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We propose to treat the lowest bound states near the Abrikosov vortex core in type-II superconductors on

the basis of the self-adjoint extension of the Hamiltonian of Aharonov-Bohm type with the localized magnetic

flux. It is shown that the Hamiltonian for the excitations near the vortex core can be treated in terms of

the generalized zero-range potential method when the magnetic field penetration depth δ is much greater

than the coherence length ξ i.e. in the limit κ = δ/ξ ≫ 1. In addition, it is shown that in this limit it is the

singular behavior of d∆/dr|r=0 and not the details of the order parameter ∆(r) profile that is important.

In support of the proposed model, we reproduce the spectrum of the Caroli-de Gennes-Matricon states and

provide direct comparison with the numerical calculations of Hayashi, N. et al. [Phys. Rev. Lett. 80,

p. 2921 (1998)]. In contrast to the empirical formula for the energy of the ground state in Hayashi, N. we

use no fitting parameter. The parameters for the boundary conditions are determined in a self-consistent

manner with Caroli-de Gennes-Matricon formula.
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Introduction

Understanding the electronic structure of the vortex core in superconductors and the
spectrum of excitations in its vicinity are important for the technology of the superconduct-
ing materials, as the low temperature limit of their spectrum is known to determine their
static and dynamic properties. In the seminal work of [1], the existence of bounded states
localized near the vortex core was predicted. A striking feature of the Caroli-de Gennes-
Matricon (CdGM) solution is that the energy spectrum similar to the Landau levels with
the effective region of localization is on the order of the vortex core radius ξ1. This radius
corresponds to the effective field of the order’s upper critical limit Hc2 ≃ κ ≫ 1 [2]; that
is, the field above which the superconductivity is destroyed. The appearance of the effec-
tive magnetic field of order Hc2 is due to coherent Andreev reflection from the Cooper pair
condensate which is spatially characterized by the spatially profile of the order parameter
(the amplitude of the wave function of superconducting condensate) ∆(r) [3]. Also, the
spectrum of the lowest bound states does not essentially depend on the specific spatial pro-
file of the order parameter ∆(r). In fact, the linear dependence these states’ energies on
the angular momentum quantum number µ is determined by the limiting slope parameter
d∆/d r|r=0. Self-consistent treatment in [4] showed that this slope parameter diverges in
the quantum limit T → 0. Shrinking of the core region leads to a reduction in the number
of bound states [5, 6]. The singular behavior of the order parameter is expected from the
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general reasonings about the gapless character of the fermionic excitations [7]. According
to [7], the structure of ∆(r) can be even more complex and is characterized by additional
scale ξ1 . ξBCS = ξ0/π, where ξ0 = υF/∆∞

∗, which separates the regions at the point where
the jump of the derivative of the order parameter occurs. The quantity ξ1 also determines
the distance where the supercurrent density reaches its maximum [8, 9]. So, we treat the
distance ξ1 as another characteristic length scale of the vortex core. Thus, the structure
of the vortex core is far from trivial even in the limit κ → ∞ due to singularities caused
by both the point-like structure of the defect and the spatial distribution of ∆(r). As a
result, the electronic structure of the vortex core and the behavior of the order parameter
are strongly correlated in the limit T → 0 [8].

The aim of this paper is to propose a model Hamiltonian to describe the lowest bound
state for conventional s-wave superconductors of the CdGM branch which is explicitly based
on the singular behavior of the slope d∆(r)/d r|r→0 in the quantum limit. The independence
of the spectrum from the specific spatial profile of the order parameter ∆(r) follows directly.
The concept is based on the results from [10, 11], where the self-adjoint extensions for the
Aharonov-Bohm (AB) Hamiltonian were studied. The key parameter is the fraction of the
flux quantum Φcore localized within the core. It should be noted that the standard AB effect
for the Abrikosov vortex was considered for the scattering states and had little impact on
the CdGM bound states [12]. From this point of view, the important result of [11] is that
boundary conditions exist such that there is a bound state in the vicinity of the localized
magnetic flux. This state is qualitatively different from the bound state in the potential well
because it is caused in essence by the localized magnetic flux. This grounds the possibility
of the treatment of the lowest bound states of the Bogolubov-de Gennes Hamiltonian with
the help of self-adjoint extensions for AB Hamiltonian. Thus, we give physical interpretation
for the nonstandard boundary conditions (or equivalently the self-adjoint extensions) for the
AB Hamiltonian.

The structure of paper is as follows. In Section 1, we consider the relation between
the BdG Hamiltonian for the quasiparticle excitations and the self-adjoint extension of the
Aharonov-Bohm (AB) Hamiltonian. We show that these Hamiltonians are equivalent for
the low lying energy states localized near the vortex core. In Section 2, we use the above
result to study the dependence of the bound state energy on the relevant parameters and
show how this can be used to explain the results of [5] in our approach. In the conclusion,
the summary of the results is given and some problems for the further studies are listed.

1. The Hamiltonian reduction for the low lying bound states

Theoretical investigations of the quasiparticle spectrum around the vortex structure
in the clean limit at low temperatures is based on the Bogoliubov-de Gennes Hamiltonian
(BdGH) [1]:

Ĥ = σz

{(
p̂− σz

e

c
A− 1

2
σz∇θ

)2

− EF

}
+ σx∆(r) (1)

where EF is the Fermi energy, the vector potential A of the applied magnetic field of the
order’s lower critical field Hc1 , that is, the lowest field at which formation of vortices in a
type-II superconductor becomes thermodynamically favorable while the gradient term is for
the magnetic field localized in the vortex. The order parameter ∆(r) has obvious asymptotic

∗~ = 1, m = 1/2 in this work.
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behavior:

∆(r) =

{
0 if r → 0

∆∞ if r → ∞
(2)

and should be determined consistently. To find the spectrum for (1), some specific model
for ∆(r) can be used. Commonly, ∆(r) is taken in the form (see [12–14]):

∆(r) = ∆∞ tanh
r

ξ0
. (3)

At the low temperature limit, because of Kramer-Pesch anomaly [15], the increase
of ∆(r) to the asymptotic value ∆∞ occurs at a distance ξ1, much smaller than ξ0, namely
ξ1 ≃ k−1

F [16]:

∆(r) = ∆∞
r

ξ1
+ . . . . (4)

Eµ

∆∞
=

2µ

kF ξ0
or

2µ

kF ξ1

2µ

kF

d∆(r)/∆∞

d r

∣∣∣∣
r=0

2µ

kF ξ0
ln

[
ξ0
2ξ1

]
, ξ1 ≪ ξ0

�������*Caroli et al. [1]

HHHHHHHjKramer&Pesch [4]

(5)

due to presence of two length scales ξ1 and ξ0.
It is natural that for the materials with κ ≫ 1, the vortex can be considered as a

point-like singularity due to the localized magnetic flux, similar to the situation of the AB
Hamiltonian. As has been said above, the appearance of the bound state is due to reflection
of the excitation from the Bose condensate of Cooper pairs which is equivalent to the effective
magnetic field of the order Hc2 ∝ κ. Therefore we can interchange the ∆-potential term in
the Hamiltonian (1) by the field of the localized magnetic flux:

A(r) =
Φcore

2π r
eθ . (6)

The parameter α = {Φcore/Φ0} is the fraction of the magnetic flux corresponding to
the region of the localization of the size ξ1. Here the magnetic flux quantum Φ0 = 2π c/e
corresponds to the excitation with charge e. The total flux of the Abrikosov vortex is
Φ0/2 so that α < 1/2. Also we will use the dimensionless variables r̃ = r/ξ0. Thus, the
Hamiltonian (1) can be reduced to a much simpler one:

Ĥ = Ĥ(AB)
α − EF , (7)

where Ĥ
(AB)
α is the self-adjoint extension for the AB Hamiltonian

HAB = p̂2 +
(α + 1/2)2

r2
. (8)

The divergence of the slope d(∆/∆∞)/dr at r → 0 can be treated correctly via the
introduction of a dimensionless parameter ξ1d(∆/∆∞)/dr|r=0. The latter determines the
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energy of the bound states [1, 15]. It can be shown that 2µ∆∞/(kF ξ0) is similar to the
energy spectrum of the Landau levels. The effective region of localization is on the order of
the vortex core radius ξ1, which corresponds to the effective field of order Hc2 . Taking into
consideration that ∆∞ = υF/ξ0 and ξGL/ξBCS = π ξGL/ξ0 ≈ 0.74 [17], for T/Tc ≪ 1/(kF ξ0)
at kF ξ0 > 1 where ξGL is the Ginzburg-Landau coherence length and is as follows:

ξGL =
1

2 π

√
Φ0

Heff

=
1

√
π ωH

√
H

Heff

with Heff =
Hc2

π
, ωH =

2 eH

c
(9)

and therefore

Eµ = 2µ
∆∞

kF ξ0
=

4µ

ξ20
≈ 2µ

ωH

π

Heff

H
. (10)

Also considering that in the quantum limit the size of the vortex core ξ1 < ξ0 [4], then
the magnetic flux which is localized in the vortex core is defined as Φcore = 2π ξ21Heff/π =
2 ξ21Heff . This choice of H = Heff/π corresponds to the Landau levels from Eq. (10). It is
easy to show that α has the form:

α =
Φcore

Φ0

=
1

2

(
ξ1

π ξGL

)2

≃
(
ξ1
ξ0

)2

. (11)

Note that parameter α can be measured experimentally [8].
Thus, the inner structure of the vortex is encoded into the parameters of the proper

boundary conditions for (8). The parameters of these conditions are related to the physical
parameters of the limit ξ1 → 0 such as kF ξ1 and ξ1/ξ0 (note that δL ≫ ξ0 corresponds to
κ → ∞) when the slope of the order parameter ∆ becomes singular.

It should be noted that the quadratic dependence α on ξ1/ξ0 is due to the assumption
of effective magnetic field homogeneity within the core while taking the singular limit. In
general, some scaling behavior can be expected α ∝ (ξ1/ξ0)

ν . To estimate the value of α for
real materials and to check the scaling dependence, we use the experimental data of [5] for
superconductors in which 1 < kF ξ0 < 16. This way, it is possible to find the dependence
of α on the ratio ξ1/ξ0. In the quantum limit, the value ξ1/ξ0 lies in the 0.1 − 0.7 interval.
Based on the experimental data of [5], we can plot on a logarithmic scale the dependence
ξ1/ξ0 of kF ξ0 in the quantum limit for different values of kF ξ0. This dependence is shown in
Fig. 1 and is approximated by the formula:

ln ξ1/ξ0 = ln 3/4− 0.72 ln kF ξ0 , (12)

which leads to:

α =
1

2 (0.74)2

(
3

4 (kF ξ0)0.72

)2

≈ 1

2

1

(kF ξ0)1.44
<

1

2
. (13)

For example, in the quantum limit for the Y BCO-superconductor (kF ξ0 ∼ 4 with
Tc = 90K [18]) we get α ∼ 0.1. It is natural that for kF ξ0 ≫ 1 the parameter α vanishes.
Now, we use the general results of [11] on spectrum of the model Hamiltonian of AB type
(8).

2. Bound states for the model Hamiltonian

The nontrivial spectrum in extended AB problem is determined by the radial part of
the AB Hamiltonian in the cylindrical coordinates:

− d2

dr̃2
− 1

r̃

d

dr̃
+ (α + µ)2

1

r̃2
. (14)
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Fig. 1. The log-log plot for dependence ξ1/ξ0 on kF ξ0. The points represent
the data from [5].

According to the theory of self-adjoint extensions, for the AB Hamiltonian, there is
generally a 4-parameter set of boundary conditions for each α value [11]. But, if one requires
that the Hamiltonian commutes with the angular momentum operator then this can be
reduced to only 2 parameters [19]. In our case, µ = 1/2, there is only a one-parameter set
of boundary conditions for each value of α:

Φ1 = bΦ2, (15)

where

Φ1(ψ) := lim
r→0

rD
2π∫
0

ψ(r, θ)eiθ/2dθ/2π (16)

Φ2(ψ) := lim
r→0

r−D

 2π∫
0

ψ(r, θ)eiθ/2dθ/2π − r−DΦ1(ψ)

 (17)

D = 1/2 + α

and b is the corresponding parameter of the boundary condition. The energy of the ground
state is

E0(α)

∆∞
=

2

kF ξ0

(
−bΓ (1/2− α)

Γ (3/2 + α)

)−2/(1+2α)

. (18)

Note that both α and µ parameters enter the Hamiltonian (14) in the same way.
We need to determine the slope of the dispersion law of (5) using (18) at ∆∞ fixed. To do
this, we take into account that the eigenvalues of (14) depend on the combination α + µ.
Therefore if the gap ∆∞ is fixed, then:

∂(E0(α))/∂ α|α=0 = − ∂(Eµ)/∂ µ|µ=0 . (19)

From Eq. (18) we obtain:

∂ E0(α)/∆∞

∂α

∣∣∣∣
α=0

=
2
(
1− γ + ln

(
− b

2

))
kF ξ0 b2

, (20)



358 V. L. Kulinskii, D. Yu. Panchenko

but, according to (5):

∂ Eµ/∆∞

∂µ

∣∣∣∣
µ=0

=
2

kF

d∆(r)/∆∞

d r

∣∣∣∣
r=0

=
2

kF ξBCS

=
2π

kF ξ0
, (21)

where γ is the Euler’s constant and lim
r→0

∆(r) = ∆∞r/ξBCS. This choice of ξ = ξBCS corre-

sponds to the Landau levels with magnetic field of Heff from Eq. (10). Comparing Eq. (20)
and Eq. (21) we obtain the equation for the parameter b:(

γ − 1− ln
(
− b

2

))
b2

= π , (22)

which has the solution:

b = −
√
W (8e2γ−2π)

2π
≈ −0.53 , (23)

where W is the Lambert W -function.

2.1. Comparison with numerical calculations

Self-consistent numerical solution of the Bogoliubov-de Gennes equations in the quan-
tum limit for a clean s-wave superconductor was performed in [5]. There, it was shown that
the shrinking of the core region leads to a reduction in the number of bound-quasiparticle
state energy levels. For large kF ξ0 values, the energy of the ground state (µ = 1/2) was
fitted by the empirical expression (we use the notations of [5]):

E1/2

∆∞
=

ln(kF ξ0/0.3)

2kF ξ0
. (24)

Now, using Eq. (13) and Eq. (23) it is possible to obtain the corresponding asymptotic
for the from Eq. (18). For kF ξ0 ≫ 1, we get the following asymptotic behavior:

E0(α)

∆∞
=

π

kF ξ0W (8e2γ−2π)
+ α

2π

kF ξ0
+O(α2) ≈

α→0

1.75

kF ξ0
. (25)

Such behavior is due to the fact that α → 0 the energy E0(α) tends to the CdGM ground

ë

ë

ë

ë

ë

ë
ë

ë
ë

0 5 10 15

0.0

0.2

0.4

0.6

0.8

kFΞ0

E
Α
�D
¥

Fig. 2. The energy of ground state E0/∆∞ as a function of kF ξ0. The solid
curve shows the result of Eq. (18) at b given by Eq. (23). The dashed line
shows Eq. (24), the dotted line is the dependence of E0(α)/∆∞ on kF ξ0 for
α ≃ (kF ξ0)

−2. The open circles correspond to the numerical calculations of [5].
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state. In Fig. 2 the comparison of our result with that of Hayashi N., et. al. [5] is shown. Note
that the asymptotic behavior (25) of the ground state energy differs from the empirical result
of Hayashi N., et. al. (24) and has better agreement for large values kF ξ0. Additionally, no
fitting parameter was not used.

Conclusion

The main result of this paper is twofold. First, we have shown that the Kramer-Pesch
anomaly for the order parameter slope d∆(r)/d r in the core of the Abrikosov vortex can be
described via non-standard boundary conditions for the Aaharonov-Bohm Hamiltonian. In
such a manner, the well-known fact that CdGM spectrum is determined by the limiting slope
of the order parameter d∆(r)/d r acquires natural explanation. The analytical expression
for the ground state energy E0 as a function of the vortex core radius ξ0 is obtained and
shows good correspondence with known results derived from the numerical solution of BdG
equations.

The second issue is that the non-standard boundary conditions for the Aaharonov-
Bohm Hamiltonian with the localized magnetic flux can be interpreted in physical terms
as the Hamiltonian for the low-lying excitations near the Abrikosov vortex. This gives the
possibility of using this approach for a more complicated situation, for example, a vortex
pinned by the cylindrical defects [20].
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