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1. Introduction

The possibility of collective spontaneous emission was first indicated by Dicke [1].
Later, these effects were detected in cesium atomic beams [2], as well as in ensembles of ru-
bidium atoms [3,4]. The ideas of Dicke were subsequently developed in numerous publications
(see for instance [5, 6]), which included mostly bi-level systems with different ways of popula-
tion inversion, possibly leading to superradiance - high intensity pulses, followed by a certain
delay in relation to the inverse state formation time. It should be emphasized that generally
speaking, population inversion is not a necessary condition for the creation of superradiance.
This phenomenon can occur if a dipole moment is induced on the upper state [7, 9]. This is
known as induced superradiance. The present work is not directly related to superradiance as
such. Below, within the framework of the ideas used for superradiance, we will investigate the
collective polarization emission of a complex atomic system which has been placed in a strong
magnetic field, the lower state of which, is populated by axially symmetric interactions.

2. Statement of the problem

In this paper, we consider the time dependance of the 33S1 state of the He atom, the
excitation of which is performed by a 23P multiplet of this atom. It is assumed that the system
has been placed in a magnetic field strong enough to break the thin bond of the P-multiplet
under consideration. We will also assume that the 23P state is populated from the ground state
of this atom by a proton or electron impact or other axially symmetric excitation sufficient to
break the fine bond, and its symmetry axis makes an angle θ with the axis OZ of the laboratory
frame of reference. As a result of this excitation, the ordering of the angular moments of the T 0

0

population and the longitudinal alignment of T 2
0 will be induced on the 23P -levels in the frame

of reference associated with the anisotropy axis. Then, by introducing a parameter α = T 2
0 /T

0
0 ,

which may be called the anisotropy parameter for the population efficiencies of the 23Pj state
magnetic sublevels in the laboratory frame of reference XY Z, one can write:

σj,m;j′,m′ =
1

2j + 1
A(0)(j, j′, l, s) + α

∑
q

(−1)j
′+m′

[
j j′ 2

m −m′ q

]
D

(2)
0,q(θ)A

(2)(j, j′, l, s), (1)
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where l and s are the orbital and the spin moments, D2
m,m′(θ) elements of three-dimensional

rotation [10], and A(k)
j depends on coefficients of vector moment addition:

A(k)(j, j′, l, s) = (−1)j
′+s+k+l

√
(2j + 1)(2j′ + 1)

{
l l k

j j′ s

}
. (2)

The Hamiltonian operator of the atomic system placed in a strong magnetic field of
strength H is defined by the orbital L̂ angular momenta and Ŝ – the spin moments:

Ĥ = Ĥ0 + µ0H(L̂+ 2Ŝ) + V̂ , (3)

where µ0 – is the Bohr‘s magneton, and operator V̂ describes the excitation of 33S1 state,
from the lower 23P ones (hereinafter referred to as the state of ‘b’ and ‘a’, respectively) by
electromagnetic field polarization. This polarization makes an angle χ with the OZ axis of the
laboratory frame of reference as follows:

(Vab)ma,mb
= 〈jama |dz| jbmb〉 = h̄ Ω̃(Wab)ma,mb

, (4)

where Ω̃(t) = E(t)〈r〉/h̄ is the Rabi frequency, which depends on the value of electric field
strength

−→
E (t) and 〈r〉 – reducible matrix element of operator r̂. The elements of the Wa,b

matrix are defined by the regulations of the vector additions:

(Wab)ma,mb
=

h̄ΩR(−1)la+s+jblb+1
√

(2lb + 1) (2jb + 1)

[
jb 1 ja
mb 0 ma

]{
lb la 1

ja jb s

}[
lb 1 la
0 0 0

]
. (5)

The excitatory electric field E(t) leads to the polarization of the medium, which is
characterized by a polarization vector

−→
P . The value of this vector is proportional to the mean

value of the operator of dipole moment d̂, evaluated on the correlation density matrix:

−→
P = −n0=

[
Sp
(
ρabd̂

)]
. (6)

From the last relation, one can see that the polarization of the environment by the excita-
tion process is defined by the correlation density matrix and hence, depends on its variation. In
turn, the right hand side of the Liouville equation, which describes the variation of the density
matrix, contains the Rabi frequency, which depends on the electric field strength. So, the mutual
variation of the density matrix and the electric field is described by a system of self-consistent
equations:

d

dt
ρ̃aa(t) = Γρ̃bb(t)−

i

h̄
(Vab(t)ρ̃ba(t)− ρ̃ab(t)Vba(t)) ,

d

dt
ρ̃bb(t) = −Γρ̃bb(t)−

i

h̄
(Vba(t)ρ̃ab(t)− ρ̃ba(t)Vab(t)) ,

d

dt
ρ̃ab(t) = −Γ

2
ρ̃ab(t)−

i

h̄
(Ea − Eb) ρ̃ab(t)−

i

h̄
(Vab(t)ρ̃bb(t)− ρ̃aa(t)Vab(t)) ,

ρ̃ba(t) = ρ̃†ab(t),

∇2E − 1

c2
∂2

∂t2
E =

4π

c2
∂2

∂t2
P,

(7)
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where Ea and Eb are stationary energy levels of the lower and upper states and matrix Γ
describes the relaxation process. It should be mentioned that the 23P state of the helium atom
consists of three levels, one of which with j = 2 is metastable [11]. Since the lifetime of the
upper 33S1 state is approximately one-third the size of the lower 23Pj state, this system of two
multiplets can be considered self-contained, which means that the total population of levels ‘a’
‘b’ is conserved.

In order to simplify the main calculation it is necessary to move the squared momen-
tum and its projection from the base of the eigenfunction to the diagonalized base (M-base),
which describes the integration with the strong magnetic field. Diagonalization was performed
analytically using the Mathematica software package. As a result, two sets of orthogonal
eigenvectors were obtained, each of which corresponds to the eigenvalues of the state ‘b’
(ε)Mb

= µ0HMb, (Mb = ±2.0) and the state ‘a’ (ε)Ma
= µ0HMa, (Ma = ±3,±2,±1.0). In the

latter case, the states with Ma = ±1 are doubly degenerate. Then, in light of the information
above, the eigenvalues of the Hamiltonian operator in a strong magnetic field takes the form:
(Ea)M0

= Ea + (εa)M0
, (Eb)M = Eb + (εb)M .

In order to reduce the system (7) to a more convenient form for numerical computation,
it is first necessary to introduce dimensionless time τ = t/τ0, where τ0 = 36 ·10−9 sec [11] – the
lifetime of the excited 33S1 state, and secondly, to introduce the density matrix ρi,j(t) (i, j =
a, b), connected with the analogous matrix used previously with the relations (ρii(τ))M,M1

=

(ρ̃ii(τ))M,M1 (i = a, b), (ρba(τ))M,M1 = (ρ̃ba(τ))M,M1 exp[−iτ((Eb)M − (Ea)M1)], (ρi,j(τ) =

(ρj,i(τ))†). Additionally, it is assumed that the system is situated in a circular resonator, the
eigenfrequency of which coincides with the transition frequency between the upper and lower
multiplets. In order to eliminate rapidly oscillating terms in the system (7), the solution of
the last equation of this system may be searched in the form of a progressive wave E(t) =
−E(t)eiωt, and the response of the system in the form of a superposition of such waves P (t) =
<(P(t))eiωt + i=(P(t))eiωt. Then, assuming that the field and polarization vector amplitudes
are slowly varying, and that their values are independent of the space variables (mean field
assumption), then system (7) takes the following form:

d

dτ
ρaa(τ) = Γaρbb(τ) +

iΩR

2

[
ρab(τ) (Wba)I − (Wab)I ρba(τ)

]
,

d

dτ
ρbb(τ) = −Γρbb(τ)− iΩR

2

[
(Wba)I ρab(τ) +

i

2h̄
ρba(τ) (Wab)I

]
,

d

dτ
ρab(τ) = −Γ

2
ρab(τ) +

iΩR

2

[
ρaa(τ) (Wab)I −

i

2h̄
(Wab)I ρbb(τ)

]
,

d

dτ
ρba(τ) = −Γ

2
ρba(τ)− iΩR

2

[
(Wba)I ρaa(τ) +

i

2h̄
ρbb(τ) (Wba)I

]
,

∂

∂t
E = −4πωn0=P ,

(8)

where P = Sp (ρabr/a0) and n0 are the density of the particles. In order the last equation con-
tains dimensionless values one can introduce the dimensionless Rabi frequency ΩR = τ0E〈r〉/h̄.
Than the last equation of the system (6) takes the form:

d

dτ
ΩR = −Ω2

M Sp

(
ρab

r

a0

)
, (9)
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where the introduced denotation

ΩM =

√
4πn0

(ea0
h̄

)2
h̄ω
〈r〉
a0
,

which depends on 〈r〉 – the dimensionless mean value of operator r̂ in the state 33S1.

3. The results of numerical calculation. Discussion

Before considering the results of numerical calculations, it should be mentioned that
the fine splitting for the 23Pj state is relatively small and that this splitting is due to the
strong magnetic field, compared to the energy difference of the ‘centers of gravity’ of 23Pj and
33S1 multiplets, the radiation of the system under consideration should be similar to that of
the bi-level system considered in detail in [8]. The emissions of such a system are harmonic
oscillations, known as nutations. After this, the system was integrated using initial conditions
ΩR(0) = 0 and the density matrix values that were obtained in the previous step. The process
of integration was accomplished via the series expansion method that was described in detail
in our previous articles [12, 13]. The results of our calculations are represented on the Fig. 1 –
Fig. 5.

FIG. 1. The dependence of the induced Rabi frequency on dimensionless time
for two values of particle density n0 = 1011 and n0 = 1013 cm−3

In Fig. 1, the dependence of the induced Rabi frequency on dimensionless time is
shown for two values of frequency ΩM (two values of particles density n0). From this figure,
one can see that the nutation frequency increases with increasing ΩM . Also, one can see that the
nutations take place relative to some curve that shifts up the abscissa axis with increasing ΩM .



566 A. G. Petrashen, N. V. Sytenko

FIG. 2. The dependence of the induced Rabi frequency on dimensionless time
for two laser detuning frequency values δ = 0, 0.5, 1

The dependence of the induced Rabi frequency upon time for some laser detuning
frequency values is represented in Fig. 2. From this plot, one can see that at zero detuning,
the dependence is represented by a sequence of rather short impulses. With increased signal
cleaning, the widths of the impulses first rapidly increase, however, with additional increased
detuning, the width of the impulses begins to decrease.

The dependence of induced Rabi frequency upon time for some values angle χ (the
angle between the direction of the magnetic field and the OZ axis of the laboratory frame
of reference) is illustrated in Fig. 3. From this figure, one can see that over the range of
angle 0 < χ < π/3 the emission signal increases and for χ > π/3 rapidly decreases, with the
signal vanishing at χ = π/2. A similar dependence for systems under coherent excitation was
reportedly fixed in our woks [12, 13]. It should be mentioned that such a dependence follows
from the fact that at χ = π/2, the system is in a state of coherent population trapping. In
other words, the population at the state 33S1 is zero, and thus, the system did not absorb the
electromagnetic radiation. The situation under consideration is illustrated on the Fig. 4, where
the dependence of the 33S1 state’s population for some values of angle χ is represented.

The problem is also illustrated here, in the frame of the approximate solution for sys-
tem (9) in the framework of perturbation theory over the Rabi frequency. By restricting to first
order perturbation theory over the Rabi frequency, one can write:

d

dτ
%ab(τ) = ΩRρaa(0) (Wab)I (τ),

d

dτ
ΩR(τ) = −Ω2

m=
[
Sp

(
ρab

rba
a0

)]
.

(10)
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FIG. 3. The dependence of the inducted Rabi frequency on dimensionless time
for two angle χ = 0, π/6, π/3, π/2. Curves 1 – 4

From these relations, it follows that:

d2

dτ 2
ΩR(τ) = −ΩR

{
Ω2
m=
[
Sp

(
ρaa(0) (Wab)I (τ)

rba
a0

)]}
. (11)

The right hand part of this relation can be calculated with help of Mathematica. The
resulting rather enormous relation takes a rather compact form in some cases. For instance, in
the case when χ = π/4 or χ = π/2, one can write:

d2

dτ 2
ΩR(τ) +

1

144
ΩM

2

(
11 + 8 cos

[
ΩL

h̄
τ

])
ΩR(τ) = 0, χ = π/4;

d2

dτ 2
ΩR(τ) +

7

72
ΩM

2 cos

[
ΩL

h̄
τ

]
ΩR(τ) = 0, χ = π/2.

(12)

Because of the assumption that only the induced emission was considered before, we
are therefore suggesting that in the system at τ < 0, the dipole moment was induced. So,
equations should be solved for the initial conditions ΩR(0) = 0.01, d

dτ
ΩR(0) = 1. The results

are represented in Fig. 5, from which, one can see that induced emission at χ = π/2 is
significantly lower than at χ = π/4.
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FIG. 4. The dependence of the 33S1 population for χ = 0, π/6, π/3 and π/2.
Curves 1 – 4

FIG. 5. The dependance on dimensionless time of of Rabi frequencies obtained
in the frame of perturbation theory χ = π/2 (lower curve), χ = π/4 (upper
curve)
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4. Conclusion

In this work, the induced emission of a complex atomic system in the presence of the
strong magnetic field was considered. The dependence of the induced emission on the atom’s
density and laser’s detuning was examined. It the case when the direction of the magnetic
field is orthogonal to the direction of the polarization of exiting radiation the induced emission
vanishes.
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