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Estimation of the contact area of solids
by electrothermal analogy
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A method of thermal measurements has been proposed for determining the real surface contact area. Mea-

surement of the true contact area is somewhat difficult. We propose here a method of contact area measure-

ment, which is, in essence, an idealization of the well-known probe method employed in surface studies. In

this study, to determine (estimate!) the fraction of the contact surface area projected onto the plane of a

geometrical area of the section of the surface, it is proposed to use the electrothermal analogy. Considered

in terms of this analogy, electrical conductance is assumed to correlate with heat transfer. As a result, the

real contact area is found to be millions of times smaller than the area of the plane surface.
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1. Introduction

Calculation of the true contact area between solid bodies, if it is to be made with
due allowance for the processes involved, is an intricate problem of tribology, as well as that
of engineering and materials sciences [1]. The space between the areas in contact is usually
filled by an intermediate phase and products of destruction. This space is naturally pervaded
by electric fields generated by atoms and molecules of the surface. Any attempt at modeling
the real contact area should lean upon surface shape measurements made before contact [2],
but the assumptions made in simulation about the shape of the overlaying contact surfaces
largely depreciate these measurements [1].

The measurement of the true contact area is met with some difficulty. Indeed, mea-
surements conducted by traditional methods involving contact with a painted surface will
obviously yield an overestimate because of squeezing and adhesion, which, in the absence
of a color layer, may be completely absent. The method based on measuring the electrical
resistance of contacts does not actually permit operation without the application of pressure
and the unavoidable fracture in the contact areas. The techniques involved in nondestructive
testing depend markedly on the thickness of the layer within which radiation interacts with
matter.

It is difficult to correctly estimate the effects of the potentials generated by surface
atoms in these methods (for more details cf. [3, 4] and references therein).

We are proposing here a method of contact area measurement, which is, in essence, an
idealization of the well-known probe method employed in surface studies. In this approach,
the point probe is actually an atomically sized part of the surface of the body brought in
contact with an atomically sized region of the body under study.
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2. Formulation of the problem

First, we let heat (phonons) and electric current (electrons) be transported only
within small areas Si (i = 1, 2, 3. . . ), within which the distance between atoms of the
bodies brought in contact is on the order of the lattice constant of these bodies, or on the
order of interatomic distances in amorphous bodies. In this study, to determine (estimate!)
the fraction of the contact surface area

∑
i Si⊥ = Sr projected onto the plane of a geometrical

area S of this section of the surface, we propose to use the electrothermal analogy.
Considered in terms of this analogy, electrical conductance G is assumed to correlate

with heat transfer, which in common notation (see, e.g., [5]), is written as αSr, where α is
the heat transfer coefficient. The inverse quantity, 1/α, is usually termed thermal resistance
or the Kapitsa resistance. The use of the heat transfer coefficient at the boundaries of solids
is fully justified. Indeed, contact between solids, except for very small areas, is actually that
between the liquid mixtures covering these surfaces [5].

Let a certain amount of heat cross the boundary per unit time and unit area. Then,
the heat conductance flux in the first body, which has the temperature T1 far from the
point of contact and T ′1 at the boundary, the heat transfer flux between the boundaries with
temperatures T ′1 and T ′′1 , and, finally, the hear conductance flux in the second body with
the temperatures T ′′2 at the boundary and T ′′ far from it, are equal. These fluxes can be
cast as

λ1
δ1

(T1 − T
′

1) = α(T
′

1 − T
′′

2 ) =
λ2
δ2

(T
′′

2 − T
′′
),

where λj and δj are, accordingly, the thermal conductivities and the characteristic dimensions
of temperature variation for each of the bodies, with j = 1, 2. Obviously enough, at the
boundary, there is a temperature jump δT = T ′1 − T ′′2 .

The main assumption maintained in this work is that a solid can be considered
as an array of quasi-one-dimensional linear filaments. We will limit ourselves to a purely
mechanical model of connection [6-7], neglecting all rheological effects, adhesion, structure
change as a result of contact, and all electric and quantum potentials of interactions. This
should not qualitatively change the estimates, to which we are going to adhere in what
follows.

The conductivity of a quantum point contact between two one-dimensional conduc-
tors, one of which is located in body 1, and the other, in body 2, can be calculated in the
quantum one-dimensional filament approximation using Landauer’s relation [8, 9]:

G = G0

∑
ti(ni1 − ni2), (1)

where ti is the normalized squared amplitude of transit of an electron with charge e in
contact numbered i, nij is the number of such electrons specified in accordance with the
Fermi-Dirac distribution for each of the conductors with the number j = 1, 2, G0 = e2/(π~)
is the conductance quantum, and, as usual, ~ is Planck’s constant.

By electrothermal analogy, for the heat transfer quantum we have ~ωdω/(π~δT ),
where ω is the phonon frequency, and δT is the temperature jump at the boundary. The
frequency ω must naturally be smaller than the lowest of the Debye frequencies ω* charac-
teristic of bodies in contact.

Thus, Eq. (1) for heat transfer can be recast as:

αSr =
1

π

∫ ω∗

0

~ωdω
n1 − n2

δT
t, (2)



Estimation of the contact area of solids by electrothermal analogy 549

where t is the normalized squared amplitude of transfer, i.e., the transfer coefficient of a
phonon of frequency ~ω, and

nj =
1

exp
(

~ω
kTj

)
− 1

is the number of such phonons specified in accordance with the Bose-Einstein distribution
for each of the contacting bodies numbered j = 1, 2, and k is the Boltzmann constant.

3. Estimation of the projection of contact area

Obviously, at high enough temperatures (n1 − n2)/δT ∼= k/(~ω).
The square of the amplitude t of phonon transfer (vibration) over two semi-infinite

one-dimensional chains coupled elastically at the boundary was calculated for frequencies
lower than the lowest of the Debye frequencies for the corresponding contacting bodies [5].
It was shown [5] that t may be considered frequency independent and equal to:

t =
4ρ1c1ρ2c2

(ρ1c1 + ρ2c2)
2 ,

where ρj and cj are, accordingly, the densities and sound velocities in the bodies in contact.
In this approximation, the integral in Eq. (2) can readily be taken to yield:

αSr =
k2Θ∗
π~

4a

(1 + a)2
,

where Θ* is the lowest of the Debye temperatures for the materials in contact, and the
parameter

a =
ρ1
ρ2

c1
c2
,

is the relative characteristic of the contacting materials. It is usually a quantity on the order
of unity.

In an experiment, one usually studies the amount of heat P crossing a “geometric”
surface per unit time. It is known that P = αSδT . Thus, we come to the relation suitable
for the subsequent estimation:

Sr

S
=
k2Θ∗
π~

4a

(1 + a)2
δT

P
(3)

The temperature jump at the boundary is usually [1] on the order of δT ∼= 10K,
already at milliwatt-scale power, so that the real contact area turns out to be millions of times
smaller than the area of the plane surface. Taking into due account the various rheological
phenomena, adhesion and interaction potentials may significantly alter this estimate.

The relation operating with a temperature difference between the contacting bodies
offset from the points of contact, ∆T = T ′ − T ′′, would probably be more suitable for
practical measurements than Eq. (3). We thus come to the following equation:

Sr

S
=
k2Θ∗
π~

4a

(1 + a)2

[
∆T

P
− 1

S

(
δ1
λ1

+
δ2
λ2

)]
.

4. Conclusion

A method of thermal measurement has been proposed for determining the real surface
contact area. This method can be employed both directly for a preliminary evaluation of the
contact area and in the method of mechanical or atomic force sensing to refine the contact
area of the probe with a sample surface.
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