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We calculate renormalization-group functions in the developed turbulence model for infinite dimensional

space d → ∞ using an operating method without renormalization constants. The renormalization fixed

point and index ω, obtained within the considered three loop approximation, are in agreement with previ-

ous calculations. The results demonstrate the efficiency of the method and the possibility of its complete

automation, which is crucially important in higher order perturbation theory computations.
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1. Introduction

The explanation for the anomalous scaling in fully developed turbulence, which de-
scribes the deviations from the Kolmogorov phenomenological theory, is an actual problem
of the modern statistical mechanics. Currently, the anomalous exponents have been cal-
culated and anomalous scaling was obtained only in the simplified turbulence model – the
rapid-change model of the passive scalar advection. It was shown in [1] that in spaces with
large dimensions d, this model is reduced to the Kolmogorov theory and that the exponents
of the anomalous scaling tends to zero, as d → ∞. These exponents were calculated in [1]
up to the first order in 1/d .

There are indications that in turbulence theory, based on the Navier-Stokes equa-
tions, the limiting dimension d → ∞ plays a role of the critical dimension of the space, for
which the Kolmogorov theory becomes valid [2]. For the analysis of this asymptotic theory
the renormalization group method and ε-expansion were applied in [3]. The studies in [3]
revealed significant simplifications in the limit d → ∞. This allowed the authors to perform
the three loop analytical calculations of the RG-fixed point and the index ω and then to guess
the formula for these quantities analogous to the corresponding one in the Heisenberg model
for the developed turbulence [4]. It would be highly interesting to verify the correctness
of this formula, comparing its predictions with those of fourth order perturbation theory.
However, such verification is not a trivial task, because of the number of diagrams dramati-
cally increases with the increasing order of the perturbation theory (there are 1692 four-loop
Feynman diagrams). Thus, the automation of the computational process is required.
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In the current work, we apply the method of automatic computations for the renor-
malization group functions developed in [5], [6] in application to three-loop calculations.
The method described in [5], [6] allows one to represent the renormalization group func-
tions without using the renormalization constants in terms of the non-singular in ε integrals.
All necessary terms of the ε-expansion can be found by expanding the integrands of these
integrals into a Taylor series.

The automatic three-loop calculations confirm the ω index value obtained in [3]. The
value for the charge in the fixed point differs from the corresponding one in [3], because of
the utilization of different renormalization schemes.

2. The model

The microscopic model of the fully developed, homogeneous, isotropic turbulence of
the incompressible viscous fluid or gas is usually described by the stochastic Navier-Stokes
equation with a random driving force:

∂tvi = −∂iP − (vj∂j)vi + ν0∂
2vi + fi , (1)

where vi is the velocity field, P and ν0 are the pressure and the kinematic viscosity, re-
spectively, fi is the random force per unit mass. Equation (1) is complemented by the
incompressibility condition ∂ivi = 0, which leads to the transverseness of the velocity field
and force. We assume for f a Gaussian distribution with zero mean and correlator:

〈fi(t1,x1)fj(t2,x2)〉 ≡ Df
ij(t1 − t2,x1 − x2) , (2)

Df
ij(t,k) = δ(t)Pij(k)df(k) , (3)

where Pij(k) ≡ δij − kikj/k
2 is the transverse projector. In the inertial interval of the

wavenumbers m � k � kdiss (m
−1 = L is the external turbulence scale, kdiss is the dissipa-

tive scale) one can use the power-law model

df(k) = D0k
4−d−2εθ(k −m) , (4)

where ε is analogous to the 4 − d parameter in the Wilson theory of the phase transitions.
The physical value of ε is equal to 2 and corresponds to an ideal pumping of the energy into
the system by infinitely-sized vortices.

According to the fundamental theorem [7], the stochastic equation (1) is equivalent
to quantum field theory with a double set of transverse fields determined by the action:

S0 = v′Dfv′/2 + v′
(−∂tvi − (v∂)v + ν0∂

2v
)
. (5)

Here, all the necessary integrations and summations over indices are meant. The contribution
of the pressure in (5) is omitted due to the transverseness of the auxiliary field v′.

The diagrams of the perturbation theory determined by the action (5) contain ul-
traviolet (UV) divergences, when ε → +0. The invariance of the action under the Galilean
transformations results in the only singly divergent 1-irreducible correlation function,

Γ
(0)
ij =< viv

′
j >1−ir (1-irreducible response function). To cancel divergences in this function,

one needs the only one counterterm of the type v′∂2v. The renormalized action is given by:

S = v′Dfv′/2 + v′
(−∂tvi − (v∂)v + νZν∂

2v
)
, (6)

which is obtained from (5) by the multiplicative renormalization of the parameters:

D0 = g0ν
3
0 = gμ2εν3 , ν0 = νZν , g0 = gμ2εZg , Zg = Z−3

ν , (7)

where μ is the renormalization mass, g is the dimensionless renormalized charge and the
renormalization of the fields is not required.



RG in the infinite-dimensional turbulence 463

In the following, we use the renormalization scheme, analogous to the renormalization
on the zero frequencies and moments, complemented by the extra condition μ = m. Let
Γij(k, ω) be the 1-irreducible response function calculated in accordance with action (6)
with the renormalization constant Zν = 1. This function is proportional to the transverse
projector:

Γij(k, ω) = Pij(k)Γ(k, ω) , Γ(k, ω) =
Γii(k, ω)

d− 1
. (8)

Let us now define a normalized function equal to unity in the zero (loop-less) approximation:

Γ(k, ω) =
Γ(k, ω)

−νk2
. (9)

Then, for its renormalized version, we require the following normalization conditions:

Γ
R |k=0,ω=0,μ=m= 1 , (10)

namely, all diagrammatic contributions to the renormalized function Γ
R
must be canceled

out by the counterterms in the normalization point k = 0, ω = 0, μ = m. This condition
defines the subtraction scheme and the form of the renormalization constant Zν .

The Feynman diagrammatic technique, corresponding to the model (6), (3), (4),
contains the following propagators, given in the (k, t)-representation by:

< vi(t1)vj(t2) >=
df(k)

2νk2
exp

[− νk2|t1 − t2|
]
Pij(k) = −−−−−− (11)

< vi(t1)v
′
j(t2) >= θ(t1 − t2) exp

[− νk2(t1 − t2)
]
Pij(k) = −−−−−|− (12)

The interaction in (6) is represented by the triple vertex −v′(v∂)v = v′jVjslvsvl with
the vertex factor:

Vjsl = iksδjl = −−−|−
〈
•
, (13)

where ks is the momentum argument of the field v′. The crossed endpoint in (13) corresponds
to the field v′, the endpoint marked by the bold dot corresponds to the field vs contracted
with iks and the plain line stands for the field vl.

We represent the perturbation series for the function Γ as:

Γ(k, ω,m, μ) =
∑
n�1

unμnε
∑
i

χ(i)
n (k, ω,m) , u ≡ Sdg

(2π)d
, (14)

where the i-summation runs over all n-loop diagrams of the function Γ. For convenience, we
introduce a normalized charge u, in which Sd is the surface area of the unit sphere in the
d-dimensional space.

3. Renormalization group equations, RG-functions expressed in terms of the
renormalized Green functions

In our renormalization scheme the renormalization constants Zν and Zg (similar to the
MS scheme) depend only on the space dimension d and parameter ε and do not depend on the
ratio m/μ. The equations of the renormalization group are obtained from the independence
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of the non-renormalized Green functions on the parameter μ at fixed ν0 and g0. The RG-
equations look exactly the same as in the MS scheme [8]. In particular, the equation for the
1-irreducible function ΓR is given by:

(μ∂μ + β(g)∂g − γν(g) ν∂ν)Γ
R = 0 , (15)

where

γi(g) =
−2εg∂g lnZi

1 + g∂g lnZg
, β(g) = −g(2ε+ γg) = −g(2ε− 3γν) . (16)

The latter equation in (16) is a consequence of the relation between the renormalization
constants Zg and Zν in (7). The equations (16) define the β and γν RG-functions in terms
of the renormalization constants. These functions are finite and do not contain poles in ε,
because of the renormalizability of the theory. However, the required preliminary calculation
of the singular in ε renormalization constants is complicated, especially for the numerical
evaluation of β and γν . Using equation (15), we express these RG-functions in term of the
renormalized Green function ΓR.

First of all, we derive the RG-equation for the normalized function Γ
R
. Employing

(9) and (10) we find:

(μ∂μ + β(g)∂g − γν(g) ν∂ν)Γ
R
= γνΓ

R
. (17)

Considering this equation in the normalization point k = 0, ω = 0, μ = m and taking into
account that:

Γ
R |k=0,ω=0 (m,μ, ν) = Γ

R |k=0,ω=0 (m/μ) , ∂gΓ
R |k=0,ω=0,μ=m= 0, (18)

we obtain:
γν(g) = −(m∂mΓ

R
) |k=0,ω=0,μ=m . (19)

In (19), the RG-function γν is written in terms of the renormalized function Γ
R
. Usually,

computation of the renormalized functions involves calculation of the divergent in ε renor-
malization constants. For calculations involving finite objects, we need to take into account
the counterterms by the R-operation, acting on the diagrams of the basic action, where
Zν = 1,

ΓR = RΓ = (1−K)R′Γ . (20)

Here, the R′-operation eliminates divergences in the subgraphs of diagrams and the operation
(1 − K) removes the remaining superficial divergence. The R′-operation can be expressed
as [9]:

R′Γ =
∏
j

(1−K)jΓ , (21)

where, for each diagram from Γ, the product runs over all its divergent subgraphs. The
renormalization operation (20) eliminates the divergences in the function ΓR as a whole and
separately in each diagram.

The formal UV-divergence index of the 1-irreducible function < vv′ >1−ir equals 2.
This leads to the possible counterterms of the k2 and iω types. However, as is seen from (13),
the external leg v′ of this function is always multiplied by the external moment k, therefore,
only the divergence of the k2-type remains. In our renormalization scheme, this corresponds
to the following subtraction operations for the whole function Γ and for the 1-irreducible

subgraphs of diagrams χ
(i)
n from (14), respectively:

(1−K)Γ(k, ω,m, μ) = Γ(k, ω,m, μ)− Γ |k=0,ω=0,μ=m ,

(1−K)χj(k
2
j , ωj, m) = χj(k

2
j , ωj, m)− χj |kj=0,ω=0 , (22)
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where kj and ωj are the moment and frequency incoming to the subgraph χj. The subtrac-
tion of the divergences in the subgraphs leads to the finite integrals corresponding to the
renormalized Feynman diagrams.

Note that the dimensionless counterterm Γ |k=0,ω=0,μ=m does not depend on m, then,
taking into account (19), we obtain:

γν(g) = −(m∂mRΓ) |k=0,ω=0,μ=m= −(m∂mR
′Γ) |k=0,ω=0,μ=m . (23)

Substituting expansion (14) in (23), we find

γν(g) =
∑
n�1

un(γν)n , (γν)n = −m−2nε
∑
i

(m∂mR
′χ(i)

n ) |k=0,ω=0,μ=m . (24)

This is the main relation for the calculation of the RG-function γν .

4. Large d limit

Let us consider the diagrams in the momentum representation in the spherical co-
ordinate system. Then, the dimension of the space d enters into the integration measure∫∞
0

dk kd−1
∫ π

0
dθ (sin θ)d−2... and into the lines vv of diagrams as k2−d−2ε. The number

of vv-lines in diagrams of the function Γ coincides with the number of loops, consequently
the pure integration momenta can be always associated with vv-lines. Then, the factor
θ(k − m)k2−d−2ε from (4) changes

∫∞
0

dk kd−1 to
∫∞
m

dk k1−2ε and the dependence on d in

the radial part disappears. When d → ∞, the angular weight (sin θ)d−2 has a sharp maxi-
mum at θ = π/2. Since cos(π/2) = 0, the inner products of the different internal integration
moments vanish. Then, in the leading approximation at d → ∞ one may consider the in-
ternal integration moments to be orthogonal to each other and to the external moment p.
In this approximation, the integrands do not depend on angles and the angular integrations
give a factor Sd, included in the definition of the charge u (14). The latter charge is finite
in the renormalization group fixed point.

Therefore, the main contribution to the Green functions at d → ∞ is given by the
diagrams without the inner products, which drastically decreases the number of diagrams.
In the one loop approximation from four diagrams in Fig. 1, only the first one gives the
non-zero contribution:

χ
(1)
1 |k=0,ω=0=

∫ ∞

m

dk
k1−2ε

4k2
. (25)

Then, from equation (24), we find the one-loop expression for the anomalous dimension γν:

(γν)1 = −m2εm∂mχ
(1)
1 |k=0,ω=0=

1

4
. (26)

Fig. 1. One-loop diagrams.

In the two-loop approximation in the leading order for large d, only 6 of the 120
diagrams contribute. Let us consider the diagram in Fig. 2, as an example. Its integration
over time gives:

χ
(1)
2 |k=0,ω=0=

−1

32

∫ ∞

m

dkk1−2ε

∫ ∞

m

dqq1−2εk2

(
2

k4(k2 + q2)
+

1

k2(k2 + q2)2

)
. (27)
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Fig. 2. Example of the two-loop diagram.

This diagram has a divergent subgraph with the circulating (internal) moment q and external
moment k. The corresponding divergence of the integral over q at ε = 0 is logarithmic and
localized in the first summand in (27). Acting on this subgraph by the subtraction operation
(1−K) and using (21), we obtain:

R′χ(1)
2 |k=0,ω=0=

−1

32

∫ ∞

m

dkk1−2ε
{∫ ∞

m

dqq1−2ε k2

k2(k2 + q2)2
+

+
[ ∫ ∞

m

dqq1−2ε 2k2

k4(k2 + q2)
−

∫ ∞

μ

dqq1−2ε 2k
2

k4q2

]}
. (28)

In accordance with (24), the contribution of this diagram to the (γν)2 is given by:

−
(
μ4εm∂mR

′χ(1)
2 |k=0,ω=0

)
|μ=m=

−1

32

∫ ∞

1

dqq1−2ε
[ 2

1 + q2
− 2

q2
+

1

(1 + q2)2

]
+

− 1

32

∫ ∞

1

dkk1−2ε
[ 2

k2(1 + k2)
+

1

(1 + k2)2

]
. (29)

Changing the variables, as q2 = x and k2 = x and joining the integrals, we rewrite (29) as:

−
(
μ4εm∂mR

′χ(1)
2 |k=0,ω=0

)
|μ=m= − 1

32

∫ ∞

1

dx
x−ε

(x+ 1)2
. (30)

The calculation of the remaining two loop diagrams leads to

(γν)2 =
1

16

∫ ∞

1

dx
x−ε

(x+ 1)2
. (31)

In the MS-scheme the RG-functions do not depend on ε. In our scheme, the one loop
result (26) is also independent of ε. The dependence on ε of the two loop result can be found
by expanding the integrand of (31) into the Taylor series. The number of the needed terms
of this series is determined by the global desired precision. For the third order expansion in
ε, taking into account that the charge u in the fixed point u∗ = O(ε), it is necessary to know
two following terms

(γν)2 =
1

32
(1− 2ε ln 2) +O(ε2) . (32)

Next, we consider an example of three-loop diagram calculation.
When the integration over time is performed, the diagram in Fig. 3 is given by the

integral:

χ
(1)
3 |k=0,ω=0=

1

156

∫ ∞

m

dk k1−2ε

∫ ∞

m

dq q1−2ε

∫ ∞

m

ds s1−2ε 1

k2(k2 + q2)(k2 + q2 + s2)
. (33)
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The diagram in Fig. 3 contains two divergent subgraphs: the one-loop subgraph with internal
circulating momentum s and external moments k and q (”subgraph 1”) and the two-loop
subgraph with internal circulating moments q and s and external momentum k (”subgraph
2”). The action of the R′-operation is reduced to the consistent application of two subtraction
operations (1 −K)2(1 −K)1 on the subgraphs in an arbitrary order. Then, from (33), we

Fig. 3. Example of the three-loop diagram.

obtain:

R′χ(1)
3 |k=0,ω=0=

1

156

∫ ∞

m

dk k−1−2ε
{∫ ∞

m

dq
q1−2ε

(k2 + q2)

[ ∫ ∞

m

ds
s1−2ε

(k2 + q2 + s2)
−

−
∫ ∞

μ

ds
s1−2ε

s2

]
−

∫ ∞

μ

dq
q1−2ε

q2

[ ∫ ∞

μ

ds
s1−2ε

(q2 + s2)
−
∫ ∞

μ

ds
s1−2ε

s2

]}
. (34)

Here, the first two summands are the results of the action of the operation (1−K)1 on the
one-loop subgraph; the third and fourth summands are the results of the action of (1−K)2
on the whole diagram after the action of (1 − K)1. Differentiating (34) with respect to

m, one can easily see that −
(
μ6εm∂mR

′χ(1)
3 |k=0,ω=0

)
|μ=m= 0, i.e. this diagram does not

contribute to (γν)3.
The total amount of the three-loop diagrams is 4080 and only 83 of those survive in

the limit d → ∞. Their contribution is given by:

(γν)3 =
1

512
(7 + 6 ln 2) +O(ε) . (35)

Therefore, from (24), (26), (32) and (35), it follows that the anomalous dimension γν in the
three-loop approximation is:

γν =
u

4
+

u2

32
(1− 2ε ln 2) +

u3

512
(7 + 6 ln 2) +O(u4) . (36)

Substituting (36) into the β-function (16) and solving the equation β(u∗) = 0, we find the
value of the charge in the fixed point in terms of the ε-expansion

u∗ =
8ε

3
− 8ε2

9
− 4ε3

9
(1− 2 ln 2) . (37)

According to (16), (36) and (37), the index ω = β ′(u∗) is:

ω = 2ε+
2

3
ε2 +

10

9
ε3 . (38)

The latter expression coincides with one obtained in [3].



468 L.Ts. Adzhemyan, T. L. Kim, M.V. Kompaniets, V.K. Sazonov

5. Conclusions

We have performed calculations for the anomalous dimension γν and exponent ω in
the three-loop approximation in the fully developed turbulence model for large numbers of
dimensions in space, by determining the of RG-functions without renormalization constants.
Our calculations demonstrated the efficiency of the applied method. Its main advantage is
that for the computation of the n-loop results, one needs to evaluate the set of the (n− 1)-
dimensional integrals, free from the singularities in ε. The computation procedure can
be automated with relative ease. The main difficulty in higher order perturbation theory
calculations is in the rapidly increasing number of diagrams with vector fields and the triple
interaction vertex. In the considered limit, d → ∞, the number of the diagrams is notably
decreased. Thus, in four loops, only 1692 diagrams remain of the original 417872.

The significant decrease in the number of diagrams may indicate that the ε-expansion
of the function γν(ε) has a finite radius of convergence in the limit d → ∞, in contrast to the
general case, when one observes a factorial growth of the corresponding series coefficients.
A similar thing occurs in phase transition theory when the anomalous dimensions γ(ε, n)
is calculated. Here ε = 4 − d, where d is the dimension of the space and n is the number
of the field components. At fixed n the coefficients of the ε-expansion grow factorially, but
the coefficients of the (1/n)-expansion have a finite radius of the convergence, as the series
in ε [8]. Currently, in turbulence theory only the third order in ε at d → ∞ of the double
(ε, 1/d)-expansion is known. However, the results obtained in the current work and in [3]
have revealed some simplicity for this expansion. It is seen from the equations (37) and
(38) that the irrational contribution to u∗ (the charge at the fixed point depends on the
renormalization scheme) with ln 2 disappearing in the physical quantity of the index ω. The
contributions of some particular diagrams proportional to ln2 2 , π2, dilog(3/2), typical for
the series of critical exponents in critical dynamics models, are all canceled out in the total
sum of diagram. The coefficients of (38) are rational numbers. This gives the possibility to
sum the series and find the function γν(ε) at d → ∞ without using the ε-expansion.
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