(0) =

∫ 1

0

ϕn(y)ϕl(y) exp

(
− i

2
ṙ0(t)r0(0)y

2

)
dy, (41)

so that 〈E(0)〉 = λ2
ml

2r20
.

It is clear that in the adiabatic regime (for high oscillation periods), the time-
dependence of 〈E(t)〉 is periodic and for each period it can be separated into symmetric parts,
which correspond to linearly expanding and contracting circle average energies (Fig. 4(A)).
However, this symmetry is broken in the non-adiabatic regime, corresponding to small oscil-
lation periods. This can be seen from Fig. 4(B), where 〈E(t)〉 is plotted for T = 20, v = 10
and ρ0 = 30. Such a behavior can be explained by the fact that in the adiabatic regime, the
particle follows the wall’s motion, while for higher frequencies, it cannot follow the wall’s
motion. This leads to a breaking of the symmetry, i.e. parts of 〈E(t)〉 (within one period)
corresponding to contracting and expanding circles are not symmetric. This can be clearly
seen from Fig. 5, which presents the magnification of a part of the 〈E(t)〉−curve (Fig. 4(B))
for the time interval from 10 to 30. It is clear that the maximum value of the left hand
part (corresponding to contracting circle) is much smaller than that of the right hand part
corresponding to the expanding circle. Such an asymmetry is caused by the presence of a
delta-function in the Schrödinger equation. As follows from Eq. (38), the potential in the
Schrödinger equation has a jump at t = T/2. This jump is as high as the value of v in
Eq. (38). Therefore for smaller velocities the jump is quite small, while for higher values of
v it is much larger and can be clearly seen in Fig. 5.

6. Harmonically breathing circle

As we have seen in the previous sections, an analytical solution of the Schrödinger
equation of the circular billiard with a time-dependent radius and corresponding boundary
conditions is possible in a few cases of the time-dependence only. In particular, no analytical
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solution can be obtained in the case of a harmonic time-dependence, since time and coordi-
nate variables cannot be separated in the Schrödinger equation. In this section, we consider
the case of a harmonically oscillating radius which is given by:

r0(t) = a+ b cos(ωt), (42)

where ω is the oscillation frequency. The classical dynamics of circular billiards with oscillat-
ing boundaries have been investigated in the context of Fermi acceleration [29] and particle
motion inside collectively excited nuclei [32]. In Fig. 6, the time-dependence of the energy
averaged over an ensemble of 1000 trajectories is plotted for ω = 2 and ω = 5 for the classical
system. The growth of the energy is strongly suppressed for both values of the frequency.
It is clear that the character of suppression is the same for both frequencies, although the
critical value at which suppression starts is higher for higher frequency values. This is in
good accordance with previous studies of the breathing circle, see, e.g., Refs. [29, 30].

To numerically solve Eq. (14) with the boundary conditions given by Eq. (42), we
expand the function φ(y, t) in terms of the eigenfunctions of Eq.(14) at C = 0:

φ(y, t) =
∑
n

cn(t)ϕn(y), (43)

where:

ϕn(y) =

√
2yJm(λmny)

Jm+1(λmn)
. (44)

Inserting the expansion (43) into Eq.(14) we have:

ir20
∑
n

ċnϕn =
∑
n

cn

(
λ2mn

2
+

1

2
r30 r̈0y

2

)
ϕn. (45)

By multiplying with ϕ∗
k and integrating over y from 0 to 1, we get a system of differential

equations for the expansion coefficients cn(t):

ċn(t) = − i

2r20
λ2mncn −

i

2
r̈0r0

∑
k

Mknck, (46)

where:

Mkn =

∫ 1

0

ϕn(y)ϕk(y)y
2dy.

The system of differential equations (46) is solved using ZVODE package [26], which
uses variable-coefficient methods. The number of basis functions for the results presented
in Figs. (7-10) was taken as 200, while for those in the Fig. 9 we used 3000 basis functions.
The convergence of the calculations are checked by increasing the number of basis functions.

Solving Eqs.(46) numerically, we obtain φ(y, t) and thus the radial wave functions
R(y, t). The average energy can be calculated as:

〈Em(t)〉 =
∫ 1

0

R∗(y, t)HR(y, t)ydy =

=
1

2r20

(∑
n

|cn|2λ2mn + r20 ṙ
2
0

∫ 1

0

y2|φ|2dy + 2r0ṙ0Im

∫ 1

0

yφ∗∂φ
∂y
dy

)
. (47)

Using Eq. (47), we numerically compute the average energy as a function of time
for different oscillation frequencies. The initial values of the expansion coefficients can be
chosen using Eq. (41). Then, for harmonically oscillating boundary (Eq. (42)) the expansion
coefficients of the initial state become cn(0) = δnl, because ṙ0(0) = 0 in Eq. (41).
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Fig. 6. Time-dependence of the classical average energy for circular billiard
with harmonically oscillating radius; black - r0(t) = 20+ cos(2t), red - r0(t) =
20 + cos(5t)

Fig. 7. Time-dependence of the quantum average energy (A) and mean po-
sition (B) for the circular billiard with harmonically oscillating radius; m = 0,
l = 1, r0(t) = 40 + cos(0.0005t)

Furthermore, we compare 〈Em(t)〉 for different regimes of the wall’s motion:
a) slowly oscillating (adiabatic) wall,
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Fig. 8. Time-dependence of the quantum average energy (A) and mean po-
sition (B) for the circular billiard with harmonically oscillating radius; m = 0,
l = 1, r0(t) = 40 + cos(0.6t). (C) is the magnification of the selected part in
(B)

Fig. 9. Time-dependence of the quantum average energy (A), r0(t)/2 (B) and
mean position (C) for the circular billiard with harmonically oscillating radius;
m = 0, l = 1, r0(t) = 40 + cos(250t)

b) high oscillation frequency,
c) intermediate wall oscillation frequencies.

In Fig. 7(A), the time-dependence of the average energy, 〈Em(t)〉 is plotted for the
adiabatic regime (ω = 5×10−4). As can be seen from this figure, 〈Em(t)〉 is periodic in time
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Fig. 10. Time-dependence of the quantum average energy for the circular
billiard with harmonically oscillating radius; m = 0, l = 1, r0(t) = 40+cos(ωt),
A) ω = 0.02, B) ω = 0.1, C) ω = 1.7

and the period is the same as the period of the applied driving law. This can be explained by
the fact that in the adiabatic regime, the particle follows the wall’s motion. This is clearly
seen from Fig. 7(B), where r0(t)/2 is compared with the expectation value of the position of
the particle in billiard, 〈r(t)〉.

Fig. 8(A) presents 〈Em(t)〉 for higher values of the wall’s oscillation frequency, (ω =
0.6). It is clear that the periodicity of 〈Em(t)〉 is broken and this can be explained by
Fig. 8(B), where r0(t)/2 and the mean position are compared for this regime. For this value
of the frequency, the motion of the billiard particle is no longer adiabatic and it doesn’t
follow the wall’s motion.

In Fig. 9(A), the time-dependence of the average energy is plotted for a very high
frequency value, ω = 250. It is clear from this plot that the periodicity of 〈Em(t)〉 is recovered
in this highly oscillating regime. Comparison of 〈r(t)〉 and r0(t)/2 in Fig. 9(B) shows that
the particle doesn’t ”feel” the wall’s motion in this regime.

Finally, a remarkable feature of the harmonically breathing circle can be observed
in the intermediate regime. Namely, for some values of the frequency 〈Em(t)〉 can be time-
periodic with the period which is much larger than that of wall’s oscillation. Fig. 10 presents
the plots of the average energy for (ω = 0.02, ω = 0.1, ω = 1.7) which exhibit such a
periodicity. The appearance of such periodicity for intermediate oscillation frequencies may
be caused by the existence of a special resonance-like regime of motion where the periodic
motion is possible for certain frequencies only.

To qualitatively determine the border between the adiabatic and non-adiabatic regimes,
we study the behavior of the expansion coefficients, cn for different oscillation frequencies.
It is clear that billiard wall’s position changes very slowly, the wavefunction of the billiard
particle should be slightly different than that of the static billiard. Therefore, in the wave-
function of the adiabatically expanding (contracting) billiard, which is given by Eq.(43) only
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Fig. 11. The absolute value of the dominating expansion coefficient (|cD|)
as a function of ω, measured after one period (black curves), and after two
periods (red curves). Initial states are A) m = 0, n = 1, B) m = 0, n = 2, C)
m = 0, n = 3

one expansion coefficient, cD (which corresponds to the initial state) is dominating. Thus,
the dependence of this coefficient on the expansion (contraction) rate can be considered
as an indicator for the fact whether wall’s motion adiabatic or not. In application to the
harmonically breathing billiard, this implies that the breaking of the dominance of the co-
efficient cD coefficient when the oscillation frequency reaches some threshold value can be
considered as a breaking of the adiabatic regime. Fig. 11 represents |cD| as a function of the
wall’s oscillation frequency, ω. Up to a certain value of ω, |cD| is approximately equal to 1.
After exceeding some (critical) value of ω, |cD| starts to become less than 1, which implies
breaking of the adiabatic regime.

Thus, we can conclude that for the harmonically breathing circle the behavior of the
average energy as a function of time is mostly similar to that of harmonically oscillating 1D-
box, studied in the Ref. [28]. However, unlike to that system, in the breathing circle, 〈Em(t)〉
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can be time-periodic even for certain frequency values, which belong to the intermediate
frequency range.

7. Conclusions

We have studied the quantum dynamics of a circular billiard with different driving
laws for the radius. An exact analytical solution was obtained for cases of monotonically
expanding and contracting circles. Non-harmonically time-periodic boundary conditions
(sawtooth-like motion) were considered in terms of the analytically-derived full-cycle propa-
gator. Using this propagator, the time-dependence of the average energy was calculated. It
was found that in the adiabatic regime, when the wall moves slowly, the time-dependence
of the average energy was periodic and for each period, 〈E(t)〉 can be constructed from
corresponding 〈E(t)〉s of linearly expanding and contracting circles. In other words, the part
of the curve for the average energy corresponding to one period consisted of two symmetric
parts, describing linearly expanding and contracting circles. However, for smaller oscillation
periods when adiabaticity was broken, such symmetry was broken, though 〈E(t)〉 was still
periodic. To explore more deeply the difference between adiabatic and highly adiabatic
regimes, we considered the case when billiard wall suddenly disappears. It was found for
this case that the mean position of the billiard particle grew monotonically in time, which
implies that over a long period, the motion becomes infinite.

The case of the harmonically breathing circle was studied by solving the time-
dependent Schrödinger equation numerically by means of a basis set expansion. When the
oscillation frequency of the radius was very small (compared to the initial frequency, ω0), the
systems remained in the adiabatic regime and 〈E(t)〉 was periodic with the same period as
that of the applied driving law. Such periodicity broken down by increasing the oscillation
frequency. However, for some intermediate range frequencies, 〈E(t)〉 can become periodic
in time with a period much larger than that of the driving law. For very high oscillation
frequencies, the average energy became time-periodic again, with the same period as that of
the driving law. The border between adiabatic and non-adiabatic regime is roughly defined
by the dependence of the dominating expansion coefficient in Eq.(43) on the wall’s oscilla-
tion frequency. Namely, the situation when the dominance of these coefficients breaks can be
considered as a fingerprint for the transition from an adiabatic into a non-adiabatic regime.
In our opinion, the explanation of such periodicity requires deeper exploration of the studied
system, which will be the subject of forthcoming research. Finally, the importance of the
above study is due to its direct relevance to quantum Fermi acceleration in confined geome-
tries and the problem of quantum dynamics in driven systems. The latter is of importance
for many mesoscopic and nanoscale systems such as quantum dots, confined cold atoms and
molecules. Finally, we note that extension of the above study to the case of open quantum
billiards is of importance because of their direct relevance to quantum dots. Currently, such
studies are ongoing.
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[1] Stöckmann H.-J. Quantum Chaos: An Introduction. Cambridge University Press, Cambridge, UK
(1999).

[2] Eckhardt B. Quantum mechanics of classically non-integrable systems. Phys. Rep., 163, P. 205–297
(1988).

[3] Gutzwiller M.C. Chaos in Classical and Quantum Mechanics. Springer, New York (1990).
[4] Loskutov A.Yu., Ryabov A.B. and Akinshin L.G. Properties of some chaotic billiards with time-

dependent boundaries. J. Phys. A, 33, P. 7973 (2000).
[5] Loskutov A.Yu. and Ryabov A.B. Particle Dynamics in Time-Dependent Stadium-Like Billiards. J.

Stat. Phys., 108, P. 995–1014 (2002).
[6] De Carvalho R.E., De Souza F.C. and Leonel E.D. Fermi acceleration on the annular billiard: a simplified

version, J. Phys. A: Math. Gen., 39, P. 3561(2006).
[7] Lenz F., Diakonos F.K. and Schmelcher P. Classical dynamics of the time-dependent elliptical billiard.

Phys. Rev. E, 76, P. 066213 (2007).
[8] Lenz F., Diakonos F.K. and Schmelcher P. Tunable Fermi Acceleration in the Driven Elliptical Billiard.

Phys. Rev. Lett., 100, P. 014103 (2008).
[9] Cohen D., Wisniacki D.A. Stadium billiard with moving walls. Phys. Rev. E, 67, P. 026206 (2003).

[10] Doescher S.W. and Rice M.H. Infinite Square-Well Potential with a Moving Wall. Am. J. Phys., 37,
P. 1246 (1969).

[11] Munier A., Burgan J.R., Feix M. and Fijalkow E. Schrödinger equation with time-dependent boundary
conditions. J. Math. Phys., 22, P. 1219 (1981).

[12] Pinder D.N. The contracting square quantum well. Am. J. Phys., 58, P. 54 (1990).
[13] Razavy M. Time-dependent harmonic oscillator confined in a box. Phys. Rev. A, 44, P. 2384 (1991).
[14] Pereshogin P., Pronin P. Effective Hamiltonian and Berry phase in a quantum mechanical system with

time dependent boundary conditions. Phys. Lett. A, 156, P. 12–16 (1991).
[15] Scheininger C. and Kleber M. Quantum to classical correspondence for the Fermi-acceleration model.

Physica D, 50, P. 391–404 (1991).
[16] Makowski A.J. and Dembinski S.T. Exactly solvable models with time-dependent boundary conditions.

Phys. Lett. A, 154, P. 217–220 (1991).
[17] Makowski A.J. and Peplowski P. On the behaviour of quantum systems with time-dependent boundary

conditions. Phys. Lett. A, 163, P. 143–151 (1992).
[18] Makowski A.J. Two classes of exactly solvable quantum models with moving boundaries. J. Phys. A:

Math. Gen., 25, P. 3419 (1992).
[19] Willemsen J.E. Exact solution of the wave dynamics of a particle bouncing chaotically on a periodically

oscillating wall. Phys. Rev. E, 50, P. 3116 (1994).
[20] Morales D.A., Parra Z., Almeida R. On the solution of the Schrödinger equation with time dependent

boundary conditions. Phys. Lett. A, 185, P. 273–276 (1994).
[21] C. Yuce. Singular potentials and moving boundaries in 3D. Phys. Lett. A, 321, P. 291–294 (2004).
[22] Jose J.V., Gordery R. Study of a quantum fermi-acceleration model. Phys. Rev. Lett., 56, P. 290 (1986).
[23] Karner G. On the quantum Fermi accelerator and its relevance to ’quantum chaos’. Lett. Math. Phys.

A, 17, P. 329–339 (1989).
[24] Seba P. Quantum chaos in the Fermi-accelerator model. Phys. Rev. A, 41, P. 2306 (1990).
[25] Jana T.K., Roy P. A class of exactly solvable Schrödinger equation with moving boundary condition.

Phys. Lett. A, 372, P. 2368–2373 (2008).
[26] www.netlib.org
[27] Godoy S. Diffraction in time: Fraunhofer and Fresnel dispersion by a slit. Phys. Rev. A, 65, P. 042111

(2002).
[28] Glasser M.L., Mateo J., Negro J. and Nieto L.M. Quantum infinite square well with an oscillating wall.

Chaos, Solitons and Fractals, 41, P. 2067–2074 (2009).
[29] Koiller J., Markarian R., Kamphorst S.O. and De Carvalho S.P. Time-dependent billiards. Nonlinearity,

8, P. 983 (1995).
[30] Kamphorst S.O., De Carvalho S.P. Bounded gain of energy on the breathing circle billiard. Nonlinearity,

12, P. 1363-1371 (1999).
[31] Badrinarayanan R., Jose J.V., Chu G. Quantum manifestations of classical chaos in a Fermi accelerating

disk. Physica D, 83, P. 1–29 (1995).



Time-dependent quantum circular billiard 243

[32] Burgio G.F., Baldo M., Rapisarda A., Schuck P. Chaoticity in vibrating nuclear billiards. Phys. Rev.
C, 52, P. 2475 (1995).

[33] Robinett R.W., Heppelmann S. Quantum wave-packet revivals in circular billiards. Phys. Rev. A, 65,
P. 062103 (2002).

[34] Robinett R.W. Quantum mechanics of the two-dimensional circular billiard plus baffle system and
half-integral angular momentum. Eur. J. Phys., 24, P. 231 (2003).

[35] Abramowitz M., Stegun I.A. Handbook of mathematical functions. M.: Nauka. (1964).



NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2015, 6 (2), P. 244–248

Femtosecond pulse shaping via engineered
nonlinear photonic crystals

U. K. Sapaev1, V. E. Eshniyazov1, B. Kh. Eshchanov1, D. B. Yusupov2

1Department of Physics, National University of Uzbekistan, named after M. Ulugbek,
100174 Tashkent, Uzbekistan

2Tashkent State Technical University , Universitetskaya ul. 2 Tashkent, 100095 Uzbekistan

usapaev@gmail.com

PACS 42.65.-ky, 42.79.Nv DOI 10.17586/2220-8054-2015-6-2-244-248

Non-stationary second harmonic generation by femtosecond pulses, taking into account both group velocity

mismatch and dispersion in nonlinear photonic crystals (quasi-phase matched crystals) with domains of

arbitrary sizes has been studied numerically. A simulated-annealing algorithm, working on the basis of

numerical calculation, is developed to design quasi-phase matching gratings which can yield the desired

amplitude and phase profile for second-harmonic pulses in the presence of pump depletion.

Keywords: second harmonic generation, quasi-phase matched crystals, nonlinear photonic crystals, pulse

shaping.

Received: 2 February 2015

1. Introduction

Nonlinear Photonic Crystals (NPC) are of great interest because of their utility in
practical applications, where it is necessary to control laser radiation. This interest in NPC’s
is especially warranted because they do not require the phase matching, which is necessary
for uniform nonlinear crystals [1]. In such type of crystals, phase matching (or phase syn-
chronism) of the interacting waves is obtained by periodically changing the sign of the
second-order susceptibility, effectively widening the spectral range of frequency converters.
Quasi-phase matched (QPM) or NPC gratings can also be used to provide dramatic pulse
compression [2-3] and improved conversion efficiencies [4-5].

QPM gratings with a non-uniform periodicity can exhibit a longitudinally variable
spectral response and entail the realization of advanced parametric processes [6], from highly
efficient second harmonic generation (SHG) and parametric amplification in the case of a
linear QPM chirp [4-5,7-9], to compression of second harmonic (SH) pulses when employing
chirped fundamental-frequency (FF) pulses, [2-3, 10-11].

One of the interesting practical tasks, which can be solved by QPM gratings during
SHG is the generation of SH pulses with arbitrarily chosen amplitude and phase profiles under
the regime of pump depletion. A few methods have been developed to this end. Among them,
the optimal control technique, based on Lagrange multipliers and real amplitudes [12-13],
was applied to tailor ultra-short SH pulses by spatially varying the size of the nonlinearity.
More recently, a similar approach was employed to design QPM gratings for picosecond SHG
from femtosecond (fs) input FF pulses [14-19].

In this work, we discuss arbitrary fs pulse shaping based on SHG in engineered
QPM in the regime of strongly depleted FF pump, taking into account both group velocity
mismatch (GVM) and dispersion (GVD). To accomplish this, in contrast to previous work
on the topic, we employ a simulated annealing algorithm (SAA), using simple fast Fourier
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transform and fourth-order Runge–Kutta algorithms. We improved the SAA, which was
developed in previous work [18].

2. Coupled-wave equations for SHG in arbitrary QPM gratings; numerical
approach

The slowly varying envelope equations describing pulse evolution under collinear fre-
quency doubling in QPM are:

∂A1

∂ z
+ 1

V1

∂A1

∂t
− iα1

2
∂2A1

∂t2
= −iγ1δ(z)(A1)

∗A2 exp(−i∆kz)
∂A2

∂ z
+ 1

V2

∂A2

∂t
− iα2

2
∂2A2

∂t2
= −iγ2δ(z)(A1)

2 exp(i∆kz)
, (1)

with boundary conditions:

A1(z, t)|z=0 = Ao exp(−2 ln 2(t/τ)2 + iϕ1)

A2(z, t)|z=0 = 0
, (2)

where A1 and A2 are the complex amplitudes of FF and SH pulses, respectively; Ao the peak
amplitude of the FF excitation; V1 and α1 (V2 and α2) the group velocity and the dispersive
GVD spreading at FF (SH), respectively; τ input pulse duration (FWHM in intensity);
γ1 and γ2 nonlinear coupling coefficients, with γ ≈ γ1 ≈ γ2 ≈ 2π

n(ωo)λ
deff ≈ 2π

n(2ωo)λ
deff ;

n(ωo) and n(2ωo) the refractive indices of FF and SH waves, respectively; deff the effective
nonlinearity deff=χ(2)/2 ; ∆k = 2k1(ωo) − k2(2ωo) the phase-mismatch; ϕ1 an initial FF
phase and δ(z) the unitary sign-changing function defining the arbitrarily sized domains of
the QPM grating (see Fig. 1).

Fig. 1. Scheme of the arbitrary QPM grating, with δ(z) the dimensionless
sign-changing aperiodic function of amplitude |δ(z)| = 1. The grating is com-
prised of N inverted domains with individual lengths qm (1 6 m 6 N)

Set (2) could be numerically integrated by various methods. The fast Fourier trans-
form for the linear portion and the fourth-order Runge–Kutta (RK) method for the nonlinear
regime ensure high accuracy and reduced iteration times. However, because of the aperiodic
nature of δ(ξ), we resort to RK with variable integration steps dξ(m) (m is the domain
number) inside each domain (see Fig. 2). GVM and GVD are accounted for by the fast
Fourier transform.
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Fig. 2. Integration scheme. Here the number of steps in each domain is j=4

3. Results

We used SAA, which was developed earlier in [18]. This stems from the high accuracy
of the PG-FROG traces used in calculating the RMS error [18]. Figure 3 shows the results
obtained for a case of FF (1560 nm) for a 100 fs FF to a Gaussian SH pulse with duration
of 100 fs with a efficiency conversion of 20 %. Here and below, for all our calculations,
we chose a 1 GW/cm2 peak intensity for FF time profile. However, for the domain size,
we adopted a coarse resolution of 100 nm, two orders of magnitude larger than what is
achievable with the algorithm; we obtained an excellent convergence to the desired profile
and conversion efficiency. Figure 3 (left) plots time profiles of FF (dotted) and desired
(dashed) and calculated SH profiles (solid); Figure 3 (center) shows power evolutions of
the interaction pulses in arbitrary designed QPM grating; Figure 3 (right) shows change of
domain sizes as a function of their numbers.

Fig. 3. Results of SAA algorithm for 100 fs SH pulse with a 20 % efficiency
(center) for Lithium Niobate crystal at 1550 nm FF wavelength: (left) FF in-
tensity distributions (doted), desired target SH profiles (dashed) and obtained
SH profile (solid); (right) change of domain sizes as a function of their numbers

Noticeably, the required grating length increased as compared to a case, when we
chose higher efficiency conversion (Fig. 4. shows these results). The grating is even longer
than above; the agreement between the target and output pulses is quite satisfactory, despite
the small but appreciable discrepancy between their PG-FROG traces. The results above
demonstrate the good performance of the algorithm when simple Gaussian SH pulses are
desired as the output, owing to the lack of sharp (temporal or spectral) features. Fig. 4.
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shows results for higher SH efficiency conversion (∼40%) other parameters with the same
condition as Fig. 3. But here, the desired SH profile is chosen to be 150 fs.

Fig. 4. Results for higher SH efficiency conversion (40%). All curves are
determined as Fig. 3. Here desired SH profile is chosen to be 150 fs

We also studied the chosen problem for shorter FF (50 fs) and SH (50 fs) pulses with
10% efficiency conversion. For this case, we could get results faster than previous cases as
shown in Fig. 5. This results from the fact that shorter nonlinear QPM crystals generate
shorter SH pulses, due to GVM between the interacting harmonics. For this we could initially
get excellent results, and secondly, faster run times than in previous cases.

Fig. 5. Results for shorter FF (50 fs) and desired SH (50 fs) pulses with
efficiency conversion of 10%. All curves are determined as Fig. 3 and 4

It is necessary to note that for fs FF pulses it is easy to obtain the desired SH pulses
of almost the same duration with high efficiency up to 50% (we did not present that result
here). This is caused by smaller influence of GVM. But when we concentrate longer desired
SH pulses than FF pulse, the codes run for a longer time and give worse results due to
large number of domains. We believe this comes from our program interface, which was
Matlab without parallel computing. So, if we could use some program interface with parallel
computing, we could obtain excellent results more quickly for “heavy” target SH pulses.

4. Conclusions

In conclusion, we were able to design a variety of femtosecond pulse profiles through
second-harmonic generation of 100 fs and 50 fs Gaussian inputs at the FF using improved
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SAA. PG-FROG spectrograms were used to calculate RMS errors and lead to rapid conver-
gence of the method with high accuracy. The results, outlined for the relevant case of an
aperiodically poled Lithium Niobate crystal, demonstrate that proper engineering of a quasi-
phase-matched grating is feasible even under severe pump depletion and in the presence of
limited fabrication resolution. The presented results can be used for obtaining femtosecond
pulses with desired amplitude and phase profiles.
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In this article, the problem of nanocatalysis is considered when the catalysts are gold nanoparticles. The

main experimental facts are presented and basic qualitative dependences are highlighted. The hypothesis

considers the role of Tamm states of gold nanoparticles, with the modification of these states to reduce

nanoparticle sizes. A semi-quantitative quantum-chemical reaction scheme of oxygen dissociation with gold

nanocatalysis is shown. A theoretical answer to the basic experimental test has been obtained.
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1. Introduction

Although the catalytic properties of Au (hydrogen-deuterium exchange, the reduction
of NOx by using of H2, isomerization of paraffins, partial oxidation) had been quite widely
studied until the end of the 1980’s [1-6], it was found that Au is a much less efficient catalyst
than the group VIII elements of Mendeleev’s table and other transition metals. However, in
1987, it was found by Haruta et al. [7-9] that small size Au particles increased the activity
of CO oxidation dramatically, performing the reaction at temperatures below those of such
classical catalysts as Pt [7-10]. This circumstance greatly increased the interest in gold as a
catalyst [11-18].

The main results of the basic experiment are the following:
1) The growth of the catalytic activity was observed for nanoparticles with size less

than R=50 Å, particularly for nanoparticles with R<30 Å [8-10; 19-29].
2) The increased catalytic activity was observed as in small Au particles [23], in

complexes of the partially oxidized/metal particles [30,31], in gold atom clusters [32,33] and
in the cationic Au particles.

3) The role of the substrate in the catalysis of CO oxidation by Au particles was also
important [8-11,30].

4) Most catalytic activity was observed for Au nanoparticles on TiO2 and Fe2O3

substrates [8-11, 24].
5) It was assumed that the activation of O2 molecule took place at the metal-substrate

interface [36, 37], or directly on the substrates [8-11,19,21].
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6) Changes in some properties of Au clusters are thought to vary as the function of
their sizes; which are assumed to be important in the nanocatalysis problem:

a) the structural phase transition from FCC (bulk material) to the dodecahedral
cluster (at R=25 Å) and icosahedral cluster (at R=16Å) [38] is discussed; there are data
that the latter transition is observed at a much larger size (not at 100 atoms, but at 550
atoms in the cluster) [39]. Note that the transition to the icosahedron was experimentally
observed in Y-zeolites at R=10 Å [41] and in 50-atomic Pt clusters on carbon [40];

b) there was a decrease in the bond lengths of Cr, Fe, Cu, Ag, Pd, Au, Pt metals
at the size R<30 Å [42-53]; so, at R=30 Å the length of Au-Au bond is d=2.84 Å, and at
R=8 Å it is d=2.72 Å, whereas the bulk material has d=2.88 Å [48,49,51].

c) such shortening of the bond lengths is characteristic for metal dimers (Fe, Mg) [54];
reduction of the Au-Au bond length also occurs in clusters;

d) there was a reduction of the bond lengths in the metal particles on the substrates,
like carbon, which are weakly interacting with the metal particles [52,55,56];

e) there are changes in other properties of metal clusters (electronic, magnetic, chem-
ical) at the scale of few nanometers [57, 64]; the most important of which is the modification
of the electronic spectrum, namely, the displacement of d-band of Cu in its atomic spectrum
with decreasing particle size[60]; the same effect was also observed for Pt and Pd [59].

The appearance of a gap in the spectrum at the Fermi level (Ee=0.45 eV) is observed
for Au clusters with R <19 Å on a carbon substrate, so that there is a metal-insulator
transition; a similar effect is also observed for two-dimensional particles of Au (200 atoms)
on a TiO2 substrate with Ee=0.2-0.6 eV [23] (Figure 1).

Concerning the theoretical interpretation of the Au nanoparticles’ unique catalytic
activity, only general considerations have been expressed:

a) about the role of reducing the coordination number of surface atoms;
b) about the general increase of the relative part of the total number of surface atoms;
c) about the existence of the evident correlation between the increased catalytic

activity and the existence of metal-insulator transition with decreased cluster size;
d) about the correlation of the increase in nanoparticle catalytic activity and the

decrease of the interatomic Au-Au distance in smaller cluster sizes;
e) about the role the substrate plays in increased catalytic activity.
The most important of these five positions are the positions c) and e), i.e. that the

high catalytic activity of the gold nanoparticles promotes the formation of a gap in the
electronic spectra of nanoparticles. In this regard, it is very important to discuss of the role
of Tamm states in the nanoparticle, taking into account their modification with decreased
nanoparticle size.

2. Tamm states of nanoparticles

In 1932, on the basis of quantum mechanics, I.E.Tamm for the first time demon-
strated that apart from the band states of electrons in a crystal known at that time, electron
states of a completely different type can exist on a crystal surface [65]. These surface elec-
tron states have a discrete energy spectrum and wavefunctions that exponentially decay with
increasing distance from the surface to within or away from the crystal. During more than
80 years since then, the theory of surface states has been considerably developed with re-
gards to computational techniques and the analysis of such states in various crystals [66,67].
Due to the evolution of nanoscience, the problem of surface states has become even more
relevant. However, general analysis of the surface states problem shows that basically new
factors that were not reflected in the proposed model should be considered when applied
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Fig. 1. Dependence of the CO oxidation activity, the energy gap in the elec-
tronic spectrum of the gold nanoparticles and their size distribution on Au
cluster size

to nanoclusters. Concepts such as the role of the surface curvature (nonplanar surface),
the sharpness of the potential barrier simulating the width of the surface region (diffuse
nature of the interface), and finiteness of the nanocluster size (in contrast to the case of a
semi-infinite crystal) should be introduced into the theory. At the same time, nanoparticles
have a characteristic that describes the above properties in an integrated manner; we are
speaking of confinement of elementary excitations in a nanoparticle. The most important
property determined by the confinement of electrons is the discretization of their electronic
spectra, which accompanies the increase in the spectral gap width; the broadening of the
gap increases when the characteristic size of a nanoparticle decreases [4]. Therefore, it is
reasonable to consider the features introduced into the Tamm surface states of nanoparticles
by a fundamental property like the electron confinement.
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2.1. Model

Our analysis is based on a combination of three models: the Tamm model of surface
states [65], the well-known Kronig–Penney model of a solid [68], and results obtained by
Efros on the electron structure of a nanosphere [69]. For this purpose, each model will be
slightly developed.

The basic scheme of Tamm’s analysis [65] is shown in Fig. 2.

bxa

Fig. 2. Potential energy of a crystal with a surface in the Tamm– Kronig–
Penney model

Tamm presented the wavefunction of a surface electron state outside the crystal (for
x <0) in the form:

Ψ = A exp[

√
2m(U0 − E)

h2
x], (1)

where E (energy of Tamm’s state) satisfies the condition 0 < E < U0.
Introducing the parameters (see Fig.2.):

ξ =
a

h

√
2mE; q =

a

h

√
2mU0; p = ab

mU1

h2
, (2)

Tamm obtained the following equation for energy E:

ξctgξ =
q2

2p2
− q

√
1− ξ2

q2
. (3)

Let us simplify this expression for low energies (ξ << 1):

E(qa2 − 2m

h2
) = q − q2

2p2
. (4)

Thus, we obtain the dependence of energy E on the dimensionless parameter p, appearing
in the Kronig–Penney model [69]. This model can also be represented in Fig.2 if we consider
the range of X >> 0. The equation for allowed energy values in the Kronig–Penney model
has the form (in notation used in [69-70]):

∣∣cos(ka− actg(Ωa
ka

))
∣∣ 6 1√

1+(Ωa
ka )

2

E = h2

2ma2 (ka)2

 , (5)
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where Ωa characterizes the dimensionless barrier penetrability. For low energies, (Ωa/ka >> 1),
Eq.(5) is transformed to:

|sin(ka)| 6 ka

Ωa
. (6)

Expanding sin(ka) (for ka < 1), we obtain the first two solutions E = f(Ωa) :

E1 = 0; E2 =
h2

2ma2
6(1− 1

Ωa
)2. (7)

The graphical form of Eq. (6) is shown in Fig.3.
Combining Fig.3 with Eq. (7), we obtain penetrability parameter Ωa as a function of

the first band gap:
E1
gap = E2 − E1 :

1

Ωa
= 1−

√
E1
gap

h2/2ma2
/6. (8)

Matching the Kronig–Penney model and the Tamm model by the condition p = Ωa, we
obtain from expressions (8) and (4):

E

h2/2ma2
= 2

√
U0

h2/2ma2
− U0

h2/2ma2
−

[
1− 1

6

√
E1
gap

h2/2ma2

]2

. (9)

Fig. 3. Plot for determining the boundaries of allowed and forbidden bands
(bullets); Ω1 < Ω2

Let us now consider the dependence of gap width E1
gap on radius (R) of a nanosphere [68]:

E1
gap = E0

g +
A

R2
, A ≡ h2π2/2m, (10)

where E0
g is the gap width for the bulk material. Substituting expressions (10) into (9), we

obtain the following dependence of the position of the Tamm level on nanoparticle radius R:

E =
h2

2ma2
ϕ(R), (11)
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where:

ϕ(R) ≡

2

√
U0

h2/2ma2
− U0

h2/2ma2
−

1− 1

6

√
E0
g + A/R2

h2/2ma2

 . (12)

It should be noted that dϕ(R)/dR < 0.
Thus, exponent α in the wavefunction ψ(x) = A exp(αx); (x < 0) for the Tamm

electron has the form:

α =
1

a

√
U0

h2/2ma2
− ϕ(R). (13)

Analyzing Eq. (13), we can easily see that the value of α decreases with R:

dα

dR
> 0. (14)

Consequently, we obtain two important results (Fig.4):
1) upon a decrease in nanoparticle radius R, the Tamm level increases, approaching

U0 from below;
2) the degree of localization of Tamm wavefunction α decreases upon a decrease in

radius R.

Fig. 4. Schematic qualitative dependence of the energy of Tamm’s level
(1) and damping factor of the wavefunction of a Tamm electron (2) on the
nanoparticle radius

3. Model of nanocatalysis of the oxygen molecule dissociation by Au
nanoclusters

The geometric model diagram for the chemical interaction of an oxygen molecule
with a nanocatalytic gold cluster is shown in Fig. 5.

It is clear that the Tamm orbital of gold cluster increasingly penetrates into the space
between the oxygen atoms as the oxygen molecule approaches the nanocluster; we also note
that since the empty state of the oxygen molecule σ∗

pzS
is antibonding, there is a lack of

electron density at the center of the molecule. Furthermore, it can be assumed that the
appearance of electron density of the Tamm states in the center of the oxygen molecule will
lead to Coulomb repulsion of the two oxygen atoms, so that the interaction of the molecule
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Fig. 5. Geometric scheme for oxygen molecule interaction with Tamm state
of gold nanocluster

with the nanocluster occurs through the synchronous reaction: approach of O2 with the
nanocluster is accompanied by an increase in the distance between the oxygen atoms. From
another point of view, separation of the oxygen atoms, according to the quantum chemistry
laws [71], reduces the splitting of all levels (the drop of the exchange integral), so that the
σ∗
pzS

level is reduced (Figure 6).

Fig. 6. Quantum-chemical model for the interaction of the electronic states of
the oxygen molecule with Tamm states of gold nanoclusters; electronic energy
levels of: a) the HOMO and LUMO of O2; b) I is the ionization potential of
Au atom, Tc is the Tamm level of the Au nanocatalysts, Ts is the Tamm level
of the semi-infinite Au catalyst, A is the work function of gold

Note further that Figure 6 shows the diagram of the electronic levels of the oxygen
molecule and of the gold nanoclusters. We see that the Tamm state lies below the σ∗

pzS
level,
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so lowering the σ∗
pzS

level and its approach to the Tamm level promotes the superposition
of the wave function for the free oxygen molecule and the wavefunction of the Tamm state.
The total wavefunction of the “oxygen molecule + gold nanocluster” system has the form:

Ψ(R) = C1(R)σ∗
pzS + C2(R)ϕTO. (15)

In this expression, C1(R) and C2(R) are the contributions of the σ∗
pzS

oxygen states
and of the Tamm orbitals ϕTO in the total wave function of the combined system. Note that
the coincidence of the lowering σ∗

pzS
energy levels and of the Tamm states’ flow of electrons

into the oxygen molecule occurs most effectively, since the Franck-Condon factor is maximal
in such a resonance [72]. From the point of view of quantum chemistry, the filling of the
antibonding state of the oxygen molecule destabilizes it, i.e. reduces the dissociation energy
of about 100 kJ/mol [73]. Taking into account that the Tamm level may be filled by two
electrons initially and they (couple) can overflow to the σ∗

pzS
level, then energy reduction to

zero takes place, so that the oxygen molecule dissociates spontaneously.
In this scheme, the question about the role of the size of the gold nanoclusters is of

great interest. As was shown in the previous section, the nanocluster size affects both the
length of the Tamm states’ wave function and the depth of its position (Eqs. (11), (13)),
so for smaller nanocluster, first, the Tamm wave function penetrates into the interoxygen
space with the approach of the reagents earlier, and, second, the resonance of σ∗

pzS
and

ϕTO also occurs earlier than in case of large clusters. Therefore, the effectiveness of the
nanocluster catalyst in our model increases with decreasing gold nanocluster size, which is
in full agreement with experimental results (see Fig. 1).

4. Test of the model correctness

It is desirable for the qualitative description of the gold nanoparticle catalysis model
to be supported by quantitative confirmation. The criterion for the correctness of this theory
can be the test of the dependence ”catalysis efficiency” ∼“ 1/d3”, where the d is the size of
the gold nanoparticles (Figs. 1, 7) [14,74].

Fig. 7. Turnover frequency (TOF) for CO oxidation over Au/TiO2 as a func-
tion of the mean diameter of Au particles [14,74]
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Note that the law “1/d3” is confirmed in a very broad class of experiments for both
different substrates and types of contacts for Au nanoparticles with the substrates [74,75].

We consider such an approach of an O2 molecule to a Au nanoparticle, when the
Tamm electron is already located between two oxygen atoms (Fig. 8).

Fig. 8. Hellmann-Feynman scheme for the change of the dissociation energy
of oxygen molecule at the penetration of Tamm orbital into the center of the
molecule

According to the Hellmann-Feynman theorem [70], the resulting system can be con-
sidered electrostatically, so that the activation energy Q0 of dissociation process of the oxy-
gen molecule decreases by ∆Q, which is proportional to the part of the Tamm state electron
density located between the two oxygen atoms (shaded part of orbital in Fig.8), i.e.:

∆Q = β
1

α

(
C2

C1

)2

, (16)

where β is the proportionality coefficient, 1
α

is the “size” of Tamm wave function (see (15)),(
C2

C1

)2

is the proportion of Tamm state penetrated into the space between the oxygen atoms.

According to the two-center chemical bond theory [70], we have:(
C2

C1

)2

=
1

4

(
l −
√
l2 + 4

)2

, (17)

where l = H11−(H22−E)
H12

, H12 is the exchange integral of the states of
(
σ∗
PZS

)
antibonding of the

oxygen molecule and of the Tamm state (see. (15)); −H11 = J1 is the ionization potential
of σ∗

PZS
antibonding; −H0

22 = J2 is the ionization energy of the Tamm state of semi-infinite
Au crystal, E is the energy of the Tamm state of Au nanoparticles.

It is essential that the value 1
α

(
C2

C1

)2

depends on the function ϕ(R) (α is based on

Eq.(13),
(
C2

C1

)2

is based through E on Eq. (11)), and therefore from the fact that ϕ(R) has

a small value, it is easy to obtain:

1

α

(
C2

C1

)2

=
a√

M − ϕ(R)

L

2

[
L̃+ ϕ(R)

]
, (18)

where the dimensionless quantities L, L̃ and Mare the functions of ~2/2ma2, U0,E
0
g , H11

and H12.
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Further, freed from the radicals in the ϕ(R) function, we easily obtain:

1

α

(
C2

C1

)2

≈ B + C
1

R2
+D

1

R4
(19)

Now, we can write the expression for the probability of oxygen molecule dissociation
on the surface of a Au nanoparticle:

e−
Q0−∆Q

kT > e−Q0/kT + e−Q0/kT
Q0

kT
β

1

α

(
C2

C1

)2

. (20)

Using (19), we obtain:

e−
Q0−∆Q

kT > e−Q0/kT + e−Q0/kTβ

[
B +

C

R2
+
D

R4

]
Q0

kT
, (21)

where B,C,D are the constants.
It is obvious that the bracketed expression is very close to the function Const/R3; in

our view, this indicates reasonable agreement between the model and experiment (Fig. 7),
which has not been obtained in other approaches [74, 75].

5. Conclusion

On the basis of the analysis of existing experimental data, it is found with a high
degree of reliability that the catalytic activity of Au nanoparticles depends on a combination
of three factors:

-size of the gold nanoparticles;
- type of substrate upon which the Au nanoparticle is placed;
- type of the contact of Au nanoparticles with the substrate.
The most important of these three factors is the first one, and it was found that a gap

appears in the electronic spectrum of Au nanoparticles when the size of those nanoparticles
is of 50 Å or less, and that from this point, their catalytic properties sharply increase.

We have assumed that the catalytic activity of Au nanoparticles is related to features
of the surface Tamm states formed in the gap of Au nanoparticle electronic spectra.

The above model of Tamm states in the nanoparticle showed that the properties
of these states are modified with the decreasing nanoparticle size: Tamm orbitals “stretch”
radially from the surface, and the energy levels of these states are raised. Using the quantum-
chemical model for O2 molecule dissociation on the surface of a Au nanoparticle showed that
the catalytic activity of Au nanoparticles increase as their radii decrease as Const1

R2 + Const2
R4 ,

which is very close to the experimentally observed dependence “1/R3” and can thus serve
as a “litmus test” for the model, confirming its reliability.
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1. Introduction

Particle dynamics in waveguides has attracted much attention during past few decades.
Such interest is caused by the potential application of waveguides in different topics of contem-
porary physics, such as optics, cold atom physics and different systems of nanoscale physics.
In most of the cases, particle and wave dynamics in waveguides can be modeled by billiards.
The latter are the domains confined by hard or soft walls. Dynamics of waves and particles in
such a domain strongly depend on the geometry of its walls. In particular, classical equations of
motion can be integrable or non-integrable, depending on the geometrical shape of the billiard
boundary. Earlier, billiards were the topic of extensive study in the context of nonlinear dynam-
ics and quantum chaos theory [1–5]. It was found that, depending on the shape of the billiard
walls, particle dynamics can be chaotic, regular or mixed. A pioneering study of classical parti-
cle dynamics in billiards dates back to Birkhoff, who presented a strict formulation for classical
mechanics in confined domains [1]. Later, more strict mathematical analysis of Hamiltonian
systems in billiards was provided be Sinai [2]. Currently, billiards has become one of the main
paradigms in the theory of deterministic chaos. One of the most convenient realistic systems
where billiards can be experimentally realized is microwave resonators [4].

Recently, billiards were successfully applied to describe charge transport in nanoscale
quantum dots [6]. Besides static billiards, so-called time-dependent billiards has become subject
for extensive research during the past decade [7–10]. Such billiards can be realized in atom
optics and provide powerful testing ground for classical and Fermi acceleration [11].

Comprehensive and systematic studies of time-dependent billiards were done by several
authors in the Refs. [11–15]. Unlimited growth of the particle velocity was not found to
be possible for regular (integrable) billiards, while for some types of chaotic billiards, one can
observe such an acceleration [16]. The answer for the question whether the energy of the particle
can grow to infinity is far from trivial. It depends on the perturbation type on the boundary and
the boundary geometry. It was shown by Loskutov, Ryabov and Akinshin in [17] that Fermi
acceleration (FA) will be observed in time-dependent billiards if these billiards possess chaotic
properties in the autonomous case. Later, this assumption was confirmed for stadium [18] and
annular [15] billiards by the same authors. An elliptical billiard was shown to have regular
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dynamics in the case when the billiard has static boundaries, exhibits FA in case when the
billiard has time-dependence boundaries. More strict analysis of particle dynamics in time-
dependent billiards was provided recently by Robnik and co-authors [16], who derived criteria
for the shape and time-dependence of the walls from the viewpoint of Fermi acceleration.

Besides Fermi acceleration, time-dependent billiards have generated a certain interest in
fiber optics and waveguides. An important and interesting characteristic of the radiation pulses
propagating in the optical fiber is the propagation time of rays through the waveguide. Ray
dynamics in the corrugated waveguides are becoming more interesting because of the nature
of media where the wave can be propagated are more curved by the external fluctuations.
This properties help such systems to create some kind of channel for the waves propagating
in it, where the signals can be transmitted effectively with minimal loss of information. A
similar problem was also considered and the different fractal properties of ray propagation were
shown using an underwater acoustic model. They have shown the mechanism of signal cooling
when the width of spatial spectra dispersion is significantly reduced. The open stadium billiard
model was investigated in [10] using phase space methods. There, they derived the expression
for the long time survival probability function for the stadium billiard with a hole [10]. One
of example of time-dependent focusing billiards – a stadium-like billiard with periodically
perturbed boundary was studied, explained the origin of the increase and decrease of the particle
velocity [11].

In this paper, we study particle dynamics in rectangular billiard with a corrugated wall.
The phase space portraits for the two dimensional billiard system are obtained for both flat and
corrugated billiards. In the next section, we will present the analytical and numerical analyses
in detail. The dependence of the particle trajectory and path on the initial incident angle will
also be analyzed.

2. Corrugated rectangular billiard

The system we want to study is the rectangular billiard (side lengths are a and b) with
a corrugated wall presented in Fig. 1. The main characteristic to be studied is the coordinate
of the particle after N collisions with the billiard walls. We analyze phase space trajectory
corresponding to such coordinates.

FIG. 1. Billiard model in the form of rectangle with the sides a and b (a) and
the same model with corrugated at one side (b)

First, we consider the simple case, a rectangular billiard without corrugation i.e. flat at
sides (Fig. 1a), with the sides sizes a and b.
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In this case, the boundaries of the billiard will be expressed in XOY plane as follows:

y(x) =

{
a,

0,
if 0 ≤ x ≤ b;

x(y) =

{
b,

0,
if 0 ≤ y ≤ a.

(1)

Here a and b are lengths of the billiard sides.
Let the particle starts its motion at the point of (x0,y0) ∈ XOY with the initial veloc-

ity v0:

vx = v0 · cosα,

vy = v0 · sinα,

where α is the angle between v0 and vx vectors.
Then, one can define the coordinate of the particle after n collision as follows:

τ1 =


(a− yn)

vy
, if vy ≥ 0;

yn
vy
, if vy < 0;

τ2 =


(b− xn)

vx
, if vx ≥ 0;

xn
vx
, if vx < 0;

tn = min (τ1, τ2) ,

xn+1 = xn + vx · tn,
yn+1 = yn + vy · tn.

(2)

Phase space portraits are given on the plane of the momentum of particle in the direction
of billiard walls, p = v0 · sin β and the path of particle, S.

Using this map (2), phase-space trajectories can be plotted as in Fig. 2 and 3.
Now, we proceed to the case of corrugated billiard presented in Fig. 1b. The corrugation

function is given as follows:

f(ξ) = 4 · h · ξ · (1− ξ), (3)

where ξ = x/b, a, b are the rectangular billiard sides and h is the corrugation height.
The boundaries of such a billiard system can be written:

y(x) =

{
a+ f(ξ),

0,
if 0 ≤ x ≤ b;

x(y) =

{
b,

0,
if 0 ≤ y ≤ a+ f(ξ).

(4)

Trajectories of the particle in such billiard can be given in terms of the following map:



Particle dynamics in corrugated rectangular billiard 265

FIG. 2. Trajectory (a) and phase portrait (b) of a particle motion in rectangular
billiard for the following billiard parameter values: a = 1; b = 3; and initial
values for the particle: x0 = 0; y0 = 0; α = 60◦

FIG. 3. Particle trajectory (a) and its corresponding phase space portrait (b) for
the corrugated rectangular billiard parameters: a = 1; b = 3; h = 0.1

xn+1 = xn + vx · tn,
yn+1 = yn + vy · tn,

tn =
1

2A

(
−B +

√
B2 − 4AC

)
.

(5)

Where the values for the parameters are given as:

A = v2x,

B =
vyb

2

4h
+ vx(2xn − b),

C = xn(xn − b) +
yn − a

4h
b2.

Using this map given in (2), also taking into account the expression (5), we obtain the
particle trajectory (Fig. 3a) and its corresponding phase space portrait (Fig. 3b).
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One can observe from the Fig. 3 that particle motion is chaotic in this regime, and
‘more chaos’ can be seen by increasing of h.

If we consider the path of particles after N collision, with the initial values of particle
coordinate as x0 = 0, y0 = 0, and for the incident angles range, 0 < α < π/2, we obtain an
interesting result for the particle total path, depending on the particle incident angles (Fig. 4).

FIG. 4. The dependence of the total path on the incident angle for the param-
eters b/a = 3 and ∆θ0 = 0.01 of different values of height of corrugation:
h/a = 0.03 (a); h/a = 0.05 (b). Scaled region is calculated with the resolution
of ∆θ0 = 0.001

As can be seen from Fig. 4, ‘horizontal lines’ in the distributions means that particles
will have equal paths after N collisions for different particle incident angles. This gives us the
potential to focus the particles in needed directions, thus minimizing signal modes in an optical
fiber. Moreover, this allows us to say that chaotic behavior will be increased, according to the
increase of the corrugation height relative to the billiard side, h/a.

3. Conclusions

Thus, we derived two dimensional map presented by Eq. (5) for the rectangular billiard
system with a corrugated wall. Using the numerical calculations, we showed the possibility of
focusing particle transport by tuning the corrugation paramaters.

The obtained results can be helpful for the problem of transport and chaos control in
different waveguides and acoustic systems.
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1. Setting up the problem and main result

The unique dependence of D and B (the electric displacement and the magnetic
induction, respectively) on E and H (the intensities of the respective fields) at the same
instance of time is violated in rapidly varying electromagnetic fields whose frequencies are
not small compared with the electric and magnetic polarization onset frequencies typical
for the medium. The values of D and B at a given time have been proven to not only
depend on E and H, but also on the entire time history of these fields (such a medium is
called a medium with aftereffect) [1]:

D(x, t) = ε̂E +

t∫
0

ϕ(t− τ)E(x, t)dτ,

B(x, t) = µ̂H +

t∫
0

ψ(t− τ)H(x, t)dτ,

E = (E1, E2, E3), H = (H1, H2, H3), D = (D1, D2, D3),

B = (B1, B1, B3), x = (x1, x2, x3),

(1)

where ε̂ = (ε̂ij)3×3 and µ̂ = (µ̂ij)3×3 are the permittivity and permeability matrices, respec-
tively; ϕ(t) = diag(ϕ1, ϕ2, ϕ3) and ψ(t) = diag(ψ1, ψ2, ψ3) are diagonal matrices represent-
ing the memory.
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Many technically important materials and crystals which have become popular in
new technologies are anisotropic. The physical properties of homogeneous isotropic crystals
do not depend on the direction and the position inside the medium. At the same time,
physical properties of anisotropic crystals essentially depend on orientation and position. An
anisotropic crystal is called homogeneous when its physical properties depend on orientation
and do not depend on position.

Suppose that, according to (1), the vectors E and H form a solution of the Cauchy
problem for the system of Maxwell’s equations for homogeneous anisotropic crystals with
zero initial data:

∇×H =
∂D(x, t)

∂t
+ j, ∇× E = −∂B(x, t)

∂t
, (x, t) ∈ R4,

E|t≤0 = 0, H|t≤0 = 0.
(2)

where j = (j1, j2, j3) is the density of the electric current with components ji = ji(x, t). The
matrices ε̂ and µ̂ in equations (1) are assumed to be known constant matrices. Moreover,
ε̂ – is a symmetric positive definite matrix. We will solve problems (1) and (2) for the case
in which the function j(x, t) has the form:

j(x, t) = ~eδ(x)δ(t), (3)
where ~e = (1, 0, 0) is unit vector; δ(x) = δ(x1)δ(x2)δ(x3) is the Dirac delta function of the
space variable concentrated at x1 = 0, x2 = 0, x3 = 0; δ(t) is the Dirac delta function of the
time variable concentrated at t = 0.

The problem in which the vectors E(x, t), H(x, t) should be determined from (1) –
(3) for a given matrix functions ϕ(t), ψ(t) will be called the direct problem.

Let Ẽ =
(
Ẽ1, Ẽ2, Ẽ3

)
(ν, t), H̃ =

(
H̃1, H̃2, H̃3

)
(ν, t) be the Fourier image of E(x, t),

H(x, t) with respect to x = (x1, x2, x3) ∈ R3, respectively, i.e.:

Ẽj(ν, t) =

∫
R3

Ej(x, t)e
i(x,ν)dx, H̃j(ν, t) =

∫
R3

Hj(x, t)e
i(x,ν)dx,

ν = (ν1, ν2, ν3) ∈ R3, (x, ν) =
3∑

λ=1

xλνλ, j = 1, 2, 3.

We pose the following inverse problem: find the functions ϕ(t) = diag(ϕ1, ϕ2, ϕ3),
ψ(t) = diag(ψ1, ψ2, ψ3) occurring in the integral in equations (1) from the information on
the Fourier image Ẽ, H̃ of the electric and magnetic fields at an arbitrary time t ≥ 0 for
the values ν = 0 of the Fourier transformation:(

Ẽ1, Ẽ2, Ẽ3, H̃1, H̃2, H̃3

)
(0, t) = g(t), g(t) = (g1, g2, ..., g6). (4)

Definition. Solutions of the inverse problem are matrix functions ϕ(t) and ψ(t), such
that the corresponding solution of problem (1) –(3) satisfies condition (4).

Among the problems devoted to determining a sub-integral function, belonging to
hyperbolic equations, we note works [2,3]. In work [2], the problem of determining the
memory, belonging to a three-dimensional wave equation with delta function at the right
side is investigated. Furthermore, in work [3], this problem is generalized in the case of
hyperbolic equation of the second order with constant main part and variable coefficients
at minor derivatives. Similar problems with distributed sources of disturbance are seen in
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works [4,5]. In article [6], the problem of reconstructing the time history of an electric
field from the electrodynamic equation is investigated. Also, we recall that papers [7,8,9,10]
are concerned with the determination of memory kernel from integro-differential equations
with an integral of convolution type. In the present paper, we consider the problem of
reconstructing the time-dependent history of the electromagnetic fields from Maxwell’s
system of equations for an anisotropic medium. It is shown that if the vector function g(t)
satisfies some conditions of agreement and smoothness, the solution to the inverse problem
is uniquely defined in a class of continuously differentiable functions on the intercept [0, T ],
where T is any positive fixed number.

The main result of the present paper is the following theorem.

Theorem. Suppose that g(t) ∈ C2[0, T ], g(0) 6= 0 and the agreement conditions:

3∑
k=1

ε̂1kgk(0) = −1,
3∑

k=1

ε̂ikgk(0) = 0, i = 2, 3;
3∑

k=1

µ̂jkg3+k(0) = 0, j = 1, 2, 3

hold. Then, the inverse problem (1) –(4) has a unique solution (ϕ(t), ψ(t)) ∈ C1[0, T ] for
any fixed T > 0.

2. Maxwell’s equations as a first order symmetric hyperbolic system

Equations (1) –(3) can be written as the following first order symmetric hyperbolic
system:

A0
∂V

∂t
+

3∑
i=0

Ai
∂V

∂xi
+ Φ0V +

t∫
0

Φ′(t− τ)V (x, τ)dτ = F (x, t), (5)

with the initial condition:

V |t≤0 = 0, (6)
where:

A0 :=

(
ε̂ 0
0 µ̂

)
6×6

, Aj :=

(
0 A1

j(
A1
j

)∗
0

)
6×6

, A1
1 :=

0 0 0
0 0 1
0 −1 0

 ,

A1
2 :=

0 0 −1
0 0 0
1 0 0

 , A1
3 :=

 0 1 0
−1 0 1
0 0 0

 , Φ0 :=

(
ϕ(0) 0

0 ψ(0)

)
6×6

,

Φ′(t) :=

(
ϕ′(t) 0

0 ψ′(t)

)
6×6

, V := (E,H)∗, F := (−j, 01×3)
∗ ;

∗ is the symbol of transposition; 01×3 denote the vector line with elements 0, 0, 0;
Φ′(t) := (∂/∂t)Φ(t).

We apply to both parts of (5) and (6) the Fourier transformation. The Fourier
transform of the vector function V (x, t) exists at any finite t, since the vector function
V (x, t) as the solution of the direct problem (5) and (6) is a sum of a certain singular
generalized vector function and a regular vector function, the support of the vector function
V (x, t) being finite [11, chapter 4]. For any fixed ν, the vector function Ṽ (ν, t) ((Ṽ (ν, t) –
the Fourier transformation of V (x, t) with respect to x) satisfies differential equation:
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A0
∂Ṽ

∂t
− iBṼ +

t∫
0

Φ
′
(t− τ)Ṽ (ν, τ)dτ = F̃ (t), (7)

the initial, and as follows from (4), the supplementary conditions, respectively:

Ṽ |t≤0 = 0, (8)

Ṽ |ν=0 = g(t), g(t) = (g1, g2, ..., g6), t ≥ 0. (9)

In equation (7), we denoted B :=
∑3

j=1 νjAj + Φ0, F̃ (t) = −~e0δ(t), ~e0 := (1, 0, 0, 0, 0, 0)∗.
We compute A−10 , which is the inverse to A0. If we denote by ε = (εij), µ = (µij)

the matrices which are the inverse to ε̂, µ̂, respectively, then:

A−10 =

(
ε 0
0 µ

)
6×6

.

When we multiply the left-hand side of (7) by A−10 , we get:

I
∂Ṽ

∂t
− iCṼ +

t∫
0

Ψ(t− τ)Ṽ (ν, τ)dτ = F0, (10)

where I is the identity matrix,

C :=

(
εϕ(0) εΣ3

i=0νiA
1
i

µΣ3
i=0νi (A

1
i )
∗

µψ(0)

)
6×6

,

Ψ(t) := A−10 Φ′(t), F0 := A−10 F̃ = −A−10 ~e0δ(t).
Thus, inverse problems (1) – (4) are reduced to the problem of determining the

kernel Ψ(t) of the integral part in equation (10) on the bases of equalities (8) – (10).

3. Proof of the main result

We integrate the differential equation (10). Using the initial condition (8), one gets:

Ṽ (λ, t) = −A−10 ~e0 + iC

t∫
0

Ṽ (λ, τ)dτ −
t∫

0

τ∫
0

Ψ(α)Ṽ (λ, τ − α)dαdτ. (11)

Taking into account (9), from the equality (11) we obtain:

g(t) = −A−10 ~e0 + iC0

t∫
0

g(τ)dτ +

t∫
0

Ψ(α)

t∫
α

g(τ − α)dτdα, t > 0, (12)

where C0 := A−10 Φ0. By differentiating the equation (12), we derive:

t∫
0

Ψ(τ)g(t− τ)dτ = g′(t)− iC0g(t). (13)

In the equality, assuming t = 0 and taking into account C0 = A−10 Φ0, we get:

g′ = iA−10 Φ0g(0).



272 D.K. Durdiev

It follows from the last equation that the elements of the matrix Φ0 are expressed by the
known numbers:

ϕi(0) = − i

gi(0)

3∑
k=1

ε̂ikg
′
k(0); ψi(0) = − i

g3+i(0)

3∑
k=1

µ̂ikg
′
3+k(0), i = 1, 2, 3.

Furthermore, constants ϕi(0), ψi(0), i = 1, 2, 3 will be assumed as knowns.
From (13), by differentiating, we obtain:

Ψ(t)g(0) +

t∫
0

Ψ(τ)g′(t− τ)dτ = g′′(t)− iA−10 g′(t).

When we multiply the left-hand part of the last equality by A0, we find:

Φ′(t)g(0) +

t∫
0

Φ′(τ)g′(t− τ)dτ = A0g
′′(t)− iΦ0g

′(t).

The last equality is the linear integral second-order equation of Volterra type with respect
to the matrix function Φ′(t). It can be written relative to the components of matrix Φ′(t).
They are as follows:

ϕ′j(t) +

t∫
0

ϕ′j(τ)
g′j(t− τ)

gj(0)
dτ =

1

gj(0)

{
3∑

k=1

ε̂jkg
′′
k − iϕj(0)g′k(t)

}
, j = 1, 2, 3; (14)

ψ′j(t) +

t∫
0

ψ′j(τ)
g′3+j(t− τ)

g3+j(0)
dτ =

1

g3+j(0)

{
3∑

k=1

µ̂jkg
′′
3+k(t)− iψj(0)g′3+k(t)

}
, j = 1, 2, 3.

(15)
To integral equations (14) and (15), we combine the following obvious relations:

ϕj(t)−
t∫

0

ϕ′j(τ)dτ = ϕj(0), ψj(t)−
t∫

0

ψ′j(τ)dτ = ψj(0), j = 1, 2, 3. (16)

Equations (14) – (16) are the linear integral second-order equations of the Volterra
type with respect to unknown functions ϕ′i, ϕi, ψ

′
i, ψi, i = 1, 2, 3. As known, these equations

have unique solutions.
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1. Introduction

Renyi entropy plays an important role in various fields of human activity: in ecology
and statistics as the diversity index, in quantum information – as a measure of complexity, in
statistical mechanics – to describe quantum dissipative systems [1, 2]. The most important
areas for the application of entropy are quantum-mechanical and relativistic objects. The
applications of entropy are of great interest in quantum physics and astrophysics. It is just
enough to merely mention one of the most important results of black hole thermodynamics:
the entropy of a black hole is equal to one quarter of its surface area (the area of the event
horizon) (Hawking, 1978) [3].The broad appeal of the formulas of the type s ∼ k

∑
p log (p)

in different areas may be linked to the special role of power laws in nature [4]. For such cases,
the expression p log (p) is a convenient additive measure. Many scientific papers concerning
Renyi entropy and entanglement have been published recently [5] – the phenomenon in which
quantum state objects are interdependent even passing between them through space. The
spectral complexity and entropy concept is becoming a powerful tool to gain access to such
universal values as Central charge, which is associated with the conformal field theory and
used to describe the main conditions and their degeneration. This effect can also be useful
for quantum computing or quantum cryptography.

It should be noted that graphene electrons near the Fermi level are described with
the conformal field theory (in this case the Dirac equations reduce to the Laplace equation).
Additionally, technology development allows one to form a graphene field with different
boundaries (including limited boundaries) [6-8], which makes possible experimental verifi-
cation of the consequences of the conformal theories and of the applications to quantum
information theory.
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2. The statement of the problem

The main result of the use of conformal field theory states that the Renyi entropy
can be found from the formula [9]:

sn =
n+ 1

6n
ln

(
L

a

)
, (1)

here, a is the lattice constant, L is the perimeter of the closed path (in units of a), n is the
order of entropy. Higher values of n, directing to infinity, give the Renyi entropy, which is
greatly determined by considering only the highest probability events. Lower values of n,
tending to zero, give the Renyi entropy, which increasingly considers all possible events more
uniformly, regardless their probabilities.

After averaging according to the size of the cluster, formula (1), under the assumption
of the power distribution function, gives:

sn =
n+ 1

6n

∫ ∞
a

ln

(
L

a

)(
L

a

)β
dL. (2)

This integral converges when β 6 −2.
Here, it is necessary to make a major retreat. It is possible to describe the behavior of

the main variables by a power law (it is well-known fact from the theory of phase transitions
in the critical region near the phase transition point where the fluctuations are particularly
large). The corresponding indicators are called critical exponents. Such behavior has been
obtained in the framework of scaling theory, and other approaches. Actually, the existence of
scaling [10] means that in the system (in the area near-critical), there is no allocated length
scale and fluctuations can have an arbitrarily large amount of spatial correlation. So, it is
reasonable to assume that the dependence of the distribution function upon the perimeter
will be of power-law form, with the index, which will be defined below.

It should be noted that the power distribution function follows from scale invariance
theory. The scale invariance theory is based on a power dependence of some properties, and
the exponent depends on the dimension of space and the symmetry of the system [11].Thus,
the calculation of the Renyi entropy is reduced to the problem of determining the index β.
This has been solved by modeling methods.

The principle of modeling distribution of admixtures on the surface of a hexagonal
lattice of a graphene was used in this case (Fig. 1). It was assumed that the electron cannot
access the area (nodes, node) occupied by the admixture. In areas which are not occupied by
admixtures, electron motion is described by the well-known Dirac equation for graphene [12]:

Hψ = i~
dψ

dt
,H = −i~υf σ̄ · ∇̄. (3)

At the Fermi level, this equation is reduced to the conformal theory with the central
charge c = 1.

3. The simulation of the confined areas

Electrons in graphene have a band structure and move on the lattice sites freely [13].
However, with the appearance in the graphene lattice sites of impurity atoms forming carbon
bond, the site becomes unavailable for an electron, which is located in the conduction band.
I.e. there is a border, and in the case of the first approximation value of the potential barrier
for electrons can be considered as infinity, because of the site unavailability. In the wave
approximation, the modeling problem of electron motion was solved in paper [14]. It is
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worth noting that electron motion at the lattice sites does not distort the bond lengths or
local charge density, since the electron is already in the conduction band (i.e., electron is
delocalized).

It should also be noted that the units engaged with impurity atoms are unavailable
for electrons. This leads to distortion of the band structure. For example, when an electron
moves in a limited area, which is described by equation (3), there are discrete energy levels
and not all values of the electron momentum are allowed. The remaining electron in the
conduction band, because of the reflection of the “walls” formed by impurity atoms and
further interference, can have only certain values of momentum and energy. The closest
analogue is a classic resonator which carves out a certain frequency range. Since the impu-
rities are randomly distributed and the border region has a complex shape, in the general
case, the spectrum is continuous but there are features in the density of states described by
Anderson [15].

The points of intersection of the lines are called nodes, the lines will be called links or
edges. The confined areas, made up of relations – clusters, otherwise are called the corrals.

Fig. 1. Confined clusters

To find the clusters, we will solve the problem of relations, that is, we will need to
store information about the edges, but not about the actual nodes.

The first stage of simulation is to place admixtures in the nodes of a hexagonal lattice.
Since the percolation threshold for a hexagonal lattice is - 0.67, then the total number of
nodes occupied by the electrons should be equal to 67% or even higher.

The algorithm for finding the corrals is based on Lee’s algorithm (breadth-first
search).

Figure 2 shows the initial distribution of admixtures and the found endless paths
after performing the algorithm.

At the next stage, the connection between the number of closed paths and the length
of the closed path was shown. After approximation, it has the form (Figure 3).

This dependence is approximated by the formula:

y ∼ x−2.97, (4)

and gives β ' −3.
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Fig. 2. The distribution of electrons on a hexagonal lattice: (A) before per-
forming the algorithm; (B) after performing the algorithm

Fig. 3. A plot of the number of closed paths of the length of the closed path
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4. The summary and conclusions

In our case, if β ' −3, we obtain the following expression for Renyi entropy:

sn =
n+ 1

24n
. (5)

The dependence of the Renyi entropy of its order is shown in Figure 4.

Fig. 4. The dependence of the Renyi entropy upon its order

In conclusion, we will now formulate the main outcomes of this work.

(1) Based on the algorithm of Lee, an algorithm was developed for finding the closed
paths containing the electrons of the admixture;

(2) A dependence was constructed for the number of closed paths from their length near
the percolation threshold.

(3) The form of the power function was determined, which allowed calculation of the
Renyi entropy for doped graphene.

(4) The obtained results can be used to determine the thermodynamic characteristics of
doped graphene.
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1. Introduction

We are going to discuss the following remarkable phenomenon of the spectral theory
of the three-particle Schrödinger operators, known as the Efimov effect: if a system of three
particles interacting through pair short-range potentials is such that none of the three two-
particle subsystems has bound states with negative energy, but at least two of them have
a zero energy resonance, then this three-particle system has an infinite number of three-
particle bound states with negative energy accumulating at zero.

The Efimov effect was discussed in [1] for the first time. Since then, this problem
has been studied on a physical level of rigor in [2, 3]. A rigorous mathematical proof for
the existence of Efimov’s effect was originally carried out in [4], and subsequently, many
works have been devoted to this subject, see for example [5–9]. The main result obtained
by Sobolev [7] (see also [9]) is an asymptotics of the form U0| log |z|| for the number N(z)
of eigenvalues on the left of z, z < 0, where the coefficient U0 does not depend on the
two-particle potentials vα and is a positive function of the ratios m1/m2 and m2/m3 of the
masses of the three particles.

In models of solid state physics [10–12] and also in lattice quantum field theory [13],
one considers discrete Schrödinger operators, which are lattice analogs of the three-particle
Schrödinger operator in continuous space. The presence of Efimov’s effect for these oper-
ators was demonstrated at the physical level of rigor without a mathematical proof for a
system of three identical quantum particles in [10,11].

In the continuous case [14] (see also [12,15]), the energy of the center-of-mass mo-
tion can be separated out from the total Hamiltonian, that is, the energy operator can be
split into the sum of the center-of-mass motion and the relative kinetic energy so that the
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three-particle bound states are eigenvectors of the relative kinetic energy operator. There-
fore, Efimov’s effect either exists or does not exist for all values of the total momentum
simultaneously.

In lattice terms, the center-of-mass corresponds to a realization of the Hamiltonians
as fibered operators, that is, as the direct integral of a family of operators H(K) depending
on the values of the total quasi-momentum K ∈ T3 := (−π; π]3 (see [12]). In this case,
a bound state is an eigenvector of the operator H(K) for some K ∈ T3. Typically, this
eigenvector depends continuously on K. Therefore, Efimov’s effect may exist only for some
values of K ∈ T3.

The presence of the Efimov effect for three-particle discrete Schrödinger operators
was proved in [16–18] and asymptotic formulas for the number of eigenvalues were obtained
in [16,17], which are analogous to the results of [7,9].

In the present paper, we consider a system of three arbitrary quantum particles
on the three-dimensional lattice interacting via zero-range potentials with the dispersion

function of the form ε(p) =
3∑
i=1

(1− cos(np(i))) with n > 1. We denote by Λ the set of points

of T3 where the function ε(·) takes its (global) minimum. If at least two of the two-particle
operators have a zero energy resonance and third one is non-negative, then we prove that
for all K ∈ Λ, the three-particle discrete Schrödinger operator H(K) has infinitely many
negative eigenvalues accumulating at zero. Moreover, for any K ∈ Λ, we establish the
asymptotic formula

lim
z→−0

N(K; z)| log |z||−1 = U0 (0 < U0 <∞),

where N(K; z) is the number of eigenvalues of H(K) lying on the left of z, z < 0.
It is surprising that the asymptotics for N(K; z) is the same for all K ∈ Λ and is

stable with respect to the number n. Recall that in all papers devoted to Efimov’s effect
for lattice systems, the existence of this effect has been proved only for the zero value of
the quasi-momentum (K = 0) and for the case n = 1. In [19], for all non-trivial values
of total quasi-momentum (K 6= 0), the finiteness of the discrete spectrum of a system of
three bosons on a lattice was proven when the corresponding two-particle operator has a
zero energy resonance.

The plan of this paper is as follows: Section 1 is an introduction to the whole work.
In Section 2, the Hamiltonians of two- and three-particle systems are described as bounded
self-adjoint operators in the corresponding Hilbert spaces and the main result of the paper
is formulated. In Section 3, we discuss some results concerning threshold analysis of the
two-particle operator hα(k). In Section 4, we give a modification of the Birman-Schwinger
principle for H(K), K ∈ T3. In Section 5, we obtain an asymptotic formula for the number
of negative eigenvalues of H(K), K ∈ Λ.

Throughout the present paper, we adopt the following conventions: For each δ > 0,
the notation Uδ(p0) := {p ∈ T3 : |p − p0| < δ} stands for a δ-neighborhood of the point
p0 ∈ T3. The subscripts α, β, γ are pair-wisely different and takes values from {1, 2, 3}.

2. Description of the three-particle operator

Let Z3 be the three-dimensional lattice and l2((Z3)m) be the Hilbert space of square-
summable functions on (Z3)m, m = 2, 3. The free Hamiltonian Ĥ0 of a system of three
arbitrary quantum mechanical particles on Z3 in the coordinate representation is usually
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associated with the following bounded self-adjoint operator on the Hilbert space l2((Z3)3) :

(Ĥ0ψ̂)(x1, x2, x3) =
∑
s∈Z3

[ε̂1(s)ψ̂(x1 +s, x2, x3)+ ε̂2(s)ψ̂(x1, x2 +s, x3)+ ε̂3(s)ψ̂(x1, x2, x3 +s)],

where ε̂α(·), α = 1, 2, 3 are dispersion functions describing the particle transition from a
site to a neighboring site defined by:

ε̂α(s) :=


3

mα

as s = 0;

− 1

2mα

as s = ±nei, i = 1, 2, 3;

0 otherwise.

Here, mα > 0 are different numbers, having the meaning of a mass of the particle α,
α = 1, 2, 3, the elements ei, i = 1, 2, 3 are unit orts on Z3 and n is a fixed positive integer
with n > 1.

It is easily seen that the function ε̂α(·) is even on Z3.
The three-particle Hamiltonian Ĥ of the quantum-mechanical three particle sys-

tems with two-particle interactions v̂βγ, β, γ = 1, 2, 3 in the coordinate representation is a
bounded perturbation of the free Hamiltonian Ĥ0:

Ĥ = Ĥ0 − V̂1 − V̂2 − V̂3,

where V̂α, α = 1, 2, 3 are multiplication operators on the Hilbert space l2((Z3)3)

(V̂αψ̂)(x1, x2, x3) = v̂βγ(xβ − xγ)ψ̂(x1, x2, x3) = µαδxβxγ ψ̂(x1, x2, x3), ψ̂ ∈ l2
(
(Z3)3

)
.

Here, µα > 0 is the interaction energy of the particles β and γ, δxβxγ is the Kronecker delta.

It is clear that the three-particle Hamiltonian Ĥ is a bounded self-adjoint operator
on the Hilbert space l2((Z3)3).

Similarly, as we introduced Ĥ, we introduce the corresponding two-particle Hamil-
tonians ĥα, α = 1, 2, 3 as bounded self-adjoint operators on the Hilbert space l2 ((Z3)2):

ĥα = ĥ0
α − v̂α,

where (
ĥ0
αϕ̂
)

(xβ, xγ) =
∑
s∈Z3

[ε̂β(s)ϕ̂(xβ + s, xγ) + ε̂γ(s)ϕ̂(xβ, xγ + s)] ,

(v̂αϕ̂) (xβ, xγ) = µαδxβxγ ϕ̂(xβ, xγ), ϕ̂ ∈ l2((Z3)2).

Let us rewrite our operators in the momentum representation. We denote by T3 the
three-dimensional torus, the cube (−π, π]3 with appropriately identified sides and L2 ((T3)m)
be the Hilbert space of square integrable (complex) functions defined on (T3)m, m = 1, 2, 3.

Let Fm : L2 ((T3)m) → l2((Z3)m), m = 2, 3 be the discrete Fourier transform. The
three-particle Hamiltonian in the momentum representation is given by the bounded self-
adjoint operator on the Hilbert space L2 ((T3)3) as follows H̃ = F−1

3 ĤF3. Introducing the
total quasi-momentum K ∈ T3 the operator H̃ can be decomposed into von Neumann
direct integrals of the family of bounded self-adjoint operators H̃(K), K ∈ T3. The operator
H̃(K), K ∈ T3 is called the three-particle discrete Schrödinger operator, which is unitarily
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equivalent (see [16–18]) to the family of bounded self-adjoint operators H(K), K ∈ T3,
acting on the Hilbert space L2 ((T3)2) according to the formula:

H(K) = H0(K)− V1 − V2 − V3,

where H0(K) is the multiplication operator by the function:

EK(p, q) := ε1(p) + ε2(q) + ε3(K − p− q),
where

εα(p) :=
1

mα

ε(p), ε(p) :=
3∑
i=1

(
1− cos(np(i))

)
,

and

(V1f)(p, q) =
µ1

(2π)3

∫
T3

f(p, s)ds, (V2f)(p, q) =
µ2

(2π)3

∫
T3

f(s, q)ds,

(V3f)(p, q) =
µ3

(2π)3

∫
T3

f(s, p+ q − s)ds.

Similarly, the study of the spectral properties of the h̃α = F−1
2 ĥαF2 can be reduced

to the study of the spectral properties of the family of bounded self-adjoint operators hα(k),
k ∈ T3, corresponding to the two-particle lattice Hamiltonians on the Hilbert space L2(T3):

hα(k) = h0
α(k)− vα.

The non-perturbed operator h0
α(k) is the multiplication operator on L2(T3) by the function:

E
(α)
k (p) := εβ(p) + εγ(k − p), β < γ, α, β, γ = 1, 2, 3.

The perturbation vα is an integral operator of rank one on L2(T3):

(vαf)(p) =
µα

(2π)3

∫
T3

f(s)ds.

Therefore, by the Weyl theorem, the continuous spectrum σcont(hα(k)) of the oper-
ator hα(k) coincides with the spectrum of σ(h0

α(k)) of h0
α(k). More specifically:

σcont(hα(k)) =
[
E

(α)
min(k);E(α)

max(k)
]
,

where
E

(α)
min(k) := min

p∈T3
E

(α)
k (p) and E(α)

max(k) := max
p∈T3

E
(α)
k (p).

3. Formulation of the main results

We denote by σess(·) and σdisc(·) the essential spectrum and the discrete spectrum of
a bounded self-adjoint operator, respectively.

The following theorem, [17, 18], describes the location of the essential spectrum of
the operator H(K).

Theorem 3.1. For the essential spectrum of H(K), the following equality holds:

σess(H(K)) =
3⋃

α=1

⋃
p∈T3

{σdisc(hα(K − p)) + εα(p)} ∪ [Emin(K); Emax(K)] , (3.1)
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where
Emin(K) := min

p,q∈T3
EK(p, q) and Emax(K) := max

p,q∈T3
EK(p, q).

Let us consider the following subset of T3 :

Λ :=

{
(p(1), p(2), p(3)) : p(i) ∈

{
0,± 2

n
π;± 4

n
π; . . . ;±n

′

n
π

}
∪ Πn, i = 1, 2, 3

}
,

where

n′ :=

{
n− 2, if n is even;
n− 1, if n is odd, and Πn :=

{
{π}, if n is even;
∅, if n is odd.

Direct calculation shows that the cardinality of Λ is equal to n3. It is easy to verify
that for any K ∈ Λ, the function EK(·, ·) has non-degenerate zero minima at the points of
Λ× Λ, that is, Emin(K) = 0 for K ∈ Λ.

Since 0 = (0, 0, 0) ∈ Λ, the definition of the functions E(α)
k (·) and EK(·, ·) imply the

identities hα(0) ≡ hα(k) and H(0) ≡ H(K) for all k,K ∈ Λ.
Let C(T3) and L1(T3) be the Banach spaces of continuous and integrable functions

on T3, respectively. Let Gα be the integral operator on C(T3) with the kernel:

Gα(p, s) =
µα

(2π)3

mβmγ

mβ +mγ

1

ε(s)
.

Definition 3.2. The operator hα(0) is said to have a zero energy resonance if the number
1 is an eigenvalue of the operator Gα. If the number 1 isn’t an eigenvalue of the operator
Gα, then we say that z = 0 is a regular-type point for the operator hα(0).

We note that in Definition 3.2 the requirement of the existence of the eigenfunction
ϕα ∈ C(T3) corresponding to the eigenvalue 1 of Gα corresponds to the existence of a
solution of hα(0)fα = 0, and this solution does not belong to L2(T3). More precisely, if the
operator hα(0) has a zero energy resonance, then the function:

fα(p) = ϕα(p)(ε(p))−1,

is a solution (up to a constant factor) of the Schrödinger equation hα(0)fα = 0 and fα ∈
L1(T3) \ L2(T3) (see Lemma 4.4).

We set:

µ0
α := 8π3mβ +mγ

mβmγ

 ∫
T3

ds

ε(s)

−1

, α = 1, 2, 3.

Simple calculation shows that the operator hα(0) has a zero energy resonance if and
only if µα = µ0

α (see Lemma 4.2).
For K ∈ T3, let us denote by τess(K) the bottom of the essential spectrum of H(K)

and by N(K; z) the number of eigenvalues of H(K) lying on the left of z, z < τess(K). It is
clear that N(0; z) = N(K; z) for any K ∈ Λ.

Since the operator hα(0) has no negative eigenvalues for all µα ≤ µ0
α (see Lemma 4.3),

the operator hα(0) is non-negative for all µα ≤ µ0
α. Then, by Theorem 1 of [21], the oper-

ator hα(k) is non-negative for all µα ≤ µ0
α and k ∈ T3. Hence, the assertion Emin(K) = 0,

K ∈ Λ implies τess(K) = 0 for K ∈ Λ and µα ≤ µ0
α.

The main result of the present paper is given in the following theorem.
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Theorem 3.3. Assume µα = µ0
α, µβ = µ0

β and µγ ≤ µ0
γ. Then the operator H(0) has

infinitely many negative eigenvalues accumulating at zero and the function N(0; ·) obeys
the relation:

lim
z→−0

N(0; z)

| log |z||
= U0, 0 < U0 <∞. (3.2)

Remark 3.4. The constant U0 does not depend on the interaction energies µα, α = 1, 2, 3;
it is positive and depends only on the ratios mβ/mα, α 6= β, α, β = 1, 2, 3 between the
masses.

Remark 3.5. Clearly, by equality (3.2), the infinite cardinality of the negative discrete
spectrum of H(0) follows automatically from the positivity of U0.

Remark 3.6. It is surprising that the asymptotics (3.2) don’t depend on the cardinality
of Λ, that is, these asymptotics are the same for all n ∈ N. Since Λ|n=1 = {0} in fact,
Theorem 3.3 was proved in [17] for n = 1.

4. Threshold analysis of the two-particle operator hα(k)

In this section, we study the spectral properties of the two-particle discrete Schrödinger
operator hα(k).

For any µα > 0, k ∈ T3 and z ∈ C\σcont(hα(k)) we define the function (the Fredholm
determinant associated with the operator hα(k)):

∆α(k ; z) := 1− µα
(2π)3

∫
T3

ds

E
(α)
k (s)− z

.

Note that the function ∆α(· ; ·) is analytic in T3 × (C \ σcont(hα(k))).
The following lemma is a simple consequence of the Birman-Schwinger principle

and the Fredholm theorem.

Lemma 4.1. The number z ∈ C \ σcont(hα(k)) is an eigenvalue of the operator hα(k),
k ∈ T3 if and only if ∆α(k ; z) = 0.

We remark that from the definition of E(α)
k (·), it follows that ∆α(0 ; 0) = ∆α(k ; 0)

for k ∈ Λ.

Lemma 4.2. The following statements are equivalent:
(i) the operator hα(0) has a zero energy resonance;
(ii) ∆α(0 ; 0) = 0;
(iii) µα = µ0

α.

For the proof of Lemma 4.2, see Lemma 5.3 of [17].

Lemma 4.3. The operator hα(0) has no negative eigenvalues for all µα ≤ µ0
α.

Proof. Since the function ∆α(0 ; ·) is decreasing on (−∞; 0), we have

∆α(0 ; z) > ∆α(0 ; 0) (4.1)

for all z < 0. Definition of µ0
α implies ∆α(0 ; 0) ≥ 0 for all µα ≤ µ0

α. Hence by inequality
(4.1) we have ∆α(0 ; z) > 0 for any µα ≤ µ0

α and z < 0. By Lemma 4.1, it means that the
operator hα(0) has no negative eigenvalues for all µα ≤ µ0

α. �
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In the sequel, we denote by C1, C2, C3 different positive numbers and for δ > 0 we
set:

Tδ := T3 \
⋃
p′∈Λ

Uδ(p
′).

Lemma 4.4. If hα(0) has a zero energy resonance, then the function fα(p) = ϕα(p)(ε(p))−1

obeys the equation hα(0)fα = 0 and fα ∈ L1(T3) \ L2(T3), where the function ϕα ∈ C(T3)
is a unique (up to a constant factor) solution of Gαϕα = ϕα satisfying the condition
ϕα(0) 6= 0.

Proof. Let the operator hα(0) have a zero energy resonance. One can see that the function
fα defined in Lemma 4.4 satisfies hα(0)fα = 0. Let us show that fα ∈ L1(T3)\L2(T3). First
we recall that the solution of Gαϕα = ϕα is equal to ϕα(p) ≡ 1 (up to constant factor). The
definition of the function ε(·) implies the existence of positive constants C1, C2, C3 and δ
such that:

C1|q − p′|2 ≤ ε(q) ≤ C2|q − p′|2, q ∈ Uδ(p′), p′ ∈ Λ; (4.2)

ε(q) ≥ C3, q ∈ Tδ. (4.3)

Using the estimates (4.2) and (4.3) we have:∫
T3

|fα(s)|2ds ≥
∫

Uδ(0)

ds

ε2(s)
≥ C2

∫
Uδ(0)

ds

|s|4
=∞;

∫
T3

|fα(s)|ds =
∑
p′∈Λ

∫
Uδ(p′)

ds

ε(s)
+

∫
Tδ

ds

ε(s)
≤ C1

∑
p′∈Λ

∫
Uδ(p′)

ds

|s− p′|2
+ C3 <∞.

Therefore, fα ∈ L1(T3) \ L2(T3). �

We denote:

mβγ :=
mβ +mγ

mβmγ

, nα :=
m1 +m2 +m3

mα(mβ +mγ)
.

Now, we formulate a lemma (zero energy expansion for the Fredholm determinant,
leading to behaviors of the zero energy resonance), which is important in the proof of
Theorem 3.3, that is, the asymptotics (3.2).

Lemma 4.5. Let µα = µ0
α and K, p′ ∈ Λ. Then, the following decomposition:

∆α(K − p ; z − εα(p)) =
nµ0

αm
3/2
βγ

2π

√
nα|p− p′|2 −

2z

n2
+O(|p− p′|2) +O(|z|)

holds for |p− p′| → 0 and z → −0.

Proof. Let us sketch the main idea of the proof. Take a sufficiently small δ > 0 such that
Uδ(p

′) ∩ Uδ(q′) = ∅ for all q′ ∈ Λ with q′ 6= p′. Let µα = µ0
α and K, p′ ∈ Λ. Using the

additivity of the integral, we rewrite the function ∆α(K − p ; z − εα(p)) as:

∆α(K − p ; z − εα(p)) =

1− µ0
α

(2π)3

∑
q′∈Λ

∫
Uδ(q′)

ds

E
(α)
p (s) + εα(p)− z

+

∫
Tδ

ds

E
(α)
p (s) + εα(p)− z

 . (4.4)
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Since the function EK(·, ·) has non-degenerate zero minima at the points (p′, q′),
p′, q′ ∈ Λ, analysis similar to [17] shows that:∫

Uδ(q′)

ds

E
(α)
p (−s) + εα(p)− z

=

∫
Uδ(q′)

ds

E
(α)
p′ (−s) + εα(p′)

−

4π2m
3/2
βγ

n2

√
nα|p− p′|2 −

2z

n2
+O(|p− p′|2) +O(|z|);∫

Tδ

ds

E
(α)
p (s) + εα(p)− z

=

∫
Tδ

ds

E
(α)
p′ (s) + εα(p′)

+O(|p− p′|2) +O(|z|)

as |p− p′| → 0 and z → −0. Substituting the last two expressions into (4.4), we obtain:

∆α(K − p ; z − εα(p)) = ∆α(K − p′ ; 0) +
nµ0

αm
3/2
βγ

2π

√
nα|p− p′|2 −

2z

n2
+O(|p− p′|2) +O(|z|)

as |p−p′| → 0 and z → −0. Now, the equality µα = µ0
α, that is, ∆α(K−p′ ; 0) = 0 completes

the proof of Lemma 4.5. �

Corollary 4.6. Let µα = µ0
α and K ∈ Λ. For some C1, C2, C3 > 0 and δ > 0 the following

inequalities hold:
(i) C1|p− p′| ≤ ∆α(K − p ;−εα(p)) ≤ C2|p− p′|, p ∈ Uδ(p′), p′ ∈ Λ;
(ii) ∆α(K − p ;−εα(p)) ≥ C3, p ∈ Tδ.

Proof. Lemma 4.5 yields the assertion (i) for some positive numbers C1, C2. The positivity
and continuity of the function ∆α(· ;−εα(·)) on the compact set Tδ imply the assertion (ii).

�

5. The Birman-Schwinger principle

For a bounded self-adjoint operator A acting in the Hilbert space R, we define the
number n(γ,A) as follows:

n(γ,A) = sup{dimF : (Au, u) > γ, u ∈ F ⊂ R, ||u|| = 1}.

The number n(γ,A) is equal to infinity if γ < maxσess(A); if n(γ,A) is finite, then
it is equal to the number of the eigenvalues of A larger than γ.

By the definition of N(K; z), we have:

N(K; z) = n(−z,−H(K)), −z > −τess(K).

Let µα > 0 and K ∈ T3. Then we have ∆α(K − p ; z− εα(p)) > 0 for any p ∈ T3 and
z < τess(K).

In what follows, we deal with the operators in various spaces of vector-valued
functions. They will be denoted by bold letters and will be written in matrix form.

Let Ω ⊂ R3 be the measurable set and L(m)
2 (Ω) be the Hilbert space of m-component

vector functions w = (w1, . . . , wm), wi ∈ L2(Ω), i = 1, . . . ,m.
In our analysis of the discrete spectrum of H(K), the crucial role is played by the

3 × 3 self-adjoint block operator matrix T̂(K; z), z < τess(K) acting on L
(3)
2 (T3) with the
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entries T̂αβ(K; z), where T̂αβ(K; z), α ≤ β is the integral operator on L2(T3) with kernel
T̂αα(K; z; ·, ·) :

T̂αα(K; z; p, q) = 0;

T̂12(K; z; p, q) =

√
µ1µ2√

∆1(K − p ; z − ε1(p))

(EK(p, q)− z)−1√
∆2(K − q ; z − ε2(q))

,

T̂13(K; z; p, q) =

√
µ1µ3√

∆1(K − p ; z − ε1(p))

(EK(p, q − p)− z)−1√
∆3(q ; z − ε3(K − q))

,

T̂23(K; z; p, q) =

√
µ2µ3√

∆2(K − p ; z − ε2(p))

(EK(q − p, p)− z)−1√
∆3(q ; z − ε3(K − q))

,

and for α > β the operator T̂αβ(K; z) is the adjoint operator to T̂βα(K; z).

The following lemma is a realization of the well-known Birman-Schwinger principle
for three-particle Schrödinger operators on a lattice (see [7,16,17]).

Lemma 5.1. For z < τess(K) the operator T̂(K; z) is compact and continuous in z and

N(K; z) = n(1, T̂(K; z)).

For the proof of the lemma, we refer to [17].

6. Asymptotics for the number of negative eigenvalues of H(0)

In this section, we derive the asymptotic relation (3.2) for the number of negative
eigenvalues of H(0).

First, we recall that T̂(0; z) ≡ T̂(K; z) for all K ∈ Λ. Let S2 be the unit sphere in R3

and σ = L2(S2). As we shall see, the discrete spectrum asymptotics of the operator T̂(0; z)
as z → −0 is determined by the integral operator Sr, r = 1/2| log |z|| in L2((0, r), σ(3)) with
the kernel Sαβ(y, t), y = x− x′, x, x′ ∈ (0, r), t = 〈ξ, η〉, ξ, η ∈ S2, where:

Sαα(y, t) = 0; Sαβ(y, t) =
1

4π2

uαβ
cosh(y + rαβ) + sαβt

;

uαβ = kαβ

(
m−1
βγm

−1
αγ

nαnβ

)1/4

, rαβ =
1

2
log

mβγ

mαγ

, sαβ =
(mαγmβγ)

1/2

mγ

,

kαβ being such that kαβ = 1 if both subsystems α and β have zero energy resonances,
otherwise, kαβ = 0. The eigenvalue asymptotics for the operator Sr have been studied in
detail by Sobolev [7], by employing an argument used in the calculation of the canonical
distribution of Toeplitz operators.

Let us recall some results of [7] which are important in our work.
The coefficient in asymptotics (3.2) of N(0; z) will be expressed by means of the

self-adjoint integral operator Ŝ(θ), θ ∈ R, in the space σ(3), whose kernel is of the form:

Ŝαα(θ, t) = 0; Ŝαβ(θ, t) =
1

4π2
uαβe

irαβθ
sinh[θ arccos sαβt]√

1− s2
αβt sinh(πθ)

,
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and depends on the inner product t = 〈ξ, η〉 of the arguments ξ, η ∈ S2. For γ > 0, we
define:

U(γ) :=
1

4π

+∞∫
−∞

n(γ, Ŝ(θ))dθ.

This function was studied in detail in [7]; it is used in the existence proof for the Efimov
effect. In particular, the function U(·) is continuous in γ > 0, and the limit:

lim
r→0

1

2
r−1n(γ,Sr) = U(γ), (6.1)

exists such that U(1) > 0.
Theorem 3.3 can be derived by using a perturbation argument based on the following

lemma.

Lemma 6.1. Let A(z) = A0(z) + A1(z), where A0(z) (A1(z)) is compact and continuous
for z < 0 (for z ≤ 0). Assume that the limit lim

z→−0
f(z)n(γ,A0(z)) = l(γ) exists and l(·)

is continuous in (0; +∞) for some function f(·), where f(z) → 0 as z → −0. Then, the
same limit exists for A(z) and lim

z→−0
f(z)n(γ,A(z)) = l(γ).

For the proof of Lemma 6.1, see Lemma 4.9 in [7].

Remark 6.2. Since the function U(·) is continuous with respect to γ, it follows from
Lemma 6.1 that any perturbation of A0(z) treated in Lemma 6.1 (which is compact and
continuous up to z = 0) does not contribute to the asymptotic relation (3.2).

Now, we are going to reduce the study of the asymptotics for the operator T̂(0; z)
to that of the asymptotics Sr.

Let T(δ; |z|) be the 3× 3 block operator matrix in L(3)
2 (T3) whose entries Tαβ(δ; |z|)

are integral operators with the kernel Tαβ(δ; |z|; ·, ·) :

Tαα(δ; |z|; p, q) = 0;

Tαβ(δ; |z|; p, q) =

Dαβ

∑
p′,q′∈Λ

χδ(p− p′)χδ(q − q′) (nα|p− p′|2 + 2|z|/(n2))
− 1

4 (nβ|q − q′|2 + 2|z|/(n2))
− 1

4

m−1
αγ |p− p′|2 + 2m−1

γ (p− p′, q − q′) +m−1
βγ |q − q′|2 + 2|z|/(n2)

,

where

Dαβ =
m
−3/4
αγ m

−3/4
βγ

2n3π2
, α, β, γ = 1, 2, 3, α 6= β 6= γ,

and χδ(·) is the characteristic function of the domain Uδ(0).

Lemma 6.3. Let µα = µ0
α, µβ = µ0

β, µγ ≤ µ0
γ. For any z ≤ 0 and sufficiently small δ > 0,

the difference T̂(0; z)−T(δ; |z|) belongs to the Hilbert-Schmidt class, and is continuous
with respect to z ≤ 0.

Proof. We prove the lemma in the case µα = µ0
α, α = 1, 2, 3. The case µα = µ0

α, µβ = µ0
β,

µγ < µ0
γ can be proven similarly.
By the definition of εα(·), we have:

εα(p) =
n2

2mα

|p− p′|2 +O(|p− p′|4),
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as |p− pi| → 0 for p′ ∈ Λ, which implies the expansion:

E
(α)
K−p(q) + εα(p) = n2

[
|p− p′|2

2mαγ

+
(p− p′, q − q′)

mγ

+
|q − q′|2

2mβγ

]
+O(|p− p′|4) +O(|q − q′|4),

as |p− p′|, |q − q′| → 0 for K, p′, q′ ∈ Λ. Then, there exist C1, C2 > 0 and δ > 0 such that:

C1(|p− p′|2 + |q − q′|2) ≤ E
(α)
K−p(q) + εα(p) ≤ C2(|p− p′|2 + |q − q′|2),

(p, q) ∈ Uδ(p′)× Uδ(q′) for K, p′, q′ ∈ Λ;

E
(α)
K−p(q) + εα(p) ≥ C1, (p, q) ∈ T2

δ , K ∈ T3.

Applying last estimates and Corollary 4.6, we obtain that there exists C1 > 0 such
that the kernel of the operator T̂αβ(0; z) − Tαβ(δ; |z|) can be estimated by the square-
integrable function:

C1

∑
p′,q′∈Λ

[
1

|p− p′|2 + |q − q′|2
+

|p− p′|−1/2

|p− p′|2 + |q − q′|2
+

|q − q′|−1/2

|p− p′|2 + |q − q′|2
+ 1

]
.

Hence, the operator T̂αβ(0; z) − Tαβ(δ; |z|) belongs to the Hilbert-Schmidt class for all
z ≤ 0. In combination with the continuity of the kernel of the operator with respect to
z < 0, this implies the continuity of T̂αβ(0; z) − Tαβ(δ; |z|) with respect to z ≤ 0. The
lemma is proved. �

The following theorem is fundamental for the proof of the asymptotic relation (3.2).

Theorem 6.4. The following relation holds

lim
|z|→0

n(γ,T(δ; |z|))
| log |z||

= U(γ), γ > 0. (6.2)

Proof. First we prove Theorem 6.4 under the condition that all two-particle operators have
zero energy resonances, that is, in the case where µα = µ0

α, α = 1, 2, 3. The case where
only two operators hα(0) and hβ(0) have zero energy resonance can be proven similarly.

The subspace of vector functions w = (w1, w2, w3) with components having support
in
⋃
p′∈Λ

Uδ(p
′) is an invariant subspace for the operator T(δ; |z|).

Let T0(δ; |z|) be the restriction of the operator T(δ; |z|) to the subspace L(3)
2 (

⋃
p′∈Λ

Uδ(p
′)),

that is, a 3 × 3 block operator matrix in L
(3)
2 (

⋃
p′∈Λ

Uδ(p
′)) whose entries T (0)

αβ (δ; |z|) are the

integral operators with the kernel T (0)
αβ (δ; |z|; ·, ·), where T (0)

αα (δ; |z|; p, q) = 0 and the function

T
(0)
αβ (δ; |z|; ·, ·) is defined on

⋃
p′∈Λ

Uδ(p
′)×

⋃
q′∈Λ

Uδ(q
′) as:

T
(0)
αβ (δ; |z|; p, q) = Dαβ

(nα|p− p′|2 + 2|z|/(n2))
− 1

4 (nβ|q − q′|2 + 2|z|/(n2))
− 1

4

m−1
αγ |p− p′|2 + 2m−1

γ (p− p′, q − q′) +m−1
βγ |q − q′|2 + 2|z|/(n2)

,

(p, q) ∈ Uδ(p′)× Uδ(q′) for p′, q′ ∈ Λ.

In the remainder of the proof, for convenience, we numerate the points of Λ as
p1, . . . , pn3 and set 1, n = 1, . . . , n.
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Since L2(
n3⋃
i=1

Uδ(pi)) ∼=
n3⊕
i=1

L2(Uδ(pi)), we can express the integral operator T (0)
αβ (δ; |z|)

as the following n3 × n3 block operator matrix T
(0)
αβ(δ; |z|) acting on

n3⊕
i=1

L2(Uδ(pi)) as:

T
(0)
αβ(δ; |z|) =

 T
(1,1)
αβ (δ; |z|) . . . T

(1,n3)
αβ (δ; |z|)

...
. . .

...
T

(n3,1)
αβ (δ; |z|) . . . T

(n3,n3)
αβ (δ; |z|)

 ,

where T
(i,j)
αβ (δ; |z|) : L2(Uδ(pj)) → L2(Uδ(pi)) is an integral operator with the kernel

T
(0)
αβ (δ; |z|; p, q), (p, q) ∈ Uδ(pi)× Uδ(pj) for i, j = 1, n3.

It is easy to show that T0(δ; |z|) is unitarily equivalent to the 3 × 3 block operator
matrix T(r), r = |z|− 1

2 , acting on L(n3)
2 (Ur(0))⊕L(n3)

2 (Ur(0))⊕L(n3)
2 (Ur(0)) with the entries

Tαβ(r) : L
(n3)
2 (Ur(0))→ L

(n3)
2 (Ur(0)) :

Tαα(r) = 0; Tαβ(r) =

 Tαβ(r) . . . Tαβ(r)
...

. . .
...

Tαβ(r) . . . Tαβ(r)

 ,

where Tαβ(r) is the integral operator on L2(Ur(0)) with the kernel:

Dαβ
(nα|p|2 + 2/(n2))

− 1
4 (nβ|q|2 + 2/(n2))

− 1
4

m−1
αγ |p|2 + 2m−1

γ (p, q) +m−1
βγ |q|2 + 2/(n2)

.

The equivalence is realized by the unitary dilation (3n3 × 3n3 diagonal matrix):

Br :
3n3⊕
i=1

L2(Uδ(pi))→ L
(3n3)
2 (Ur(0)),

Br = diag{B(1)
r , . . . , B(n3)

r , B(1)
r , . . . , B(n3)

r , B(1)
r , . . . , B(n3)

r }.

Here, the operator B(i)
r : L2(Uδ(pi))→ L2(Ur(0)), i = 1, n3 acts as:

(B(i)
r f)(p) =

(r
δ

)− 3
2
f

(
δ

r
p+ pi

)
.

Let us introduce the 3n3 × 1 and 1× 3n3 block operator matrices:

E : L
(3n3)
2 (Ur(0))→ L

(3)
2 (Ur(0)), Ar : L

(3)
2 (Ur(0))→ L

(3n3)
2 (Ur(0))

of the form

Ar =

 0 A12(r) A13(r)
A21(r) 0 A23(r)
A31(r) A32(r) 0

 , E = diag{I, I, I},

where Aαβ(r) and I are the n3 × 1 and 1× n3 matrices of the form:

Aαβ(r) =

 T
(1)
αβ (r)

...
T

(1)
αβ (r)

 , I = (I . . . I),

respectively, here I is the identity operator on L2(Ur(0)).
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It is well known that if B1, B2 are bounded operators and γ 6= 0 is an eigenvalue
of B1B2, then γ is an eigenvalue for B2B1 as well of the same algebraic and geometric
multiplicities (see e.g. [20]). Therefore, n(γ,ArE) = n(γ,EAr), γ > 0. Note that Tαβ(r) =
Aαβ(r)I and: n3Tαβ(r) = IAαβ(r). Hence, direct calculation shows that T(r) = ArE and

EAr : L
(3)
2 (Ur(0))→ L

(3)
2 (Ur(0)), EAr = n3

 0 T
(1)
12 (r) T

(1)
13 (r)

T
(1)
21 (r) 0 T

(1)
13 (r)

T
(1)
31 (r) T

(1)
32 (r) 0

 .

So, n(γ,T1(r)) = n(γ,EAr), γ > 0.
Furthermore, we can replace:(

nα|p|2 +
2

n2

) 1
4

,

(
nβ|q|2 +

2

n2

) 1
4

and
|p|2

mαγ

+
2(p, q)

mγ

+
|q|2

mβγ

+
2

n2

by the expressions:(
nα|p|2

) 1
4 (1− χ1(p))−1,

(
nβ|q|2

) 1
4 (1− χ1(q))−1 and

|p|2

mαγ

+
2(p, q)

mγ

+
|q|2

mβγ

,

respectively, because the corresponding difference is a Hilbert-Schmidt operator and con-
tinuous up to z = 0. In this case, we obtain the block operator matrix S(r) on L(3)

2 (Ur(0) \
U1(0)) whose entries Sαβ(r) are the integral operators with the kernel Sαβ(r; ·, ·) :

Sαα(r; p, q) = 0; Sαβ(r; p, q) =
n3Dαβ

(n1n2)1/4

|p|−1/2|q|−1/2

m−1
αγ |p|2 + 2m−1

γ (p, q) +mβγ|q|2
.

Using the dilation:

M = diag{M,M,M} : L
(3)
2 (Ur(0) \ U1(0))→ L2((0, r), σ(3)), (Mf)(x,w) = e3x/2f(exw),

where r = 1
2
| log |z||, x ∈ (0, r), w ∈ S2, one can see that the operator S(r) is unitarily

equivalent to the integral operator Sr.
Since the difference of the operators Sr and T(δ; |z|) is compact (up to unitary

equivalence) and r = 1/2| log |z||, we obtain the equality:

lim
|z|→0

n(γ,T(δ; |z|))
| log |z||

= lim
r→0

1

2
r−1n(γ,Sr), γ > 0.

Now Lemma 6.1 and the equality (6.1) completes the proof of Theorem 6.4. �

Proof of Theorem 3.3. Let µα = µ0
α, α = 1, 2, 3. Using Lemmas 6.1, 6.3 and Theorem 6.4

we have:

lim
|z|→0

n(1, T̂(z))

| log |z||
= U(1).

Taking into account the last equality and Lemma 5.1, and setting U0 = U(1), we complete
the proof of Theorem 3.3. �
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[18] S.N. Lakaev, M.É. Muminov. Essential and discrete spectra of the three-particle Schrödinger operator

on a lattices. Theor. Math. Phys., 135 (3), P. 849–871 (2003).
[19] Zh.I. Abdullaev. Finiteness of the discrete spectrum for non-trivial of the full quasi-momentum in the

system of three bosons on a lattice. Russian Math. Surveys, 62 (1), P. 175–201 (2007).
[20] P.R. Halmos. A Hilbert space problem book. Springer-Verlag New York Inc., second edition, 1982.
[21] M.I. Muminov. Positivity of the two-particle Hamiltonian on a lattice. Theoret. Math. Phys., 153 (3),

P. 1671–1676 (2007).



NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2015, 6 (2), P. 294–298

Dependence of the dimension of the associates
of water-soluble tris-malonate of light fullerene —
C60 [= C(COOH)2]3 in water solutions at 25 ◦C

K. N. Semenov1, N. A. Charykov2,3, A. S. Kritchenkov1, I. A. Cherepkova2,
O. S. Manyakina2, D. P. Tyurin2, A. A. Shestopalova2, V. A. Keskinov2, K. V. Ivanova2,

N. M. Ivanova1, D. G. Letenko4, V. A. Nikitin5, E. L. Fokina1, M. S. Gutenev5

1St. Petersburg State University, Saint-Petersburg, Russia
2St. Petersburg State Technological Institute (Technical University), Saint-Petersburg, Russia

3St. Petersburg State Electro-Technical University (LETI), Saint-Petersburg, Russia
4St. Petersburg State University of Architecture and Civil Engineering, Saint-Petersburg, Russia

5Peter the Great St. Petersburg Polytechnic University, Saint-Petersburg, Russia

keskinov@mail.ru

PACS 61.48.+c DOI 10.17586/2220-8054-2015-6-2-294-298

Investigation of the concentration dependence of the size and type C60[=C(COOH)2]3 aggregation in aqueous

solutions at 25 ◦C was accomplished with the help of a dynamic light scattering method. It was determined that

three types of aggregates are realized in the solutions. The average number of C60[=C(COOH)2]3 molecules in

smaller aggregates and all types of aggregates were calculated. One can see that over the whole concentration range,

from 0.01 to 10 g/dm3, aqueous solutions of C60[=C(COOH)2]3 are characterized by sub-micro-heterogeneous

behavior (because second-type aggregates with the linear dimensions – hundreds of nm are formed in all solutions).

Additionally, the most concentrated solution (C = 10 g/dm3) is characterized by micro-heterogeneous or colloid

behavior (because third-type aggregates with the linear dimensions on the order of µm – are formed). In order to

describe or explain such behavior, a stepwise aggregation model was invoked.

Keywords: tris-malonate of light fullerene, method of the dynamic light scattering.
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1. Introduction

This article further develops investigations which were initiated previously [1–4]. These
studies were devoted to the synthesis and identification of tris-malonate C60[=C(COOH)2]3 [1]
(the original synthesis of this water soluble derivative was described earlier in [5]), the inves-
tigation of volume and refraction properties of its aqueous solutions at 25 ◦C [2], poly-thermal
solubility and complex thermal analysis [3], concentration dependence of electric conductivity
and hydrogen ion concentration for aqueous solutions [4]. This study was undertaken to investi-
gate the concentration dependence of C60[=C(COOH)2]3 aggregate sizes in aqueous solutions at
25 ◦C, and as in the earlier article [3], these studies to investigate the state of C60[=C(COOH)2]3
and its aggregation processes were performed in aqueous solutions over a wide concentration
range – 0.1 ÷ 10 g/dm3.
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TABLE 1. Linear dimensions of C60[=C(COOH)2]3 aggregates in aqueous solu-
tions at 25 ◦C

Concentration
of C60

tris-malonate
C (g/l)

Diameter of monomer
d̄0 ≈ 1.8 nm

(nm)

Diameter of
first type
associates

d1-interval (d̄1)
(nm)

Diameter of
second type
associates
d2-interval

(d̄2)
(nm)

Diameter of
third type
associates
d3-interval

(d̄3)
(nm)

0.01 No effect 30–70 (50) 200–400 (300) No effect

0.1 No effect 40–80 (60) 300–500 (400) No effect

1.0 No effect 40–80 (60) 300–500 (400) No effect

5.0 No effect 40–80 (60) 300–500 (400) No effect

10.0 No effect 40–80 (60) 500–1000 (750) 4000–6000 (5000)

Concentration
of C60

tris-malonate
C (g/l)

Average number of
monomer molecular
of C60 tris-malonate

in clusters of the
first order
N0→1 (units)

Average number
of clusters of the

first order in
clusters of the
second order
N1→2 (units)

Average number
of clusters of the
second order in
clusters of the

third order
N2→3 (units)

0.01 1.1 · 104 1.1 · 102 No effect

0.1 1.9 · 104 1.6 · 102 No effect

1.0 1.9 · 104 1.6 · 102 No effect

5.0 1.9 · 104 1.6 · 102 No effect

10.0 1.9 · 104 1.0 · 103 1.6 · 102

2. Dimension of the associates of C60[=C(COOH)2]3 in water solutions at 25 ◦C

To investigate the concentration dependence of C60[=C(COOH)2]3 aggregate size in
aqueous solutions at 25 ◦C, we utilized a dynamic light scattering method in the visible wave-
length region. The Malvern Zeta Nanosizer device was used. Data are represented in Table 1
and Fig. 1 and 2 (as the examples).

To estimate the linear size of the C60[=C(COOH)2]3 monomer, d0(monomer) was ob-
tained from the refraction data [2]. Molar refraction of C60 tris-malonate Rtris−malonate ≈
201 cm3/mole, so: Rtris−malonate ≈ 2.01 · 10−4/6.02 · 1023 ≈ 3.0 · 10−27 m3/molecule, so:
in the spherical approximation, the linear dimension: d0(monomer) ≈ [18/π · 10−27]1/3 ≈
1.8 · 10−9 m = 1.8 nm.

3. Number of i-th type associates packed into (i+ 1)-th type associates

The number of i-th type aggregates packed into (i+ 1)-th type aggregates – Ni→i+1 was
estimated by the following equation:

Ni→i+1 = (di+1/di)
3 ·Kpack, (1)

where: Kpack ≈ 0.52 – is formal pack coefficients for the case of ‘little spheres’, packed in
the ’larger sphere’ (1 − Kpack ≈ 0.48 – volume fraction, which is empty of is fulfilled by a
molecular of H2O).
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FIG. 1. Distribution according to linear dimension of C60 tris-malonate aggre-
gates in aqueous solution at concentration of C60 tris-malonate C = 5 g/dm3

(example) – 3 signals correspond to the different times of signal sum

FIG. 2. Distribution according to linear dimension of C60 tris-malonate aggre-
gates in aqueous solution at concentration of C60 tris-malonate C = 1 g/dm3

(example) – 3 signals correspond to the different times of signal sum

Calculated, concerning Ni→i+1-values data are also represented in Table 1.

From obtained data one can see the following:

1. No monomer molecular (with linear dimension-diameter d̄0 ≈ 1.8 nm) are seen in all
investigated solutions, even in the dilute solution (C = 0.1 g/dm3).

2. The diameter of first type aggregates (first order clusters of percolation) have the similar
linear dimension-diameter d̄1 ≈ 60± 20 nm over the whole concentration range (a slight
decrease is seen only for the most dilute solution (C = 0.01 g/dm3) – d̄1 ≈ 50± 20 nm).

3. The diameter of second type aggregates (second order clusters of percolation) also have
a similar linear dimension-diameter d̄2 ≈ 400 ± 100 nm in the concentration range
0.1 ÷ 5 g/dm3 (again, a slight change is seen only for the most dilute solution at
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C = 0.01 g/dm3 – d̄2 ≈ 300 ± 100 nm and for the most concentrated solution at
C = 10 g/dm3 – d̄2 ≈ 750± 250 nm – solution ‘is preparing to become heterogeneous’).

4. Third type associates (third order clusters of percolation) have not been seen at any
concentrations except the most concentrated solution at C = 10 g/dm3, where clusters
with extremely huge linear dimension-diameter d̄3 ≈ 5000 ± 1000 nm (5 ± 1 µm) are
observed – the solution ‘becomes very heterogeneous’ but stable as a colloid system).

5. So, to describe such facts in the aggregation process, a stepwise model of particle growth
was invoked. We consider that monomer spherical molecules form the first type spherical
aggregates, then, the first type spherical associates form second type spherical associates.
Next, the second type spherical associates form third type spherical associates (the last
ones correspond to the colloidal heterogeneous system). A similar stepwise aggregation
model was used by us earlier for the description of particle growth in water-fullerenol-d
systems (see, for example [6]).

To prove the formation of the micro-heterogeneity (with the linear dimensions on the
order of µm) in the most concentrated solution (C = 10 g/dm3), we obtained a photo of the film
this solution. An optical polarizing microscope Labo-Pol (variant 2) was used. Samples were
prepared by the crystallization of C60 tris-malonate crystals from aqueous solutions under quick
isothermal evaporation of water from the solution (a drop of the solution was put on the surface
of silicate glass). A typical photo is represented in the Fig. 3. One can see typical spherical
formations (centers of crystallization) with enough characteristic linear dimensions which were
observed earlier in the dynamic light scattering investigations as third type aggregates (see
Table 1). Crystal formations, proceeding from these spheres, gave the crystal-like film in the
quick evaporation-crystallization process.

FIG. 3. Here is an optical polarizing microscope photo of C60 tris-malonate crys-
tals (scale ×1000). The initial (before evaporation) solution had a concentration C
of 10 g C60 tris-malonate of per dm3 H2O
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