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The work of Knill et. al. (2001) established the possibility of nondeterministic realization of certain quantum logic

operations using linear optical elements, ancilla photons and postselection techniques. It was also shown that any

discrete unitary operator acting on N optical modes can be implemented by a triangular multiport device constructed

from a series of beam splitters and phase shifters (see work of Reck, Zeilinger et. al., 1994). Here, we consider

the rectangular linear optical multiport that is used for the probabilistic realization of unitary transformations on n

qubits. This kind of linear optical scheme is suitable for probabilistic realization of unitary operators using ancilla

photons and projective measurements. Qubits are encoded into the bosonic states of optical modes in two possible

polarizations, and a number of ancilla photons and photodetectors are used for postselection of the qubits’ state,

based on the output of the detectors. We derive a procedure of evolutionary operator calculation for schemes

of the considered type and present algorithms for their efficient computation on symmetric state space. We also

provide complexities for different algorithms for the computation of evolutionary operator and estimate demands

of resources in each case. A destructive Toffoli gate, acting on three qubits, using one ancilla photon and a

photodetector, is implemented using schemes of the presented type.
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1. Introduction

The usage of photons and linear optical elements, such as beam splitters, phase shifters,
mirrors, presents the possibility of realizing controllable and scalable quantum computing [1].
Photons demonstrate easily observable, obvious quantum effects and are also able to maintain
their coherent states for a long time. Construction of optical devices is comparably easy [1, 2].
For instance, these devices do not require low temperatures (except for realization of single-
photon sources). In 2001, E. Knill and R. Lafflame published the work [2] which established the
possibility of constructing quantum logic gates based on linear optics. Projective measurements
and ancilla photons were used to introduce theinteraction between photons in order to implement
non-deterministic realizations of certain quantum operations, like CNOT [3–5].

The experimental realization of unitary operators U(N) transforming N optical modes
using beam splitters and phase shifters was proposed in paper [6]. Here we present another type
of optical multiport that transforms states of photon qubits and performs quantum teleportation
by means of a number of ancilla photons and the detectors provided. The problem is to
experimentally realize multiqubit unitary operators using this type of optical schemes. The
main result, presented in this paper, is a procedure for calculating the evolutionary operator
corresponding to mentioned optical schemes and efficient computational algorithms. This result



538 M. M. Lipovich, I. S. Lobanov

introduces a step towards creating a method for the automatic construction of non-deterministic
linear optical multiports corresponding to a given quantum circuit.

This paper has five sections. In section 2, we derive the evolutionary operator corre-
sponding to a rectangular optical lattice having two-mode linear optical elements in its nodes.
This can be implemented using beam splitters coupled by single-mode optical fibers. For the
described network, we learn how to compute the corresponding single-particle evolutionary
operator. In sections 3 and 5, we show how to efficiently compute multiparticle evolutionary
operator. On the basis of the optical network considered in section 2 and inspired by CNOT
gate, presented in [7], we propose a destructive Toffoli gate acting on three qubits (see Sec. 4).

2. Constructing evolutionary operator for rectangle linear optical multiport

Consider the rectangular grid having n rows and m columns (see Fig. 1) in which the
nodes are polarizing beam splitters with no phase shift. Here, we compute the single-particle
evolutionary operator for this optical grid. Taking into account only the transmitted and reflected
modes, an evolutionary operator for this scheme can be implemented by scattering matrix that
transforms the amplitudes of the 2(n + m)-mode state. Each beam splitter is associated with a
unitary transformation on four optical modes:

H ′a
V ′a
H ′b
V ′b

 =


cos(θ) − sin(θ) 0 0

sin(θ) cos(θ) 0 0

0 0 cos(θ) − sin(θ)

0 0 sin(θ) cos(θ)




H ′c
V ′d
H ′d
V ′c

 , (1)

where (a, b) and (c, d) denote input and output spatial modes, H and V denote two possible
polarizations and parameter θ describes reflectivity and transmittance of the beam splitter [6,8].

FIG. 1. Grid network with input ports c1 . . . cn,
a1 . . . am and outputs g1 . . . gn, D1 . . . Dm, for con-
venience of further calculations some ports are la-
beled twice

FIG. 2. Subscheme N(1. . .i, j)

First, we consider separately j-th column of length i (see Fig. 2). We denote this subscheme as
N(1. . .i, j) and find out how it affects the state of the photon. We imply that initially photon
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is in the modes (Haj, V aj;Hc1,j, V c1,j, . . . Hci,j, V ci,j), so the input state for N(1. . .i, j) is the
following 2(i+ 1)-mode state (order of basis elements is preserved):

|ϕ1...i,j〉in = ϕHaj
∣∣Haj

〉
+ ϕV aj

∣∣Vaj〉+ ϕHb1,j
∣∣Hb1,j

〉
+ ϕV b1,j

∣∣Vb1,j〉+ . . .+

ϕHbi,j−1

∣∣Hbi,j−1

〉
+ ϕV bi,j−1

∣∣Vbi,j−1

〉
,

which is transformed into an output state of the form:

|ϕ1...i,j〉out = ϕHDj
∣∣HDj

〉
+ ϕV Dj

∣∣VDj〉+ ϕHb1,j
∣∣Hb1,j

〉
+ ϕV b1,j

∣∣Vb1,j〉+ . . .+

ϕHbi,j
∣∣Hbi,j

〉
+ ϕV bi,j

∣∣Vbi,j〉 ,
assuming that finally the photon can be found in the modes (HDj, V Dj;Hb1,j, V b1,j . . . Hbi,j,
V bi,j). Input and output states of the particle corresponding to the transformation on 2i modes
given by the subscheme N(1. . .i− 1, j) are respectively of the following form:

|ϕ1...i−1,j〉in = ϕHaj
∣∣Haj

〉
+ ϕV aj

∣∣Vaj〉+ ϕHb1,j−1

∣∣Hb1,j−1

〉
+ ϕV b1,j

∣∣Vb1,j〉+ . . .+

ϕHbi−1,j−1

∣∣Hbi−1,j−1

〉
+ ϕV bi−1,j−1

∣∣Vbi−1,j−1

〉
,

|ϕ1...i−1,j〉out = ϕHwi,j |Hwi,j〉+ ϕV wi,j |V wi,j〉+ ϕHb1,j
∣∣Hb1,j

〉
+ ϕV b1,j

∣∣Vb1,j〉+ . . .+

ϕHbi−1,j

∣∣Hbi−1,j

〉
+ ϕV bi−1,j

∣∣Vbi−1,j

〉
.

For each subscheme, we write a transition matrix, that changes the basis of the input
states to the basis of the output states and matches the corresponding scattering matrix. Let then
U (i−1,j) be matrix of size 2(i−1)×2(i−1) corresponding to scattering operator of N(1. . .i−1, j)
so |ψ1...i−1,j〉 = U (i−1,j) |ϕ1...i−1,j〉. If we compare the |ϕ1...i,j〉in and |ϕ1...i−,j〉in states, then the
latter doesn’t have a spatial mode bi,j−1 and has wi,j instead of Dj . Using this remark and
assuming that element in the node (i, j) is associated with scattering matrix T (i,j) (see (1)) with
matrix elements ‖tk,l‖4

k,l=1, we get the following system:

ϕHwi,j
ϕV wi,j
ϕHb1,j
ϕV b1,j

...
ϕHbi−1,j

ϕV bi−1,j


= U (i−1,j)



ϕHaj
ϕV aj
ϕHb1,j−1

ϕV b1,j−1

...
ϕHci−1,j−1

ϕV ci−1,j−1


,


ϕHDj
ϕV Dj
ϕHbi,j
ϕV bi,j

 = T (i,j)


ϕHwi,j
ϕV wi,j
ϕHbi,j−1

ϕV bi,j−1

 ,

from which the recurrent relation for the scattering matrix U (i,j) of size 2(i+ 1)× 2(i+ 1), that
transforms |ϕ1...i,j〉in into |ϕ1...i,j〉out is:

U (i,j) =



t1,1 t1,2 0 . . . 0 t1,3 t1,4
t2,1 t2,2 0 . . . 0 t2,3 t2,4
0 0 1 0 0 0

...
...

. . .
...

...

0 0 0 1 0 0

t3,1 t3,2 0 . . . 0 t3,3 t3,4
t4,1 t4,2 0 . . . 0 t4,3 t4,4




0 0

U (i−1,j) ...
...

0 0

0 . . . 0 1 0

0 . . . 0 0 1

 , (2)
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where U (1,j) = T (1,j). Obviously, each factor of expression (2) can be transformed to block-
diagonal form, where each block is unitary. Then, we conclude that U (i,j) is also unitary, as
expected.

To finish the construction of the grid scattering matrix, we consider a rectangular sub-
scheme having i rows and j columns with top-left angle matching the one of the large scheme.
Let it be denoted as N(1. . .i, 1. . .j) (see Fig. 1). The corresponding input and output states are
respectively of the form:

|ϕ1...i,1...j〉in = ϕHaj |Haj〉+ ϕV aj |V aj〉+ . . .+ ϕHa1 |Ha1〉+ ϕV a1 |V a1〉+ ϕHc1 |〉+ ϕV c1 |〉+
. . .+ ϕHci |Hci〉+ ϕV ci) |V ci〉 ,

|ϕ1...i,1...j〉out = ϕHDj |HDj〉+ ϕV Dj |V Dj〉+ . . .+ ϕV D1 |V D1〉+ ϕHb1,j |Hb1,j〉+
ϕV b1,j |V b1,j〉+ . . .+ ϕHbi,j |Hbi,j〉+ ϕV bi,j |V bi,j〉 .

If Y (i,j−1) is the matrix of the operator corresponding to N(1. . .i, 1. . .j − 1), then using the
recurrence for calculating U (i,j), we get the following system:



ϕHDj−1

ϕV Dj−1

. . .

ϕHD1

ϕV D1

ϕHb1,j−1

ϕV b1,j−1

. . .

ϕHbi,j−1

ϕV bi,j−1


= Y (i,j−1)



ϕHaj−1

ϕV aj−1

. . .

ϕV a1

ϕHc1
ϕV c1
. . .

ϕHci
ϕV ci


,



ϕHDj
ϕV Dj
ϕHb1,j
ϕV b1,j

...
ϕHbi,j
ϕV bi,j


= U (i,j)



ϕHaj
ϕV aj
ϕHb1,j−1

ϕV b1,j−1

...
ϕHbi,j−1

ϕV bi,j−1



from which, we eventually derive the following recurrent relation for matrix of operator Y (i,j)

of size 2(i+ j)× 2(i+ j):

Y (i,j) =



1 0
O . . . O

0 1

U
(i,j)
1 O U

(i,j)
2




1 0 O
0 1

O Y (i,j−1)

 , (4)

where U (i,j)
1 = U (i,j)[1 . . . 2(i+1); 1, 2] and U (i,j)

2 = U (i,j)[1 . . . 2(i+1); 3 . . . 2(i+1)] (here we de-
note submatrix of matrix M with rows r1, . . . , rn and columns c1 . . . , cm by [r1, . . . , rn; c1 . . . , cm]).
Following the same reasoning as for U (i,j), it is also obvious that Y (i,j) is unitary. Hereby, for
scattering matrix of the large scheme (see Fig. 1), it is enough to compute Y (m,n).
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3. Multiparticle systems

Consider the scheme on Fig. 1 and an arbitrary state of n photons incident to ports
c1, ...cn:

|ϕ0〉 =
∑
ρ∈Πl

ϕ(ρ)
∣∣ρ1
c1
. . . ρncn

〉
,

∑
ρ∈Πn

|ϕ(ρ)|2 = 1,

Πk = {H,V }×k. (5)

which is a state of n qubits encoded into photon polarization modes H and V . Suppose we
define a state of m ancilla photons incident to ports a1, ..., am as:

|ϕA〉 =
m⊗
1

ϕHaj
∣∣Haj

〉
+ ϕVaj

∣∣Vaj〉 ,
and input state as |ϕin〉 = Sym(ϕ0 ⊗ ϕA). Then, we can write the output in the following form
(see (5)) :

|ψout〉 =
∑
τ∈Tm′
P∈Πm′

µ(τ)
∣∣∣P 1 . . . Pm′

〉
τ

∑
ρ∈Πn′

ψ(ρ, P, τ)
∣∣∣ρ1 . . . ρn

′
〉+ c⊥ |ψ⊥〉 ,

Tk = {{Dsi}k1| si ∈ 1, . . . , k; si+1 ≥ si} (6)

where |ψ⊥〉 is a state orthogonal to those having only one photon in each of modes g1, . . . , gn′ .
The product of state vectors is defined as their symmetrization:∣∣∣P 1 . . . Pm′

〉
τ

∣∣∣ρ1 . . . ρn
′
〉

=

∑
σ∈Σρ,P,τ

|σ1〉 . . . |σn′+m′〉√
|σ|!

,

Σρ,P,τ = {π(P 1
Dτ1

, . . . , Pm′

Dτm′
, ρ1

g1
, . . . , ρn

′

gn′
)}.

Evolutions generated by linear optical elements preserve the photon total number so
n′ = n + m −m′. Suppose that we detect photons in modes D1, . . . , Dm′ . As seen from (6),
with the appropriate choice of ancilla photon states and postselection based on polarization and
quantity of photons on each detector, we can project the output in modes g1, . . . , gn′ into the
state having

∑
ρ∈Πn′

|ψ(ρ)|2 = 1, thus meaning that we received a state of n′ qubits. The scheme
is considered non-destructive in case n = n′ and destructive if n′ < n as we collapsed the state
of one or more qubits.

Let scheme with evolutionary operator U transform state of q = n + m input photons.
In order to obtain the transformation for bosonic states, we compute the restriction of the
multiparticle evolutionary operator U⊗q on its invariant subspace Spi. Then, the input state
space is given by:

Sp0 = span
(
{|X1m1〉 ⊗ |X2m2〉 ⊗ . . .⊗

∣∣Xqmq〉 |Xi ∈ {H,V },
mj ∈ {c1, . . . , cn, a1, . . . , am} , i, j = 1 . . . q}) , (7.1)

where cj are spatial modes corresponding to input ports of the scheme. The restriction operator
can be computed as follows, assuming that matrix of U⊗q is of size 2q × 2q and dim(Spi) = k:

U⊗qi = R†iU
⊗nRi, (7.2)

where Ri is a 2q × k matrix which columns represent basis vectors of Spi. It can also easily be
shown that for invariant subspaces, the restriction operator is unitary.
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4. Constructing Toffoli gate using linear optics

Inspired by non-destructive CNOT gate presented in work [7] and with use of algorithms
given in section 5, it became possible to construct a scheme implementing quantum Toffoli
transformation. Although it is known that at least five two-qubit gates are necessary for a non-
destructive Toffoli gate [9]. It turns out that for the destructive Toffoli gate on three bosonic
qubits only eight polarization modes are needed (see Fig. 3). We use an ancilla photon in equal
superposition state and an arbitrary three-qubit state on left input ports of the following scheme:

FIG. 3. Destructive Toffoli gate

|ψa〉 =
1√
2
|Ha〉+

1√
2
|Va〉 ,

|ψ0〉 = α1 |HcHc′Ht〉+ α2 |HcHc′Vt〉+ . . .+ α8 |VcVc′Vt〉 .
The initial state |ψin〉 = Sym(ψ0 ⊗ ψA) is transformed into the output state, which can be
written in the form of equation 6 (see section 3):

|ψout〉 =
1

2
√

2
|Hda〉

(
α1

∣∣HdcHdc′
Ht

〉
+ α2

∣∣HdcHdc′
Vdt
〉)

+

1

2
√

2
|Vda〉 (α3 |HdcVdcHdt〉+ α4 |HdcVdcVdt〉) +

1

2
√

2
|Hda〉

(
α5

∣∣Hdc′
Vdc′Hdt

〉
+ α6

∣∣Hdc′
Vdc′Vdt

〉)
+

1

2
√

2
|Hda〉

(
α7

∣∣VdcVdc′Vdt〉+ α8

∣∣VdcVdc′Hdt

〉)
+

√
2

2
|ψ⊥〉 .

In the output state, the probability amplitudes of vectors from the following sets are equal to 0 :

S1 = {
∣∣HdcVdc′Hdt

〉
,
∣∣HdcVdc′Vdt

〉
,
∣∣VdcHdc′

Vdt
〉
,
∣∣VdcHdc′

Hdt

〉
},

S2 = {|VdcHdcHdt〉 , |VdcHdcVdt〉 , |VdcVdcHdt〉 , |VdcVdcVdt〉 , |HdcHdcHdt〉 , |HdcHdcVdt〉},
S3 = {

∣∣Vdc′Hdc′
Hdt

〉
,
∣∣Vdc′Hdc′

Vdt
〉
,
∣∣Vdc′Vdc′Hdt

〉
,
∣∣Vdc′Vdc′Vdt〉 , ∣∣Hdc′

Hdc′
Hdt

〉
,
∣∣Hdc′

Hdc′
Vdt
〉
},
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therefore, when the following events occur:

• A1 = {Each spatial mode has only one photon, photodetector registers single H-polarized
photon}, P (A1) = 1

4
,

• A2 = {2 photons in mode dc, photodetector registers single V -polarized photon},
P (A2) = 1

8
,

• A3 = {2 photons in mode dc′ , photodetector registers single H-polarized photon},
P (A3) = 1

8
,

we get a quantum Toffoli transformation preserving the state of the controlled qubit, which
succeeds with probability P (A1) + P (A2) + P (A3) = 1

2
. The main difficulty concerning

implementation of this scheme lies in necessity to count photons using photodetectors, although
such devices seem to be available now.

5. Algorithm realization

We present an algorithm for efficient calculation of the evolutionary operator correspond-
ing to a system of p particles and rectangle linear optical multiport considered in section 2 (see
Supplementary Materials). This is an optimization of the straightforward algorithm achieved
by means of sparse matrices and lazy tensor product calculation. It should be noted that when
running procedure 2 (see Supplementary Materials) in parallel, due to the fact that first three
nested loops are independent, it becomes possible to obtain a linear performance increase that
is proportional to the number of processors in use, whereas number of threads can grow up to
Size(Sp)2(p!).

6. Conclusion

In this paper, a rectangular linear optical grid was considered. Similar to the triangular
multiport presented in work [6], in order to implement unitary transformation of N optical modes
a number of beam splitters proportional to N2 is required. However, the optical networks
considered in the current paper are comparably easy to construct and permit the usage of a
sufficient number of ancilla photons and detectors to realize quantum teleportation. The formal
procedure of evolutionary operator calculation, corresponding to a given rectangular optical
network, introduces a step towards the efficient experimental realization of an arbitrary unitary
operator. At present, there are also several other problems of interest: construction of quantum
logic gates based on linear optics, the problem of simulation of quantum optical gates with
noise and implementation flaws being taken into account. Substantial problems that prevent
these schemes from being used in practice are qubit phase drifts and photon loss, which is why
effective correcting codes for qubit states are necessary. Unsolved technical problems are the
construction of an extremely sensitive and low-latency photodetector and reliable single-photon
sources.
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7. APPENDIX

Here we present procedures for calculation of evolutionary operator corresponding to
system of p particles and rectangle linear optical multiport (see alg. 1, 2, 3).

• @Transition Matrix Sparsed (see alg. 1) calculates matrix Ri and stores it in a sparse
matrix.
• @Kron And Mult Sparsed (see alg. 2) calculates U⊗ni (see article, eq. 7.2).
• @Lazy kron (see alg. 3) is an auxiliary function for @Kron And Mult Sparsed that

calculates tensor product matrix elements.

Complexities of simple and optimized procedures for calculation of evolutionary operator are
summarized in table 1. In table 2 dimentions of most important subspaces of Sp0 (see article,
eq. (7.1)) are given. In table 3 we present mean time and space resource demands for calculation
of evolutionary operator on symmetric subspace.

TABLE 1. Complexity of procedures depending on subspace size Size(Sp) and number
of particles p

Procedure Time Space
Transition Matrix Sparsed O (Size(Sp)(p+ 1)!) O (3(2p)p)

Transition Matrix Simple O

(
Size(Sp)

(
1+ O(Size(Sp)(2p)p)

(p+ 1)!
(1− (2p)p)

1− 2p
+ p!(2p)p

))
Kron And Mult Sparsed O (Size(Sp)2(p!)2p) O (Size(Sp)2)

Kron And Mult Simple O

(
1− (2p)2p

1− (2p)2
+ O ((2p)2p+

Size(Sp)4(2p)2p

)
Size(Sp)(2p)p)

TABLE 2. Subspaces
of Sp0.

Subspace Size
(Sp) (Size(Sp))
Full (2p)p

Asym
(

2p
p

)
Sym

(
3p−1
p

)
Coinc 2p

TABLE 3. Mean time and space for evolu-
tionary operator calculation on symmetric sub-
space using an approx. 50 GFLOPS processor

Time (s) Space (MB)
p simple sparsed simple sparsed
3 0.46 0.034 0.224 0.014
4 2 · 104 25.09 69.16 0.4623
5 1.6 · 1010 2.9 · 104 38.9 · 103 16.43
6 2.09 · 1016 4.8 · 107 34.15 · 106 618.45
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Algorithm 1 Transition Matrix Sparsed

Require: p ≥ 3, Sp {args: p for number
of particles, matrix Sp which rows repre-
sent basis vectors of a given subspace.
In MATLAB environment function that
generates Sp for symmetric subspace may
look like a

Sp = combinator(2 ∗ p, p, ′c′, ′r′).
}
idx, jdx, vals← array((2p)p)
cnt← 0
for i = 1 to len(Sp) do
Perms← uniqueperms(Sp(i))
for j = 1 to len(Perms) do
pos← 1
for k = 1 to p do
pos← l ∗ (pos− 1) +Perms(j, k)

end for
cnt← cnt+ 1
idx(cnt)← i
jdx(cnt)← pos
vals(cnt)← 1/sqrt(len(Perms))

end for
end for
T = make sparse matrix(idx, jdx, vals)

ahttp://www.mathworks.com/
matlabcentral/fileexchange/
24325-combinator-combinations-and-permutations

Algorithm 2 Kron And Mult Sparsed

Require: p ≥ 3, U, Sp {args: p for number
of particles, U for single particle evolution-
ary operator (see article, eq. 4), and ma-
trix Sp for basis vectors of given subspace
(see 1)}
T ← Transition Matrix Sparsed(Sp, p)
m← len(Sp)
Ur ← matrix(m,m)
for i = 1 to m do
tmp norm i← T (i, 1)
for j = 1 to m do
tmp norm j ← T (j, 1)
for r = 1 to len(T (i)) do
crj ← 0
for r = 1 to len(T (j)) do
up elem ← Lazy kron(T (i, r),
T (j, l), p, U)
crj ← crj+up elem∗tmp norm

end for
Ur(i, j) = Ur(i, j) + tmp norm j ∗
crj

end for
end for

end for
return Ur

Algorithm 3 Lazy kron

Require: 1 ≤ i, j ≤ (2p)p, p ≥ 3, U {args: i, j for row and col-
umn of element to be calculates, p for tensor product order and
U for single-particle evolutionary operator (see article, eq. 4)}
res← 1
while p > 0 do
ic, jc← i % rows(U), j % cols(U)
if ic is 0 then
ic← rows(U)

end if
if jc is 0 then
jc← cols(U)

end if
res← res ∗ U(ic, jc)
i← ceil(i/rows(U))
j ← ceil(j/cols(U))
p← p− 1;

end while
return res
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