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The lattice model for a star-shaped polymer with a total number of up to 72 segments is considered. The

number of arms varied, ranging from 2 to 6. Entropic sampling Monte Carlo simulation is used to obtain

the equilibrium, thermal and structural properties of the considered systems over a wide range of tempera-

tures. The coil-globule transition is observed and the transition temperature is shown to shift toward lower

temperatures with an increase in the number of arms. This study demonstrates how the structure of the

star-shaped polymer affects its equilibrium properties.
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1. Introduction

Over the last couple of decades, there has been an increased interest in studying
nano-objects of various types including the polymer molecules. Modern facilities are now
able to synthesize macromolecules with complicated architecture, such as stars, brushes, nets
or dendrimers. In this paper, we restrict ourselves to the simulation study of star-shaped
molecules. Due to their specific structural features, these polymers have essentially new
characteristics in comparison to linear chains. As a result, their average size is considerably
smaller than that of the linear polymers with the same number of segments. Consequently,
they have greater concentration of monomers that leads to greater volume effects. Star-like
molecules can be considered as unique objects, combining properties of linear polymers and
colloid particles as was also pointed out in [1, 2]. It was correctly mentioned in [3] that the
star polymer with a small number of arms is close in its behavior and properties to that of a
linear polymer, while with an increased number of arms, it becomes closer to a rigid spherical
particle. The main aim of this paper is to observe how initial structural characteristics, such
as the number of its arms, influence its equilibrium structural properties, including features
of the coil-globule transition. This problem is also discussed in a number of papers [4, 5] so
it would be desirable to compare our data with that of [4]. It is known that in the star-like
polymers, there can be observed transitions of two types: liquid-crystal (1st order) and the
coil-globule (2nd order), wherein the second order transition is very sensitive to the polymer’s
topology.
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It should also be stressed that studies of star-like polymers are important because of
their possible application for the transport of DNA and drug substances into cells [6–8].

The considered model is presented in section 2. The results for the athermal and
thermal cases are discussed in sections 3 and 4 correspondingly. Conclusions are given in
section 5.

2. Model

In this work, we consider the model of a regular neutral polymer star on a simple
cubic (SC) lattice. Lattice models have been widely used for a long time in the study of
polymers [9]. These models are still useful now [10–14], since such an approach allows one
to obtain reasonable results with minimal computational requirements.

Star-like polymers (for convenience, we refer to as ”star”) can be represented as f
chains fixed by their single ends to a common center. We consider cases of f � 6 where
f=1 and f=2 correspond to linear chains. Each arm is a chain of Narm bonds (segments)
and Narm + 1 monomers (knots). The total number of segments in a star is N = fNarm.
Each i -th monomer has coordinates (xi, yi, zi). The segments are being generated with the
aid of semi-phantom random walks along the lattice with reverse steps being forbidden [15],
contrary to the case of free (or phantom) walks. In order to change the configuration of
the star, an arm and its k0-th monomer are randomly chosen and a new piece of this arm,
starting from k0 up to the end of the arm, is newly generated.

In our work, we use the entropic sampling simulations [16, 17] within Wang-Landau
algorithm [18]. This method was successfully applied in our previous works [13,15,19–21] as
well as by other authors [4, 12, 22–24] in polymer studies. An important attractive feature
of this method is in its ability to obtain statistics for very rare events with relative ease.
Hence, this method provides a means for calculating the equilibrium characteristics of the
studied system over a wide range of temperatures, including the phase transition area. The
calculation time required was about a few hours on a standard 4-core processor in most
instances.

3. Athermal case

In the athermal case, the interaction between monomers is reduced to the exclusion
of intersections. In order to learn how strongly the fixation of all arms’ ends at the same
point (in the center of the star) restricts their freedom, it is worth considering their excess
entropy. The complete number of conformations for a semi-phantom star with f � z arms
is z!(z − 1)N−f/(z − f)! [21]. So, the entropy can be expressed as:

S = ln

(
z!(z − 1)N−f

(z − f)!
Ω0

)
, (1)

where z=6 is the coordinate number of our SC lattice and Ω0 is the ratio of the self-avoiding
conformations which we obtain in the same way as in our preceding paper [21]. Values of
Ω0 were calculated for stars with the total number of segments N � 800. The error does
not exceed 15%. The entropy of the phantom chain (star) is ln(zN ). So the specific excess
entropy of our system (relative to this basic system) is:

ΔS

N
=

1

N
ln

(
z!(z − 1)N−f

(z − f)!
Ω0

)
− ln z. (2)
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Fig. 1. Specific excess entropy (relative to the phantom chain) as a function
of the inverse number of segments for stars with different numbers of arms
(3÷ 6), for a chain, and for ring [15].

The dependence of ΔS/N on 1/N is presented in Fig. 1. It is seen that for the 3-arm
star, the curve in this scale is rising and is rather close to that of the single chain. But for
f=4, the dependency already begins to decrease; and with an increased number of arms, this
tendency becomes more pronounced. This picture demonstrates that increasing the number
of arms results in increased configurational restrictions. For comparison, Fig. 1 presents the
appropriate curve for ring chains [15] and it is seen that restrictions caused by closure of the
chain are even greater than in the case of when the 6 arms were affixed to the center of the
star.

4. Thermal case

In the thermal case, we account also for interactions of non-bonded monomers if they
occur in contact with each other (i.e. at a distance of the lattice constant). In this case, an
energy (ε > 0 or ε < 0) is attributed to each such contact. The value of ε can characterize
the solvent quality of the real polymer solutions. In this work, we present only the most
interesting case — attraction (ε < 0). The energy in the given conformation is E = εm,
where m is the number of contacts, m ∈ [0, mmax]. As a result of the simulation for a given
star, we obtain a distribution of conformations over the number of contacts Ωm for a given
star. Knowledge of Ωm allows calculation of equilibrium properties over a wide temperature
range, according to the canonical expression:

〈F 〉 (T ) =

mmax∑
m=0

Fme
−Em/kBTΩm

mmax∑
m=0

e−Em/kBTΩm

, (3)

where F is a certain physical quantity and Fm is its distribution over the number of contacts
which is also determined during simulation. In this paper, we obtained such distributions for
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the module of the radius-vector of the center of mass, mean square of the radius of gyration
and its orthogonal components. In the limit T → ∞, equation (3) yields the athermal values.

Fig. 2. Specific configuration energy as a function of temperature for stars
with different numbers of arms (3 ÷ 6) and for a chain. Total number of
segments N=70 for f=5 and N=72 for all the rest.

We have studied stars with different numbers of arms (from 3 to 6) and approxi-
mately equal total number of segments: f=3, Narm=24; f=4, Narm=18; f=5, Narm=14; f=6,
Narm=12. Also, for comparison, the chain (i.e. f=2, Narm=36) has been considered. The case
with a fixed number of arms (f=6) was studied earlier in [19–21]. Fig. 2 presents tempera-
ture dependencies of the specific configuration energy according to (3) with Fm = εm. Here
and subsequently, the temperature is given in |ε|-units, kBT/|ε|. A monotonic growth of the
energy was observed, with the curves being close to each other and a very small difference
between them is only noticeable at higher temperatures.

In order to observe structural transitions, it is also useful to calculate the heat ca-
pacity:

C(T ) =
∂E

∂T
=

〈E2〉 (T )− (〈E〉 (T ))2
T 2

. (4)

The temperature dependence of the specific heat capacity is presented in Fig. 3. It was
observed that for all the considered cases, there exists a maximum which becomes wider and
is shifted to lower temperatures with an increased number of arms. The latter provides the
increase of the total monomer density, such that it hinders the collapse of the coil-globule
transition. Similar results were obtained in [4], where the fluctuating bond model was used.

Additionally, we present several structural characteristics for our models. In order
to observe the coil-globule structure transition, we calculated the mean square radius of
gyration for a star. For each conformation, the radius of gyration was determined and was
ultimately averaged separately for each number of contacts using the following equation:

〈
R2

I

〉
m
=

1

2N2

〈
N∑
i=1

N∑
j=1

|rij |2
〉

m

=
1

N

〈
N∑
i=1

(ri −Rc)
2

〉
m

. (5)
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Fig. 3. Specific heat capacity as a function of temperature for stars with
different numbers of arms (3 ÷ 6) and for a chain. N=70 for f=5 and N=72
for all the rest. Legend, see in Fig. 2.

Here, rij is the distance between monomers and the sum is taken over all monomeric pairs, Rc

is the center of mass vector. The obtained data is canonically averaged according to formula
(3). The dependence of the mean square radius of gyration on temperature is shown in Fig.
4a. In Fig. 4b data is presented for the T -dependence of the factor g = 〈R2

I〉star / 〈R2
I〉chain.

The latter is shown to be non-monotonic and there exists a temperature at which the star
attains the most extended state in comparison with that of the corresponding chain. At
higher temperatures, for increasing f, the difference between the size of the star and the size
of the chain becomes larger. For decreasing temperatures, the size of the stars lessens and
a transition from the coiled state to that of the globule occurs. The size of the globule does
not depend on the number of arms and is determined only by the total number of segments.

Limiting values of g at T → ∞ are presented in Table 1. Also, there are presented
values of gph for the phantom (ideal) star model [9], according to the expression gph = (3f −
2)/f 2, together with the results of our simulation. For the latter purpose, the distribution of
the conformations Ωn and the square radius of gyration R2

In over the number of intersections
n and the corresponding average was determined according to the expression:

〈
R2

I

〉
ph

=

nmax∑
n=0

R2
InΩn

nmax∑
n=0

Ωn

. (6)

It is interesting to note that g-values for the athermal case with intersection avoidance appear
to be in sufficiently fair agreement with those of phantom random progression cases. It could
be affirmed that for stars with small number of arms (f � 6) the volume effects do not differ
much from those of chains with the same total number of segments.

Fig. 5 presents temperature dependencies for the reduced modulus of the center of
mass radius-vector Rc/Narm . Its location was determined relative to the position of the star
center, and was fixed as the coordinate’s origin. For the chain (f=2) , the dependency was



518 I. A. Silanteva, P. N. Vorontsov-Velyaminov

a

b

Fig. 4. Mean square radius of gyration (a) and g-factor (b) as functions of
temperature for stars with different numbers of arms (3 ÷ 6). N=70 for f=5
and N=72 for all the rest. Legend, see in Fig. 2.

Table 1. Limiting values of the mean square radius of gyration 〈R2
I〉, and

factor g for stars under athermal and ideal conditions.

f lim
T→∞

〈R2
I〉 g 〈R2

I〉ph gph g, ideal star [9]

2 29.1 1 13.4673 1 1
3 23.3474 0.8023 10.6939 0.7940 0.7778
4 18.7997 0.6460 8.7705 0.6512 0.625
5 15.2897 0.5254 7.2798 0.5406 0.52
6 13.6292 0.4684 6.5164 0.4839 0.4444
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Fig. 5. Temperature dependence of the reduced modulus of the center of mass
radius-vector Rc/Narm for stars with different number of arms (3 ÷ 6). N=70
for f=5 and N=72 for all the rest. Legend, see in Fig. 2.

shown to increase. For stars with f=4, 5, 6, there exists a maximum that becomes more
pronounced with an increased number of arms f. This might lead one to suppose that in the
region of transition to the compact conformation, the internal state of the star is unstable,
with its form essentially deviating from a symmetric one.

In order to analyze a star’s form, it is necessary to calculate the orthogonal com-
ponents of the square radius of gyration [23, 25]. First, all the components were obtained
and then, matrix diagonalization was performed, such that the three nonzero components
L2
1 < L2

2 < L2
3, and that R2

I = L2
1 + L2

2 + L2
3. These were initially averaged for each value of

energy and finally, the canonical averages according to the relation (3) were obtained. All
three components have different values, so we can state that the simulated stars have an
average form of the three-axis ellipsoid. Knowledge of these components makes it possible
to calculate the asphericity parameter of the star [11]:

δ = 1− 3(sf1sf2 + sf2sf3 + sf3sf1), (7)

where the reduced components are sf1 = L2
1/R

2
I, sf2 = L2

2/R
2
I, sf3 = L2

3/R
2
I. The asphericity

parameter ranges from 0 (absolute symmetry, sphere) up to 1 (the form of a rod). In the
globular state, the star with any number of arms has a form similar to that of a sphere (Fig.
6a), and with elevated temperature, the asphericity increases. For the chain, this rising δ(T )
is monotonous and for stars, this dependency has a maximum, which becomes more distinct
with increased f. The maximum is slightly shifted to lower temperatures with increased f.
Such a tendency can be explained in the following way: the greater the monomer density
inside the star, the greater the relative asymmetry the star requires to attain a globular
state. It is also clear from the figures that the greater the number of arms, the smaller the
deviation of the star’s form from an ideal sphere.

We have also considered the parameter that allows us to distinguish between the
oblate and the elongated forms [11]

S∗ = (3sf1 − 1)(3sf2 − 1)(3sf3 − 1). (8)
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a

b

Fig. 6. Temperature dependence of the asphericity δ (a) and of the parameter
S* characterizing the form (b), for stars with different number of arms (3÷6).
N=70 for f=5 and N=72 for all the rest.

This parameter ranges over the interval [-0.25, 2], so it can be both negative (oblate form)
and positive (elongated form). The temperature dependency of S* is presented in Fig. 6b.
It is seen that S∗ > 0 over the entire temperature range, and hence, the star has the average
form of a slightly elongated sphere. It is also worth noting that there is a temperature for
which the elongation for stars has a slight maximum while for a chain, the dependency S*(T )
is monotonous. With the transition to the globular state (T < 1), the elongation vanishes.

Fig. 7 presents the dependencies δ(T ), S*(T ) for 6-arm stars with different arm
lengths. Increasing the arms’ length was shown to shift the maxima of δ and S* to higher
temperatures and make it slightly more narrow.
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a

b

Fig. 7. Temperature dependencies of the asphericity δ (a) and of the param-
eter S* characterizing the form (b), for five 6-arm stars with varying arm
lengths (Narm=5, 8, 12, 16, 20). Symbols in lines are used for marking different
lines.

5. Conclusion

In this paper, we have studied a lattice model of regular, non-charged star polymer
with the attractive interactions between segments and with varying number of arms. The
effect of these characteristics upon temperature behavior of structural characteristics for
star polymers is demonstrated. Using the entropic sampling method [18], we could calcu-
late structural properties for stars over a wide temperature range and show that at certain
temperatures, a transition of the coil-globule type occurs. This transition shifts to lower
temperatures with an increased number of the arms, since it is more difficult to collapse
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stars with greater number of arms into a compact globule. In the area of this transition, the
form of the star becomes most asymmetric i. e. an elongated ellipsoid.

The number of segments in the considered stars was not very large, however the ap-
plied method provides an opportunity to increase this value. Moreover, the next step of this
work can imply simulation of star polymers where electrostatic interactions are considered.
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