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From the Editorial Board 

In this issue, we present papers of colleagues and students of the late 

professor Vadim Petrovich Romanov, professor of the Statistical Physics 

Department, Faculty of Physics, St Petersburg State University. 

First of all, it should be said that V.P. was an outstanding scientist and 

teacher. He used to tell us that once when he started working at a physics 

department, Faculty of Physics, being a fresh graduate, the department chief told 

him: “Teaching could be performed in two ways – first way is when the 

scientific activity hinders teaching and the second way is when teaching hinders 

your scientific work. At our department the second way is preferred and 

accepted”. It should be pointed out that V.P. himself never preferred either of 

these extremes, always managing to successfully combine both - research and 

education. 

 

 
 

Science has much in common with art and sport – in both there is a place 

for brilliant guess and unexpected discovery; for prolonged learning, training, 

repetition and hard every-day work; for struggle to achieve the best results in 

certain area. In all these endeavors, people communicate with colleagues from 

various places within the country and all over the world. The role of V.P. could 

be best of all described by words concerning to sport, i.e. he was a real “player-

manager”; or by words from the theatrical world – he was a director-producer 

who simultaneously played several principal roles in the piece. 

However, V.P. was primarily a physicist. He possessed a rare feeling for 

physics and could qualitatively foresee possible interesting effects based on a 

semi-intuitive and skillfully simplified perception.  Being a theoretician, he 

collaborated frequently with the experimentalists and often suggested ideas for 

new experiments. He did it in such an interesting and eloquent way that it later 



gave rise to a whole series of scientific works, jointly written with 

experimentalists. This was the case when he worked on the statistical physics of 

liquid crystals, on the theory of electromagnetic and acoustic wave propagation 

and scattering in strongly anisotropic media. The results of these studies attained 

wide scientific recognition. 

His regular friendliness and patience were also characteristic features of 

Vadim Petrovich when working with students and colleagues. He never 

hesitated to put, as he called them himself, “foolish questions”, he was always 

ready to spend his time to aid his students in overcoming scientific difficulties, 

readily sharing with his colleagues his reach research and teaching experience. It 

was always clear that when V.P. entered a room, talks, conversations and 

discussions began around. He truly facilitated the joyful discussions and 

interactions of people with different ideas. 

V.P. very much disliked all sorts of paper-bureaucratic “assistance” for 

the scientific-educational process, which, over the last few years, became 

catastrophically strong, clearly harming both education and science. The 

scientist, as a researcher, and as a teacher, has to neglect his basic work with 

students and acolytes in order to create all manner of “plans”, “reports”, 

“projects”, “programs” and a lot of other “very important papers”. However, V. 

P. was an optimist, and hence, no negative tendencies could be considered by 

him in any other way than as temporal obstacles which should be overcome with 

minimal damage. 

V.P. was a harmonic person, a loving family man, and research was his 

passion. If the scientific problem occupied his mind, nothing could prevent him 

from thinking on it at any time and any place. It would be right to say that 

science and teaching, together with his family, were for him the main guiding 

points of life. For us, his students and colleagues, V.P. is and will further remain 

a benchmark teacher and scholar. 
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We calculate renormalization-group functions in the developed turbulence model for infinite dimensional

space d → ∞ using an operating method without renormalization constants. The renormalization fixed

point and index ω, obtained within the considered three loop approximation, are in agreement with previ-

ous calculations. The results demonstrate the efficiency of the method and the possibility of its complete

automation, which is crucially important in higher order perturbation theory computations.

Keywords: turbulence, renormalization group (RG).

Received: 20 June 2015

1. Introduction

The explanation for the anomalous scaling in fully developed turbulence, which de-
scribes the deviations from the Kolmogorov phenomenological theory, is an actual problem
of the modern statistical mechanics. Currently, the anomalous exponents have been cal-
culated and anomalous scaling was obtained only in the simplified turbulence model – the
rapid-change model of the passive scalar advection. It was shown in [1] that in spaces with
large dimensions d, this model is reduced to the Kolmogorov theory and that the exponents
of the anomalous scaling tends to zero, as d → ∞. These exponents were calculated in [1]
up to the first order in 1/d .

There are indications that in turbulence theory, based on the Navier-Stokes equa-
tions, the limiting dimension d → ∞ plays a role of the critical dimension of the space, for
which the Kolmogorov theory becomes valid [2]. For the analysis of this asymptotic theory
the renormalization group method and ε-expansion were applied in [3]. The studies in [3]
revealed significant simplifications in the limit d → ∞. This allowed the authors to perform
the three loop analytical calculations of the RG-fixed point and the index ω and then to guess
the formula for these quantities analogous to the corresponding one in the Heisenberg model
for the developed turbulence [4]. It would be highly interesting to verify the correctness
of this formula, comparing its predictions with those of fourth order perturbation theory.
However, such verification is not a trivial task, because of the number of diagrams dramati-
cally increases with the increasing order of the perturbation theory (there are 1692 four-loop
Feynman diagrams). Thus, the automation of the computational process is required.
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In the current work, we apply the method of automatic computations for the renor-
malization group functions developed in [5], [6] in application to three-loop calculations.
The method described in [5], [6] allows one to represent the renormalization group func-
tions without using the renormalization constants in terms of the non-singular in ε integrals.
All necessary terms of the ε-expansion can be found by expanding the integrands of these
integrals into a Taylor series.

The automatic three-loop calculations confirm the ω index value obtained in [3]. The
value for the charge in the fixed point differs from the corresponding one in [3], because of
the utilization of different renormalization schemes.

2. The model

The microscopic model of the fully developed, homogeneous, isotropic turbulence of
the incompressible viscous fluid or gas is usually described by the stochastic Navier-Stokes
equation with a random driving force:

∂tvi = −∂iP − (vj∂j)vi + ν0∂
2vi + fi , (1)

where vi is the velocity field, P and ν0 are the pressure and the kinematic viscosity, re-
spectively, fi is the random force per unit mass. Equation (1) is complemented by the
incompressibility condition ∂ivi = 0, which leads to the transverseness of the velocity field
and force. We assume for f a Gaussian distribution with zero mean and correlator:

〈fi(t1,x1)fj(t2,x2)〉 ≡ Df
ij(t1 − t2,x1 − x2) , (2)

Df
ij(t,k) = δ(t)Pij(k)df(k) , (3)

where Pij(k) ≡ δij − kikj/k
2 is the transverse projector. In the inertial interval of the

wavenumbers m � k � kdiss (m
−1 = L is the external turbulence scale, kdiss is the dissipa-

tive scale) one can use the power-law model

df(k) = D0k
4−d−2εθ(k −m) , (4)

where ε is analogous to the 4 − d parameter in the Wilson theory of the phase transitions.
The physical value of ε is equal to 2 and corresponds to an ideal pumping of the energy into
the system by infinitely-sized vortices.

According to the fundamental theorem [7], the stochastic equation (1) is equivalent
to quantum field theory with a double set of transverse fields determined by the action:

S0 = v′Dfv′/2 + v′
(−∂tvi − (v∂)v + ν0∂

2v
)
. (5)

Here, all the necessary integrations and summations over indices are meant. The contribution
of the pressure in (5) is omitted due to the transverseness of the auxiliary field v′.

The diagrams of the perturbation theory determined by the action (5) contain ul-
traviolet (UV) divergences, when ε → +0. The invariance of the action under the Galilean
transformations results in the only singly divergent 1-irreducible correlation function,

Γ
(0)
ij =< viv

′
j >1−ir (1-irreducible response function). To cancel divergences in this function,

one needs the only one counterterm of the type v′∂2v. The renormalized action is given by:

S = v′Dfv′/2 + v′
(−∂tvi − (v∂)v + νZν∂

2v
)
, (6)

which is obtained from (5) by the multiplicative renormalization of the parameters:

D0 = g0ν
3
0 = gμ2εν3 , ν0 = νZν , g0 = gμ2εZg , Zg = Z−3

ν , (7)

where μ is the renormalization mass, g is the dimensionless renormalized charge and the
renormalization of the fields is not required.
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In the following, we use the renormalization scheme, analogous to the renormalization
on the zero frequencies and moments, complemented by the extra condition μ = m. Let
Γij(k, ω) be the 1-irreducible response function calculated in accordance with action (6)
with the renormalization constant Zν = 1. This function is proportional to the transverse
projector:

Γij(k, ω) = Pij(k)Γ(k, ω) , Γ(k, ω) =
Γii(k, ω)

d− 1
. (8)

Let us now define a normalized function equal to unity in the zero (loop-less) approximation:

Γ(k, ω) =
Γ(k, ω)

−νk2
. (9)

Then, for its renormalized version, we require the following normalization conditions:

Γ
R |k=0,ω=0,μ=m= 1 , (10)

namely, all diagrammatic contributions to the renormalized function Γ
R
must be canceled

out by the counterterms in the normalization point k = 0, ω = 0, μ = m. This condition
defines the subtraction scheme and the form of the renormalization constant Zν .

The Feynman diagrammatic technique, corresponding to the model (6), (3), (4),
contains the following propagators, given in the (k, t)-representation by:

< vi(t1)vj(t2) >=
df(k)

2νk2
exp

[− νk2|t1 − t2|
]
Pij(k) = −−−−−− (11)

< vi(t1)v
′
j(t2) >= θ(t1 − t2) exp

[− νk2(t1 − t2)
]
Pij(k) = −−−−−|− (12)

The interaction in (6) is represented by the triple vertex −v′(v∂)v = v′jVjslvsvl with
the vertex factor:

Vjsl = iksδjl = −−−|−
〈
•
, (13)

where ks is the momentum argument of the field v′. The crossed endpoint in (13) corresponds
to the field v′, the endpoint marked by the bold dot corresponds to the field vs contracted
with iks and the plain line stands for the field vl.

We represent the perturbation series for the function Γ as:

Γ(k, ω,m, μ) =
∑
n�1

unμnε
∑
i

χ(i)
n (k, ω,m) , u ≡ Sdg

(2π)d
, (14)

where the i-summation runs over all n-loop diagrams of the function Γ. For convenience, we
introduce a normalized charge u, in which Sd is the surface area of the unit sphere in the
d-dimensional space.

3. Renormalization group equations, RG-functions expressed in terms of the
renormalized Green functions

In our renormalization scheme the renormalization constants Zν and Zg (similar to the
MS scheme) depend only on the space dimension d and parameter ε and do not depend on the
ratio m/μ. The equations of the renormalization group are obtained from the independence
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of the non-renormalized Green functions on the parameter μ at fixed ν0 and g0. The RG-
equations look exactly the same as in the MS scheme [8]. In particular, the equation for the
1-irreducible function ΓR is given by:

(μ∂μ + β(g)∂g − γν(g) ν∂ν)Γ
R = 0 , (15)

where

γi(g) =
−2εg∂g lnZi

1 + g∂g lnZg
, β(g) = −g(2ε+ γg) = −g(2ε− 3γν) . (16)

The latter equation in (16) is a consequence of the relation between the renormalization
constants Zg and Zν in (7). The equations (16) define the β and γν RG-functions in terms
of the renormalization constants. These functions are finite and do not contain poles in ε,
because of the renormalizability of the theory. However, the required preliminary calculation
of the singular in ε renormalization constants is complicated, especially for the numerical
evaluation of β and γν . Using equation (15), we express these RG-functions in term of the
renormalized Green function ΓR.

First of all, we derive the RG-equation for the normalized function Γ
R
. Employing

(9) and (10) we find:

(μ∂μ + β(g)∂g − γν(g) ν∂ν)Γ
R
= γνΓ

R
. (17)

Considering this equation in the normalization point k = 0, ω = 0, μ = m and taking into
account that:

Γ
R |k=0,ω=0 (m,μ, ν) = Γ

R |k=0,ω=0 (m/μ) , ∂gΓ
R |k=0,ω=0,μ=m= 0, (18)

we obtain:
γν(g) = −(m∂mΓ

R
) |k=0,ω=0,μ=m . (19)

In (19), the RG-function γν is written in terms of the renormalized function Γ
R
. Usually,

computation of the renormalized functions involves calculation of the divergent in ε renor-
malization constants. For calculations involving finite objects, we need to take into account
the counterterms by the R-operation, acting on the diagrams of the basic action, where
Zν = 1,

ΓR = RΓ = (1−K)R′Γ . (20)

Here, the R′-operation eliminates divergences in the subgraphs of diagrams and the operation
(1 − K) removes the remaining superficial divergence. The R′-operation can be expressed
as [9]:

R′Γ =
∏
j

(1−K)jΓ , (21)

where, for each diagram from Γ, the product runs over all its divergent subgraphs. The
renormalization operation (20) eliminates the divergences in the function ΓR as a whole and
separately in each diagram.

The formal UV-divergence index of the 1-irreducible function < vv′ >1−ir equals 2.
This leads to the possible counterterms of the k2 and iω types. However, as is seen from (13),
the external leg v′ of this function is always multiplied by the external moment k, therefore,
only the divergence of the k2-type remains. In our renormalization scheme, this corresponds
to the following subtraction operations for the whole function Γ and for the 1-irreducible

subgraphs of diagrams χ
(i)
n from (14), respectively:

(1−K)Γ(k, ω,m, μ) = Γ(k, ω,m, μ)− Γ |k=0,ω=0,μ=m ,

(1−K)χj(k
2
j , ωj, m) = χj(k

2
j , ωj, m)− χj |kj=0,ω=0 , (22)
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where kj and ωj are the moment and frequency incoming to the subgraph χj. The subtrac-
tion of the divergences in the subgraphs leads to the finite integrals corresponding to the
renormalized Feynman diagrams.

Note that the dimensionless counterterm Γ |k=0,ω=0,μ=m does not depend on m, then,
taking into account (19), we obtain:

γν(g) = −(m∂mRΓ) |k=0,ω=0,μ=m= −(m∂mR
′Γ) |k=0,ω=0,μ=m . (23)

Substituting expansion (14) in (23), we find

γν(g) =
∑
n�1

un(γν)n , (γν)n = −m−2nε
∑
i

(m∂mR
′χ(i)

n ) |k=0,ω=0,μ=m . (24)

This is the main relation for the calculation of the RG-function γν .

4. Large d limit

Let us consider the diagrams in the momentum representation in the spherical co-
ordinate system. Then, the dimension of the space d enters into the integration measure∫∞
0

dk kd−1
∫ π

0
dθ (sin θ)d−2... and into the lines vv of diagrams as k2−d−2ε. The number

of vv-lines in diagrams of the function Γ coincides with the number of loops, consequently
the pure integration momenta can be always associated with vv-lines. Then, the factor
θ(k − m)k2−d−2ε from (4) changes

∫∞
0

dk kd−1 to
∫∞
m

dk k1−2ε and the dependence on d in

the radial part disappears. When d → ∞, the angular weight (sin θ)d−2 has a sharp maxi-
mum at θ = π/2. Since cos(π/2) = 0, the inner products of the different internal integration
moments vanish. Then, in the leading approximation at d → ∞ one may consider the in-
ternal integration moments to be orthogonal to each other and to the external moment p.
In this approximation, the integrands do not depend on angles and the angular integrations
give a factor Sd, included in the definition of the charge u (14). The latter charge is finite
in the renormalization group fixed point.

Therefore, the main contribution to the Green functions at d → ∞ is given by the
diagrams without the inner products, which drastically decreases the number of diagrams.
In the one loop approximation from four diagrams in Fig. 1, only the first one gives the
non-zero contribution:

χ
(1)
1 |k=0,ω=0=

∫ ∞

m

dk
k1−2ε

4k2
. (25)

Then, from equation (24), we find the one-loop expression for the anomalous dimension γν:

(γν)1 = −m2εm∂mχ
(1)
1 |k=0,ω=0=

1

4
. (26)

Fig. 1. One-loop diagrams.

In the two-loop approximation in the leading order for large d, only 6 of the 120
diagrams contribute. Let us consider the diagram in Fig. 2, as an example. Its integration
over time gives:

χ
(1)
2 |k=0,ω=0=

−1

32

∫ ∞

m

dkk1−2ε

∫ ∞

m

dqq1−2εk2

(
2

k4(k2 + q2)
+

1

k2(k2 + q2)2

)
. (27)
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Fig. 2. Example of the two-loop diagram.

This diagram has a divergent subgraph with the circulating (internal) moment q and external
moment k. The corresponding divergence of the integral over q at ε = 0 is logarithmic and
localized in the first summand in (27). Acting on this subgraph by the subtraction operation
(1−K) and using (21), we obtain:

R′χ(1)
2 |k=0,ω=0=

−1

32

∫ ∞

m

dkk1−2ε
{∫ ∞

m

dqq1−2ε k2

k2(k2 + q2)2
+

+
[ ∫ ∞

m

dqq1−2ε 2k2

k4(k2 + q2)
−

∫ ∞

μ

dqq1−2ε 2k
2

k4q2

]}
. (28)

In accordance with (24), the contribution of this diagram to the (γν)2 is given by:

−
(
μ4εm∂mR

′χ(1)
2 |k=0,ω=0

)
|μ=m=

−1

32

∫ ∞

1

dqq1−2ε
[ 2

1 + q2
− 2

q2
+

1

(1 + q2)2

]
+

− 1

32

∫ ∞

1

dkk1−2ε
[ 2

k2(1 + k2)
+

1

(1 + k2)2

]
. (29)

Changing the variables, as q2 = x and k2 = x and joining the integrals, we rewrite (29) as:

−
(
μ4εm∂mR

′χ(1)
2 |k=0,ω=0

)
|μ=m= − 1

32

∫ ∞

1

dx
x−ε

(x+ 1)2
. (30)

The calculation of the remaining two loop diagrams leads to

(γν)2 =
1

16

∫ ∞

1

dx
x−ε

(x+ 1)2
. (31)

In the MS-scheme the RG-functions do not depend on ε. In our scheme, the one loop
result (26) is also independent of ε. The dependence on ε of the two loop result can be found
by expanding the integrand of (31) into the Taylor series. The number of the needed terms
of this series is determined by the global desired precision. For the third order expansion in
ε, taking into account that the charge u in the fixed point u∗ = O(ε), it is necessary to know
two following terms

(γν)2 =
1

32
(1− 2ε ln 2) +O(ε2) . (32)

Next, we consider an example of three-loop diagram calculation.
When the integration over time is performed, the diagram in Fig. 3 is given by the

integral:

χ
(1)
3 |k=0,ω=0=

1

156

∫ ∞

m

dk k1−2ε

∫ ∞

m

dq q1−2ε

∫ ∞

m

ds s1−2ε 1

k2(k2 + q2)(k2 + q2 + s2)
. (33)
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The diagram in Fig. 3 contains two divergent subgraphs: the one-loop subgraph with internal
circulating momentum s and external moments k and q (”subgraph 1”) and the two-loop
subgraph with internal circulating moments q and s and external momentum k (”subgraph
2”). The action of the R′-operation is reduced to the consistent application of two subtraction
operations (1 −K)2(1 −K)1 on the subgraphs in an arbitrary order. Then, from (33), we

Fig. 3. Example of the three-loop diagram.

obtain:

R′χ(1)
3 |k=0,ω=0=

1

156

∫ ∞

m

dk k−1−2ε
{∫ ∞

m

dq
q1−2ε

(k2 + q2)

[ ∫ ∞

m

ds
s1−2ε

(k2 + q2 + s2)
−

−
∫ ∞

μ

ds
s1−2ε

s2

]
−

∫ ∞

μ

dq
q1−2ε

q2

[ ∫ ∞

μ

ds
s1−2ε

(q2 + s2)
−
∫ ∞

μ

ds
s1−2ε

s2

]}
. (34)

Here, the first two summands are the results of the action of the operation (1−K)1 on the
one-loop subgraph; the third and fourth summands are the results of the action of (1−K)2
on the whole diagram after the action of (1 − K)1. Differentiating (34) with respect to

m, one can easily see that −
(
μ6εm∂mR

′χ(1)
3 |k=0,ω=0

)
|μ=m= 0, i.e. this diagram does not

contribute to (γν)3.
The total amount of the three-loop diagrams is 4080 and only 83 of those survive in

the limit d → ∞. Their contribution is given by:

(γν)3 =
1

512
(7 + 6 ln 2) +O(ε) . (35)

Therefore, from (24), (26), (32) and (35), it follows that the anomalous dimension γν in the
three-loop approximation is:

γν =
u

4
+

u2

32
(1− 2ε ln 2) +

u3

512
(7 + 6 ln 2) +O(u4) . (36)

Substituting (36) into the β-function (16) and solving the equation β(u∗) = 0, we find the
value of the charge in the fixed point in terms of the ε-expansion

u∗ =
8ε

3
− 8ε2

9
− 4ε3

9
(1− 2 ln 2) . (37)

According to (16), (36) and (37), the index ω = β ′(u∗) is:

ω = 2ε+
2

3
ε2 +

10

9
ε3 . (38)

The latter expression coincides with one obtained in [3].
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5. Conclusions

We have performed calculations for the anomalous dimension γν and exponent ω in
the three-loop approximation in the fully developed turbulence model for large numbers of
dimensions in space, by determining the of RG-functions without renormalization constants.
Our calculations demonstrated the efficiency of the applied method. Its main advantage is
that for the computation of the n-loop results, one needs to evaluate the set of the (n− 1)-
dimensional integrals, free from the singularities in ε. The computation procedure can
be automated with relative ease. The main difficulty in higher order perturbation theory
calculations is in the rapidly increasing number of diagrams with vector fields and the triple
interaction vertex. In the considered limit, d → ∞, the number of the diagrams is notably
decreased. Thus, in four loops, only 1692 diagrams remain of the original 417872.

The significant decrease in the number of diagrams may indicate that the ε-expansion
of the function γν(ε) has a finite radius of convergence in the limit d → ∞, in contrast to the
general case, when one observes a factorial growth of the corresponding series coefficients.
A similar thing occurs in phase transition theory when the anomalous dimensions γ(ε, n)
is calculated. Here ε = 4 − d, where d is the dimension of the space and n is the number
of the field components. At fixed n the coefficients of the ε-expansion grow factorially, but
the coefficients of the (1/n)-expansion have a finite radius of the convergence, as the series
in ε [8]. Currently, in turbulence theory only the third order in ε at d → ∞ of the double
(ε, 1/d)-expansion is known. However, the results obtained in the current work and in [3]
have revealed some simplicity for this expansion. It is seen from the equations (37) and
(38) that the irrational contribution to u∗ (the charge at the fixed point depends on the
renormalization scheme) with ln 2 disappearing in the physical quantity of the index ω. The
contributions of some particular diagrams proportional to ln2 2 , π2, dilog(3/2), typical for
the series of critical exponents in critical dynamics models, are all canceled out in the total
sum of diagram. The coefficients of (38) are rational numbers. This gives the possibility to
sum the series and find the function γν(ε) at d → ∞ without using the ε-expansion.
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The refraction of an extraordinary light wave in a layer of a chiral liquid crystal with the director rotated 90◦ has

been studied. In this structure, if a light wave is incident on the surface of the liquid crystal at a large angle and

the light passes through the whole layer, it refracts at the opposite boundary of the layer. The angular dependence

of the light transmission through the liquid crystal layer has been researched. It has been demonstrated that the

electric field changed the character of the refraction of the extraordinary wave and the light started to pass through

the layer. The threshold voltage of the light transmission has been determined, as well as its dependence on the

light incidence angle. The effect dynamics have been studied and the angular dependence of the light transmission

decay time has been determined.
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1. Introduction

The use of liquid crystals (LC) in display technology is based on the control of the
optical properties of LC thin layers with the help of an electric field. Under the influence of
an electric field, the director of an LC (the direction of preferential orientation of molecules)
changes its position in space, affecting the intensity of the light transmitting through the liquid
crystal layer. Associated with the director reorientation, the light transmission switch-on and
switch-off times τon and τoff are the most important performance characteristics of liquid crystal
devices. Due to this, there is a need to study the changes of orientation structure of liquid
crystals under the influence of external electric fields, as well as the dependence of τon and τoff

on various parameters for liquid crystal layers. The research of the LC director reorientation
dynamics at different distances from the LC layer boundary is of particular interest.

Such investigation can be performed for a liquid crystal layer with a helical structure,
using the phenomena of refraction [1–3]. Refraction was observed in plain liquid crystal layers,
displaced between glass surfaces, on the surface of which the director was parallel to the
surfaces and had the same direction. In the middle of the layer, the director was rotated 90◦

from the director position at the boundaries. The extraordinary ray, incident from the glass to the
liquid crystal layer at angles exceeding the angle of total internal reflection of the ordinary ray,
entered the LC, refracted inside the layer, and returned back through the same glass surface.
Calculated predictions showed that the distance from the surface layer to the ray refraction
point decreased, when the angle of incidence for the light to the LC layer was increased. The
application of an electric field led to distortion of the LC layer structure orientation and a change
in the ray’s path. When the magnitude of the electric field exceeded the Fréedericksz threshold,
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refraction was disturbed – the ray passed through the layer. In works [3–5], the intensity of
the transmitted light, the threshold voltage, and the cell transmission switch-on and switch-off
time dependencies on the light angle of incidence were studied. Varying the angle of incidence
allowed us to study the change in the local orientation of the LC director under the influence of
an electric field with a smooth change of the depth of the ray penetration into the layer.

When using liquid crystals in a variety of electro-optical devices, there are several
sets of boundary conditions that allow the creation of the necessary structure for LC director
orientation, thereby changing the optical characteristics of the devices. Therefore, comparison
of the characteristics for a system with 180◦ rotation of the director, studied in works [3–5],
with the characteristics of other helical structures having different boundary conditions is of
great scientific and practical interest. In this regard, the purpose of this work was to study light
refraction in the layer of the plane-oriented, chiral liquid crystal (used in works [3–5]), in which
the direction of the director on surfaces differs by 90◦.

2. Experiment

The experimental cell for studying the refraction in chiral liquid crystal layers was
composed of two glass trapezoidal prisms (1) and (2) with a base size of 50×25 mm and height
of 18 mm (Fig. 1). The inclination of the entrance faces to the base was 68◦. The refractive
index of the prisms ngl was 1.7002 for the wavelength λ = 632.8 nm. There were transparent
conductive coatings (electrodes) and thin polyimide layers at the prism bases. By rubbing the
latter, the planar orientation was set with the surface for the liquid crystal providing strong
anchoring for the LC director. At the same time, the LC director at the layer’s first boundary,
where the ray of light was incident, was directed perpendicular to the plane of the figure (Fig. 1).
At the second boundary of the layer the director lies in the plane of the figure. The required
LC layer thickness of 8 µm was set with the help of Teflon spacers. The space between the
prisms was filled with the chiral liquid crystal mixture (previously used in works [4, 5]) with
the helical pitch P0 = 32 µm that consisted of LC-1466 (NIOPIK) with the chiral dopant VIH-3
(Vilnius State University, Lithuania). The dielectric anisotropy ∆ε of LC-1466 was 11.7 for a
frequency of 1 kHz. The principal refractive indices values for the ordinary and extraordinary
rays n and n0, for wavelength λ = 632.8 nm were 1.691 and 1.511 respectively. For a given
layer thickness and helical pitch, the LC director was rotated by 90◦ when passing from one
layer’s boundary to the other.

The scheme of the experimental setup is shown in Fig. 2 (top view). The beam of light
from a helium-neon laser with wavelength λ = 632.8 nm and the diameter of 1 mm was incident
to the studied cell with the liquid crystal (LC-cell) through the half-wave plate λ/2. With the
half-wave plate, the polarization vector of the incident ray was parallel to the LC director at
the interface between the liquid crystal and glass. Next, the light fell on the photodetector Ph,
whose signal was recorded with the digital oscilloscope Osc (ASK-3106) and the computer.
For signal control, we used a bipolar rectangular voltage generator ANR-3122, forming voltage
pulses up to 10 V with the duration of 0.1 – 5.0 seconds and carrier frequency f = 1 kHz.
The controlled voltage from the generator was applied to the electrodes of the cell and the
oscilloscope. In order to change the angle of incidence δ for the ray to the liquid crystal layer,
the cell was mounted on the rotating table with the angle-reading device with an accuracy of
1 minute.
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FIG. 1. LC-cell: 1 – liquid crystal layer; 2,3 – glass prisms; 4 – director con-
figuration in liquid crystal layer; 5 – the trajectory of the extraordinary ray in
the absence of an electric field; 6 – the trajectory of the extraordinary ray when
electric field is applied; U – control voltage

FIG. 2. Scheme of experimental setup: He-Ne – laser; λ/2 – half wave plate; LC-
cell – liquid crystal cell; Ph – photodetector; G – generator; Osc – oscilloscope;
PC – computer

3. Experimental results

Primarily, the dependence of the intensity of the light passing through the cell at the
angle of incidence for the extraordinary ray to the LC layer was obtained (Fig. 3). The figure
shows that with angles of incidence smaller than the critical angle of total internal reflection
for the ordinary ray (δ = 62.7 when n0 = n⊥ = 1.511), the intensity of the transmitted light is
maximized. The observed intensity oscillations in the areas of max transmission of the cell may
be caused by interference between the rays refracted from the first and second layer boundaries,
since a change in the angle of incidence results in a phase difference change between the
interfering rays. In the 62.0◦ – 63.1◦ angular range, the LC-cell light transmission changes
from its maximum value to zero. The decreasing intensity deviations from monotony in this
area are also associated with the interference of the rays reflected from both boundaries of the
LC layer. The value of the critical angle of refraction (the extraordinary ray return back near
second interface), which was 62.7◦ (within experimental error), coincided with the limit angle
of refraction for the LC-cell which had its director rotated by 180◦ [3–5].
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FIG. 3. The dependence of the intensity I of the light passing through the cell
on the incidence angle δ of the extraordinary ray to the LC layer

With angles of incidence larger than the critical angle of refraction (62.7◦), the effects
of the electric field of sufficient magnitude on the cell led to the disturbance (cut-off) of
extraordinary ray refraction and light passing through the cell. The oscillograms of the control
voltage U = 8 V at frequency of 1 kHz (a) and the optical response (b) for an angle of incidence
of 63◦ are shown in Fig. 4. For comparison, there are also optical responses of the LC-cell to
the applied electric field, when the light falls perpendicular to the LC layer in an electrically-
controlled birefringent mode (c) and the cut-off of the Mauguin regime (d), specific to the twist
cells with a 90◦ rotation of the director. From the obtained oscillograms, it follows that the times
for establishing maximum transmission in these modes differ. The time for complete refraction
cut-off τ1 is significantly higher than the similar parameter in electrically-controlled birefringent
modes τ2 and the cut-off of the Mauguin regime τ3. Upon cancellation of the electric field, the
fastest cessation for light transmission is specific to the refraction recovery mode.

The refraction cut-off mode, similar to the electrically-controlled birefringent modes and
the Mauguin regime cut-off, has a threshold value. The threshold voltage of light transmission
through the cell Uth was determined by using the dependence of the transmitted light intensity I
on the applied voltage U . As an example, Fig. 5 shows the dependence of I on U for the angle
of incidence of 62.8◦.

The increase in the light angle of incidence to the liquid crystal layer within the 62.8◦ –
79.7◦ range resulted in an increase in the threshold voltage from 1.1 V to 8.2 V (Fig. 6). A
similar dependence was also observed in the LC cell with 180◦ rotation of the director, studied
in work [3]. To interpret the results, the depth of the ray penetration into the layer at different
angles of incidence was calculated using the formula:

z (δ) = d− 2d

π
asin

√√√√√√
(

1 − n2
0

n2
gl sin δ

)
n2
e

n2
e − n2

0

, (1)
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FIG. 4. Oscillograms of control voltage and optical response. (a) – Control
voltage U = 8 V, and carrier frequency f = 1000 Hz. (b) – cut-off refraction
mode, the angle of incidence of light on the layer δ = 63◦, z = 7.3 µm.
(c) – electrically-controlled birefringence mode, (d) – cut-off Mauguin mode.
Oscillograms (c) and (d) are obtained for the light incidence along the normal to
the layer

where, d – the thickness of the LC, δ – the angle of incidence for the extraordinary ray to the
layer, z – the depth of the ray penetration into the layer. The dependence of z on δ is shown
in Fig. 7. It is seen from Fig. 7 that as the angle of light incidence to the layer increases, the
penetration depth decreases. When z decreases, the dependence of Uth on z shows an increase
in the threshold voltage. The increase of Uth when δ increases, i.e. when the depth of the ray
penetration into the layer decreases, can be attributed to the fact that the deviation of the LC
director at the same angle close to the surface requires more voltage than in the layer depth [2].
It should be noted that a change of 1 in the angle of incidence results in a change of the ray
penetration depth by 250 nm (Fig. 7). The latter provides a unique opportunity to study the
local orientation structure of the LC director and its change dynamics in external electric fields.
Therefore, we also studied the reorientation of the LC director upon switching off of the electric
field for different angles of light incidence to the layer, and hence for the penetration depth z.
The magnitude of the control voltage, disturbing the terms of refraction, exceeded the threshold
voltage corresponding to all achievable values of z and was the same (U = 8 V) for all the
angles of incidence (the depth of the ray penetration into the layer). In this case, in the layer
with the equally deformed LC structure, we studied the relaxation of the local deformation of
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FIG. 5. The intensity of the transmitted light on the control voltage applied at
an angle of incidence of the extraordinary ray in the LC layer. δ = 63◦

FIG. 6. The dependence of the threshold voltage Uth on the angle of incidence
of the extraordinary ray δ on the LC layer
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the director, which differed at different distances from the layer boundary. The recovery time
of the optical transmission of the cell τr was determined using the oscillograms of the optical
response to the electric field. The relaxation times correspond to the time taken to relax from
100% to 10% of the maximum transmission. As an example, the oscillograms for the optical
response relaxation for several angles of incidence are shown in Fig. 8.

FIG. 7. The dependence of the penetration depth z extraordinary ray in the liquid
crystal layer on the incidence angle δ

The dependence of τr on the depth of the ray penetration into the layer z for the voltage
of 8 V is shown in Fig. 9. The figure shows that the recovery time for optical transmission τr
decreases along with the depth of the light penetration into the liquid crystal layer. Qualitatively,
such dependence can be explained by the fact that the recovery rate of the LC initial orientation
is proportional to the magnitude of elastic torque that affects the LC director. This elastic torque
is at its maximum in the area of the LC layer, where there is a maximum orientation gradient
of the director, when the field is off. We can assume that this is why τr decreases along with
the distance from the boundary of the layer z [5].

4. Conclusion

The refraction of light in the chiral liquid crystal layer (helical pitch of 32 µm) with the
90◦ rotation of the director at different angles of incidence to the LC layer (the depth of the
extraordinary ray penetration into the layer) has been studied. The effect of the electric field
on the extraordinary ray refraction at different distances from the LC layer surface has been
researched. The threshold character of the refraction cut-off (the light transmission of the cell)
has been found. The dependencies of the threshold voltage of the refraction cut-off Uth and the
refraction recovery time τr of the electric field switching off on the depth of the ray penetration
into the LC layer have been obtained.

The comparison of the results of the experimental research of the electric field influence
on the extraordinary ray refraction in the helical liquid crystal structures with the 90◦ and 180◦

director rotation of the showed that in both structures, the minimum threshold voltage for the
refraction disturbance Uth(min) corresponds to the minimum angle of incidence to the layer. At
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FIG. 8. The trailing edge of the optical response of the cell after the field at
different depths of penetration of the beam in the LC layer. a) pulse voltage,
U = 8 V, f = 1 kHz. b) – d) optical feedback for z = 7.2 µm, z = 5.1 µm and
z = 4.0 µm, respectively

FIG. 9. Dependence of refraction recovery time τ on penetration depth z extra-
ordinary ray in the liquid crystal layer for voltage 8 V
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the same time, for the structure with the 180◦ rotation of the director, Uth(min) causes refraction
disturbance in the middle layer [3], and in the cell with 90◦ rotation – at the layer boundary
opposite to the input surface. The refraction recovery time τr is maximum in both structures
for the minimum angle of incidence to the layer. For the structure with 180◦ director rotation,
τr(max) corresponds to the director orientation recovery, necessary for recovering the refraction in
the middle of the LC layer. At the same time, in the LC structure rotated 90◦ τr(max) is required
for the refraction recovery near the layer boundary opposite to the input surface, i.e. at the
maximum depth of the ray penetration into the liquid crystal layer.

The study showed that the lowest threshold voltage for the refraction cut-off and the
longest refraction recovery time corresponds to the maximum depth of the extraordinary ray
penetration into the layer, regardless of the boundary conditions on the surfaces of the LC layer
and the ray rotation point in the middle of the layer (rotation of the director by 180◦), or at the
far boundary of the layer (rotation of the director by 90◦).

The theoretical background of the results is a rather complex issue, especially in the
case of sufficiently strong electrical fields exceeding the Fréedericksz threshold. The solution
to this problem is expected to be found at some point in the future.

Thus, the combined experimental and theoretical research of the light refraction in
helical-structured liquid crystals and the effect of electric field on refraction will allow inves-
tigation of the process for local director reorientation at different distances from the interfaces
between liquid crystals and glass.
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The equations describing the transient and steady stages of size and composition evolution for a gas bubble which

grows or shrinks due to the diffusion of several gases dissolved in liquid solution have been derived. The diffusion

fluxes for gases in the liquid mixture caused by the bubble growth or dissolution were assumed to be quasi-

stationary and the mixture of the gases in the bubble was treated as ideal. The analytical solutions for the obtained

evolution equations have been found for bubbles of any size with an arbitrary number of components in the case

of equal products of diffusivities and solubilities of dissolved gases in the liquid solution, and for sufficiently large

binary bubbles for which capillary effects can be neglected.
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1. Introduction

This paper presents several analytical results in the theoretical description for the growth
or dissolution kinetics of a single gas bubble in a supersaturated or undersaturated gas-liquid
solution in the case when the bubble is comprised of several gases. Evidently, finding such de-
scription is a fundamental issue because it turns to be a necessary element for the general theory
on the decay of multicomponent metastable liquid solutions [1, 2]. As discussed previously, the
formation of gas bubbles is widely applied in technological processes for the creationc of new
porous materials and nano- and microcontainers [3, 4]. The rapid, explosive growth of water
vapor and accompanying dissolved gas bubbles in magmatic melt is one contributing mecha-
nism for volcanic eruptions [5–7]. The control of gas bubble growth and dissolution in blood
and biological tissues is a very important issue for those undergoing decompression [8]. These
examples highlight how the problem of theoretically describing bubble growth or dissolution is
still very relevant.

The diffusion growth of single-component bubbles in a supersaturated solution of gas in
liquid has been previously considered under the assumption of a quasi-stationary state for
the concentration fields of dissolved gas in the vicinity of bubble and with the use of a
self-similar solution for the non-stationary diffusion equation [9–13]. Quasi-steady-state dif-
fusion approaches to the description of multicomponent bubble evolution were considered by
Ramos [14, 15] and Cable and Frade [16]. In particular, it was reported in [15, 16] that large
enough bubbles reach a state of stationary growth with fixed composition and growth rate
and may demonstrate a nonmonotonic change in their radius during the initial stage of their
evolution. Formulation of the theory of non-stationary self-similar growth of a binary bubble
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with stationary composition in the case of high supersaturation had been done by Gor and
Kuchma [17].

Recently, we have formulated and analyzed a set of equations for the size, compo-
sition and temperature of a droplet consisting of a binary or multicomponent solution, which
non-isothermally condenses or evaporates under a quasi-steady-state diffusion regime in a multi-
component mixture of vapors and non-condensable carrier gas [18–22]. Some of these equations
have been analytically solved. The problem of a multicomponent droplet growing or evapo-
rating in the diffusion regime in the vapor-gas mixture is similar to the problem of growth or
dissolution of a multicomponent bubble in the liquid solution with several dissolved gas. In this
paper, we will extend the analytical approach which was useful for a small droplet to the case
of a multicomponent bubble.

2. General relations

We consider a multicomponent spherical bubble of radius R which grows or shrinks due
to the diffusion of several gases dissolved in liquid solution at fixed absolute temperature T and
pressure P . Under mechanical equilibrium of the bubble and the solution, the total pressure
Ptot (R) in the bubble depends on its radius R and pressure P in the solution according to the
formula:

Ptot (R) = P +
2σ

R
, (1)

where σ is the surface tension at the bubble-liquid interface. Let ni be the volume concentration
of the molecules of i-th gas (i = 1, 2, . . . , k) within the bubble, then the total gas concentration n
in the bubble equals:

n =
k∑
i=1

ni. (2)

Assuming the gas mixture in the bubble is ideal, we have:

n =
Ptot
kBT

=
P

kBT

(
1 +

2σ

PR

)
= n̄

(
1 +

R∗
R

)
, (3)

where kB is the Boltzmann constant, and we have introduced the new notation:

n̄ ≡ P

kBT
, R∗ ≡

2σ

P
. (4)

For characterization of the composition of the bubble, we will use the molecular frac-
tions xi of i-th component determined as:

xi =
ni
n

=
Ni

N
(i = 1, 2, . . . k), (5)

where Ni is the number of molecules of i-th gas and N =
∑k

i=1 Ni is the total number of
gas molecules in the bubble. Because

∑k
i=1 xi = 1, only k − 1 molecular fractions xi can be

considered to be independent. In light of Eqs. (3) and (4), the total number N of molecules in
the bubble can also be expressed as:

N =
4π

3
nR3 =

4π

3
n̄R3

(
1 +

R∗
R

)
=

4π

3
n̄R2 (R +R∗) . (6)
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The emission and absorption of gas molecules by the bubble produce the diffusion
profiles of each component around the bubble in a liquid solution. We denote the local vol-
ume concentration of i-th component at distance r ≥ R from the center of the bubble as
ρi (r, t). Correspondingly, the initial bulk volume concentration of the i-th component in liquid
is ρi0 = ρi (r →∞, t). We will assume that the concentration ρi (R, t) at the boundary of the
bubble is determined by conditions of chemical equilibrium for the i-th component in the bub-
ble and solution and is related in this way with the volume concentration ni within the bubble.
Henry’s law gives:

ρi (R, t) = sini = sixin (i = 1, 2, . . . k), (7)

where si is the solubility of i-th component of the gas mixture in the liquid solution.

3. The equations governing the evolution of the composition and size of the bubble

Differentiating both sides of definition (5) with respect to time gives:

ẋi =
Ṅi

N
− xi

Ṅ

N
(i = 1, 2, . . . k), (8)

where the dot over the quantity marks the time derivative or rate of the corresponding quantity.
The expression for the rates Ṅi and Ṅ have the following form under assumption of stationary
diffusion of the dissolved gases in solution:

Ṅi = 4πRDi [ρi0 − ρi (R, t)] (i = 1, 2, . . . k), (9)

Ṅ = 4πR
k∑
i=1

Di [ρi0 − ρi (R, t)] , (10)

where Di is the diffusivity of i-th component of the gas mixture in the liquid solution. Sub-
stitution of Eqs. (9) and (10) into the right-hand side of Eq. (8) and using Eqs. (4) and (6)
yields:

ẋi =
3

n̄R (R +R∗)

(
Di [ρi0 − ρi (R, t)]− xi

k∑
j=1

Dj [ρj0 − ρj (R, t)]

)
(i = 1, 2, . . . k). (11)

Let us now introduce the i-th gas supersaturation in solution as:

ζi ≡
ρi0
sin̄
− 1 (i = 1, 2, . . . k). (12)

Eqs. (3) and (7) allows us to write:

ρi (R, t) = sixin̄

(
1 +

R∗
R

)
(i = 1, 2, . . . k). (13)

Substituting Eqs. (12) and (13) in Eq. (11) yields:

ẋi =
3

R (R +R∗)

[
Disi

(
ζi + 1− xi

(
1 +

R∗
R

))
− xi

k∑
j=1

Djsj

(
ζj + 1− xj

(
1 +

R∗
R

))]
(i = 1, 2, . . . k). (14)
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Analogously, differentiating both sides of definition (6) with respect to time and using
Eq. (3) gives:

Ṅ = 4πnR2Ṙ+
4π

3
ṅR3 = 4πn̄

(
1 +

R∗
R

)
R2Ṙ− 4π

3
n̄
R∗
R2
ṘR3 = 4πn̄RṘ

(
R +

2

3
R∗

)
, (15)

while substituting Eqs. (7) and (12) in Eq. (10) yields:

Ṅ = 4πRn̄
k∑
i=1

Disi

[
ζi + 1− xi

(
1 +

R∗
R

)]
. (16)

After comparing Eqs. (15) and (16), we obtain:

Ṙ

(
R +

2

3
R∗

)
=

k∑
i=1

Disi

(
ζi + 1− xi

(
1 +

R∗
R

))
. (17)

Finally, we have coupled evolution equations (14) and (17) for the bubble’s composition
and radius with initial conditions xi (t = 0) = xi0, R (t = 0) = R0. Note that in the case of a
single-component gas in solution and bubble (x1 = 1, ζi+ 1 = 0 at i ≥ 2), Eq. (17) is obviously
reduced to the equation for the bubble radius in the known form:

RṘ
R +Rσ

ζ1R−R∗
= D1s1, (18)

where

Rσ ≡
2

3
R∗. (19)

For a supersaturated gas-liquid solution, when ζ1 > 0, Eq. (18) can be rewritten:

RṘ
R +Rσ

R−Rc

= D1s1ζ1, (20)

where Rc =
R∗
ζ1

=
2σ

Pζ1

is the radius of the critical bubble (at R0 > Rc the size of the bubble

increases monotonically with time, while at R0 < Rc, the bubble dissolves irreversibly). The
growth dynamics of a supercritical bubble in a highly supersaturated (ζ1 >> 1) gas-liquid
solution, determined by Eq. (20), was studied in detail in [11]. If there is ζ1 ≤ 0, a bubble of
any initial size irreversibly dissolves.

4. Analytical solution of evolution equations in the case of equal products of
diffusivities and solubilities of dissolved gases

Let us now consider the conditions on the system parameters which allows us to find
analytical solutions for Eqs. (14) and (17). In the particular case when Disi ≡ Ds, for any
gas component, (i.e. when the diffusivity and solubility products for dissolved gases in liquid
solution are equal) Eqs. (14) and (17) take the form:

ẋi =
3Ds

R (R +R∗)

[
ζi + 1− xi

(
ζ̄ + 1

)]
(i = 1, 2, . . . k), (21)

RṘ
R +Rσ

R−R∗/ζ̄
= Dsζ̄, (22)
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where we have introduced new notation:

ζ̄ ≡
k∑
i=1

(ζi + 1)− 1. (23)

As is seen from Eqs. (20) and (22), changing the bubble size with time does not depend
in this particular case on the bubble’s composition and is described by the same equation as
in the case of single-component bubble. The role of supersaturation is played now by the
quantity ζ̄ , and we have R∗/ζ̄ instead of Rc. Proceeding by analogy with [11], taking into
account the initial value R (t = 0) = R0 and Eq. (19), we find for the bubble radius at ζ̄ 6= 0 :

R2 −R2
0

2
+

(
1 +

2ζ̄

3

)
R∗
ζ̄

(
R−R0 +

R∗
ζ̄

ln

∣∣∣∣ ζ̄R−R∗ζ̄R0 −R∗

∣∣∣∣) = Dsζ̄t. (24)

In the case ζ̄ = 0, it follows from Eq. (22) that the bubble radius satisfies the equation:

RṘ

(
R

R∗
+

2

3

)
= −Ds. (25)

It is clear from Eq. (25) that Ṙ < 0 and the bubble irreversibly dissolves in this case. Using the
initial condition for the bubble radius, we find the solution of Eq. (25) in the form:

1

3

(
R3 −R3

0

R∗
+R2 −R2

0

)
= −Dst. (26)

Setting R (td) = 0, we can find the time td of complete dissolution of the bubble of initial
radius R0 at ζ̄ = 0 as:

td (R0) =
R2

0

3Ds

R0 +R∗
R∗

. (27)

There is a special case when ζi + 1 = 0 for all gas components, and, correspondingly,
ζ̄ + 1 = 0. This case refers to the dissolution of a gas bubble in pure solvent. As follows
from Eq. (21), we have ẋi = 0 for each gas component within the bubble in this case, and the
composition of the bubble in the dissolution process remains unchanged. Such situation is fully
equivalent to the description of the single-component bubble dissolution in the pure solvent.
Substituting ζ̄ = −1 into Eq. (24), we find:

R2 −R2
0

2
− 1

3
R∗

[
R−R0 −R∗ ln

(
R +R∗
R0 +R∗

)]
= −Dst. (28)

As follows from Eq. (28), the time t̄d of complete dissolution of the bubble of initial radius R0

at ζ̄ = −1 is determined as:

t̄d (R0) =
1

Ds

[
R2

0

2
− 1

3
R∗

(
R0 −R∗ ln

(
R0

R∗
+ 1

))]
. (29)

In the case R0 << R∗, this time approximately equals:

t̄d (R0) ≈ R2
0

3Ds

(
1 +

R0

3R∗

)
. (30)

Let us now consider a relation between the bubble radius and composition. If ζ̄+ 1 > 0,
then we have from Eq. (21):

ẋi = −
3Ds

(
ζ̄ + 1

)
R (R +R∗)

(xi − xis) , (i = 1, 2, . . . k), (31)
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where:

xis ≡
ζi + 1

ζ̄ + 1
, (32)

is the stationary value of molecular fraction of i-th component of the gas mixture in the bubble.
With the help of Eq. (22), we can find from Eq. (31) the relation between differentials dxi and
dR:

dxi
xi − xis

= −
3
(
ζ̄ + 1

)
(R +Rσ) dR

(R +R∗)
(
ζ̄R−R∗

) (i = 1, 2, . . . k). (33)

The solution of Eq. (33) at ζ̄ 6= 0 and R (t = 0) = R0, xi (t = 0) = xi0 (i = 1, 2, . . . k) has the
form: ∣∣∣∣ xi − xisxi0 − xis

∣∣∣∣ =
R0 +R∗
R +R∗

∣∣∣∣ ζ̄R0 −R∗
ζ̄R−R∗

∣∣∣∣
2ζ̄ + 3

ζ̄
. (34)

Equation (34) shows that molecular fractions of all gas components in the bubble relax
to their steady-state values according to one and the same power law. If R >> R∗/

∣∣ζ̄∣∣ and
R0 >> R∗/

∣∣ζ̄∣∣, Eq. (34) simplifies as:

∣∣∣∣ xi − xisxi0 − xis

∣∣∣∣ =

∣∣∣∣R0

R

∣∣∣∣3
ζ̄ + 1

ζ̄ (i = 1, 2, . . . k), (35)

or

R2 = R2
0

(
xi0 − xis
xi − xis

)2

3

ζ̄

ζ̄ + 1 . (36)

In the case when ζ̄ = 0, the dependence xi (R) (i = 1, 2, . . . k) can be easily found by
two ways. First we can set ζ̄ = 0 just in Eq. (33) for xi and solve it to obtain:∣∣∣∣ xi − xisxi0 − xis

∣∣∣∣ =
R0 +R∗
R +R∗

exp

(
−3

R0 −R
R∗

)
(i = 1, 2, . . . k). (37)

The same result can also be obtained by taking the limit ζ̄ → 0 in the solution (34) and using
the relation:

∣∣∣∣ ζ̄R0 −R∗
ζ̄R−R∗

∣∣∣∣
2ζ̄ + 3

ζ̄
=

∣∣∣∣1− ζ̄R0/R∗
1− ζ̄R/R∗

∣∣∣∣
2ζ̄ + 3

ζ̄ ≈
(

1− ζ̄ R0 −R
R∗

)3

ζ̄ −−→
ζ̄→0

exp

(
−3

R0 −R
R∗

)
.

5. Analytical solution of evolution equations in the case of neglecting the capillary
contributions

For sufficiently large bubbles, when R0 >> R∗ and R >> R∗, we can neglect the
capillary contributions to the evolution equations (14) and (17) and write:

ẋi =
3

R2

(
Disi (ζi + 1− xi)− xi

k∑
j=1

Djsj (ζj + 1− xj)

)
, (38)

RṘ =
k∑
i=1

Disi (ζi + 1− xi) . (39)
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An analytical solution for this set of equations is possible for k = 2 (for a binary gas bubble).
In this case, Eqs. (38) and (39) are reduced to the form:

ẋ1 =
3

R2
f (x1) , (40)

f (x1) = −D1s1

[
(γ − 1)x2

1 + (ζ1 + γζ2 + 2)x1 − ζ1 − 1
]
, (41)

RṘ = g (x1) , (42)

g (x1) = D1s1 [ζ1 + 1 + γζ2 + x1 (γ − 1)] , (43)

where:

γ ≡ D2s2

D1s1

. (44)

This set of equations is similar to the set of equations describing the evolution of a two
component droplet in the gas mixture, which has been studied in [18].

Recognizing that the case of γ = 1 (when D2s2 = D1s1 = Ds) was completely described
in the previous section for multicomponent bubbles of any size, we consider further the situation
with γ 6= 1, assuming for definiteness γ > 1. It is convenient to rewrite Eq. (41) in the form:

f (x1) = −D1s1 (γ − 1) (x1 − x1s) (x1 − x̃1s) , (45)

where x1s and x̃1s are the roots of function f (x1):

x1s =
− (ζ1 + 2 + γζ2) +

√
[ζ1 + 2 + γζ2]2 + 4 (γ − 1) (ζ1 + 1)

2 (γ − 1)
, (46)

x̃1s =
− (ζ1 + 2 + γζ2)−

√
[ζ1 + 2 + γζ2]2 + 4 (γ − 1) (ζ1 + 1)

2 (γ − 1)
. (47)

As follows from Eq. (47), at γ > 1, the root x̃1s is negative, x̃1s < 0, and has no physical
meaning. The root x1s lies in the interval 0 < x1 < 1 and corresponds to the stationary

composition of the bubble. As follows from Eqs. (42) and (43), the stationary rate
(
RṘ
)
s
of

the changing the bubble size is determined as:(
RṘ
)
s

= g (x1s) = D1s1 [ζ1 + 1 + γζ2 + x1s (γ − 1)] , (48)

or, in view of Eq. (46), as:(
RṘ
)
s

=
γ

1 + (γ − 1)x1s

D1s1 (ζ1 + ζ2 + 1) . (49)

As one can see from Eq. (49), the size of the bubble increases monotonically in the stationary
case at ζ1 + ζ2 + 1 > 0. If the opposite inequality holds, the bubble dissolves.

Since function f (x1) monotonically decreases over the 0 < x1 < 1 interval, it then
follows from Eq. (40) that molecular fraction x1 tends monotonically with time to its stationary
value x1s. This allows us to use the current value x1 (t) as the independent variable for solving
the system of equations for the evolution of the composition and size of the bubble. Accordingly,
we find from Eqs. (40) and (42) the following differential equation:

dR2

R2
=

2

3

g (x1)

f (x1)
dx1, (50)
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the solution of which at R (t = 0) = R0, x1 (t = 0) = x10 has the form:

R2 (x1) = R2
0 exp

2

3

x1∫
x10

g (y)

f (y)
dy

 . (51)

Substituting Eq. (51) in Eq. (40) yields another differential equation:

dx1

dt
=

3

R2
f (x1) =

3

R2
0 exp

(
2

3

∫ x1

x10

g (y)

f (y)
dy

)f (x1) , (52)

the solution of which can be written as:

t (x1) =
R2

0

3

x1∫
x10

dy

f (y)
exp

2

3

y∫
x10

g (z)

f (z)
dz

 . (53)

It is convenient to transform expression (43) for function g (x1) as:

g (x1) = D1s1 (γ − 1) (x1 − x1∗) , (54)

where:

x1∗ =
ζ1 + γζ2 + 1

1− γ
. (55)

Using Eqs. (45) and (54) allows us to represent the ratio g(x1)/f(x1) in the form:

g(x1)

f(x1)
= − x1 − x1∗

(x1 − x1s) (x1 − x̃1s)
=

1

x1s − x̃1s

(
x̃1s − x1∗

x1 − x̃1s

− x1s − x1∗

x1 − x1s

)
, (56)

and to perform integration:

exp

2

3

x∫
x10

g(y)

f(y)
dy

 =

(
x10 − x1s

x1 − x1s

)2

3

x1s − x1∗

x1s − x̃1s

(
x1 − x̃1s

x10 − x̃1s

)2

3

x̃1s − x1∗

x1s − x̃1s . (57)

Using Eq. (57) in Eqs. (51) and (53), we finally obtain for the square of the radius, R2(x) and
time, t(x) the following expressions:

R2(x1) = R2
0

(
x10 − x1s

x1 − x1s

)2

3

x1s − x1∗

x1s − x̃1s

(
x1 − x̃1s

x10 − x̃1s

)2

3

x̃1s − x1∗

x1s − x̃1s , (58)

t(x1) =
R2

0

3f (x10)

x1∫
x10

dy

(
x10 − x1s

y − x1s

)2

3

x1s − x1∗

x1s − x̃1s

+ 1(
y − x̃1s

x10 − x̃1s

)2

3

x̃1s − x1∗

x1s − x̃1s

− 1
. (59)

The dependence x1 (t) can be found by reversing the dependence t(x1) obtained with the help
of Eq. (59). Substituting the reversal function x1 (t) in Eq. (58) determines the dependence
R2 (t).

Let us now consider the possibility of nonmonotonic behavior for rate RṘ as a function
of system parameters and an initial bubble composition. As is clear from Eqs. (42) and (54),
a nonmonotonic growth or dissolution of the bubble becomes possible when the parameter x1∗,
determined by Eq. (55), appears within the 0 < x1∗ < 1 interval, and the concentration x1 (t)
passes during the bubble evolution through the value x1 = x1∗. In such a case, we have Ṙ > 0
at x1 < x1∗ and Ṙ < 0 at x1 > x1∗. According to Eq. (55), the condition 0 < x1∗ < 1 is
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reached if the double inequality 1 − γ < ζ1 + γζ2 + 1 < 0 is fulfilled. Moreover, if we have
0 < x1∗ < x1s < 1 and x10 < x1∗, then the bubble radius will diminish at the initial stage of its
evolution until the concentration x1 = x1∗ is reached and then grow monotonically after that.
Note that, as follows from Eqs. (46) and (55), inequality x1∗ < x1s fulfils at ζ1 + ζ2 + 1 > 0.

To control our results, we will check the case when γ → 1 in Eq. (58). Setting γ → 1
in Eqs. (46), (47) and (55) and recognizing with the help of Eq. (23) that ζ̄ ≡ ζ1 + ζ2 + 1 in the
case of two dissolved gases, we find:

x1s →
ζ1 + 1

ζ̄ + 1
, x̃1s ∼ −

ζ̄ + 1

γ − 1
→∞, x1∗ ∼ −

ζ̄

γ − 1
→∞, (60)

x1s − x1∗

x1s − x̃1s

→ ζ̄

ζ̄ + 1
,

(
x1 − x̃1s

x10 − x̃1s

)2

3

x̃1s − x1∗

x1s − x̃1s → 1. (61)

Using Eqs. (60) and (61) in Eq. (58), we obtain R2(x1) −−→
γ→1

R2
0

(
x10 − x1s

x1 − x1s

) 2
3

ζ̄
ζ̄+1

. As

expected, this result coincides with Eq. (36) for the case when D1s1 = D2s2 ≡ Ds and
R >> R∗/

∣∣ζ̄∣∣ , R0 >> R∗/
∣∣ζ̄∣∣ which was considered in section 3.
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The fluctuations of the director orientation in a freely suspended smectic-C* film were theoretically inves-

tigated. In the free energy expression of the film, not only were the elastic energy and the weak external

electric field interaction considered, the interaction of polarization charges arising from fluctuations of the

polarization vector were also included. The correlation function of the director fluctuations was obtained for

a film of finite thickness. Calculations of light scattering intensity were provided. It has been found that due

to the interaction of polarization charges, the angular dependence of the scattering intensity significantly

depends on the magnitude of spontaneous polarization.
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1. Introduction

Smectic-C* liquid crystals have attracted wide attention from researchers for sev-
eral decades. This is primarily due to the unique physical properties inherent to these
substances [1]. Smectics-C* (Sm-C*) are well-documented as layered systems consisting of
monomolecular layers composed of elongated molecules which are inclined relative to the
normal to the layers. This leads to the creation of a director vector, n, which gives the
average direction of preferred molecule orientation, and is inclined at an angle θ relative
to the normal N to the smectic layers. At constant temperature, the angle θ can be con-
sidered constant throughout the liquid crystal. Each layer in Sm-C* can be considered as
a two-dimensional liquid. In addition, the Sm-C* possesses spontaneous polarization, and
the polarization vector P in each point of the liquid crystal is perpendicular to both the
director n, and the normal N. In bulk Sm-C* samples, when passing from layer to layer, the
polarization vector P rotates around the normal N by a certain angle that is the same for all
layers. The number of layers over which the vector P makes a full rotation may vary from
five or six to thousands [1-3]. As a result, the director n also uniformly rotates about the
normal N when passing from one smectic layer to the next, forming a helical structure. In
the bulk samples of Sm-C*, the vector P can experience several full rotations, and therefore,
throughout the entire sample, the polarization is zero.

In free-standing Sm-C* films, an average a constant direction of the polarization
vector P can be achieved by an external electric field, or by a small film thickness. Due
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to fluctuations of the director orientation n, fluctuations of the polarization P may also
arise. The occurrence of spatial inhomogeneities for spontaneous polarization leads to the
appearance of polarization charges with density ρ =-divP. The electrostatic interaction of the
polarization charges changes the spatial correlation function of the director fluctuations and
it can be manifested in light scattering experiments. It is usually assumed that the interaction
of the polarization charges is completely or partially screened by impurity charges [1]. At
the same time, the contribution of the unscreened Coulomb interaction was observed in the
light scattering experiments which were performed on highly-pure Sm-C* samples [4-8].

The Coulomb interaction of polarization charges in Sm-C* is usually assumed to be
isotropic [1]. As was shown in [9], screened Coulomb interaction in thin Sm-C* films may
lead to renormalization of the bend elastic modulus. For thin freely suspended Sm-C* films
in [4-8] the correlation function of orientation fluctuations was calculated and experiments
were performed on highly-purified Sm-C* samples which revealed the Coulomb interaction
contribution to the angular dependence of the light scattering. For a plane Sm-C* cell with
bookshelf geometry, the calculations of the correlation function for orientation fluctuations
were carried out in [10], taking into account the finite thickness of the cell. The angular
dependence of light scattering intensity for Sm-C* was calculated for different spontaneous
polarization values. Anisotropy of the Coulomb interaction in the bulk samples of Sm-C*
was considered in the theoretical description performed in [11].

In the present work, the correlation function of orientation fluctuations is calculated
for a freely suspended Sm-C* film, taking into account the finite film thickness and the
Coulomb interaction of polarization charges. The results of the calculations are used to find
the angular dependence of scattered light intensity.

2. Basic equations

Let’s assume that in a freely suspended Sm-C* film the helical structure of director
n is unwound. This can be achieved by an external electric field, E, which is directed along
the smectic layers. We assume that the field applied is not too large, so that it was possible
to consider only the interaction of a field with the polarization vector P. In this case, the
free energy of distortion in the film Sm-C* can be represented as the sum of three terms:

F = FFr + FP + FC . (2.1)

Here,FFr – the elastic free energy of distortion of the director field, which, in the unwound
Sm-C*, can be represented in the following form:

FFr =
1

2

∫
dr
[
K11(div n)2 +K22(n · rot n)2 +K33(n× rot n)2

]
. (2.2)

Here, K11, K22, K33 are Frank modules. The second term in Eq. (2.1) arises from the
interaction of the spontaneous polarization P with external electric field E:

FP = −
∫
dr(P · E). (2.3)

The last term in Eq. (2.1) considers Coulomb interaction between the polarization charges
arising in the inhomogeneous ferroelectric Sm-C*. Neglecting anisotropy of the dielectric
constant, and taking it as equal to the average value of ε, for this contribution, we have:

FC =
1

2

∫
dr

∫
dr′

div P (r) div′P (r′)

ε |r− r′|
. (2.4)
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The layers are flat in a free standing Sm-C* film at equilibrium. In the description of
the director n, fluctuation deformations of the layered structure are usually neglected. This
is due to the fact that the possibility of free rotation of the director n around the normal
N to the smectic layers, leads to much greater distortions of the director n field than small
change the direction of the normal N. In a Sm-C* film in which the helical structure is
unwound by an external electric field, the orientation of the director n is uniform.

Fig. 1. The system coordinates and vectors n,c, P. The electric field is di-
rected along the y axis

For the calculations, it is convenient to use a coordinate system in which the xy
plane is parallel to the smectic layers and is located in the middle of the film. The direction
of the y-axis is chosen along the external field, E, and the z -axis is normal to the layers.
The orientation structure in Sm-C* conveniently described by c-director, which is a unit
vector codirectional with the projection of the director n onto the plane of the smectic layer.
Director n is defined by angles θ and ϕ as shown in Fig. 1. The angle θ determines the slope of
director n with respect to the normal to the layers. This angle depends on the temperature,
which we assumed to be constant. The angle ϕ describes the deviation of c-director from
the equilibrium direction along the x -axis. The polarization vector P is given by:

P = P [N× c] (2.5)

where P - the polarization of Sm-C*. The vectors n, c, P have the coordinates:

n = (sin θ cosϕ, sin θ sinϕ, cos θ)

c = (cosϕ, sinϕ, 0) (2.6)

P = P (− sinϕ, cosϕ, 0).

Believing the c-director fluctuations and hence the angle ϕ fluctuations are small, we have:

n ≈
[(

1− ϕ2

2

)
sin θ, ϕ sin θ, cos θ

]
,

c ≈
(

1− ϕ2

2
, ϕ, 0

)
, (2.7)
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P ≈ P (−ϕ, 1− ϕ2

2
, 0).

The contribution of the c-director fluctuations to the free energy in the Gaussian
approximation can be represented as follows:

δF = 1
2

∫
dr

[
B1

(
∂ ϕ
∂x

)2
+B2

(
∂ ϕ
∂y

)2
+B3

(
∂ ϕ
∂z

)2
+ 2B13

(
∂ ϕ
∂x

) (
∂ ϕ
∂z

)
+

+PEϕ2 + P 2

ε

∫
dr′

∂ ϕ(r)
∂x

∂ ϕ(r′)
∂x′

|r−r′|

]
.

(2.8)

Here:
B1 = K22 sin2 θ cos2 θ +K33 sin4 θ,
B2 = K11 sin2 θ,
B3 = K22 sin4 θ +K33 sin2 θ cos2 θ,
B13 = sin2 θ cos θ (K33 −K22) .

(2.9)

We will consider a film of finite thickness, located in the area [-L/2; L/2], where L is the film
thickness. In the xy plane, the film has a macroscopic size and therefore it is convenient to
use the following Fourier representation:

ϕq⊥(z) =
∫
dr⊥e

−iq⊥·r⊥ϕ(r⊥, z),
ϕ(r⊥, z) = 1

(2π)2

∫
dq⊥e

iq⊥·r⊥ϕq⊥(z). (2.10)

In expression (2.8), for the free energy, we turn to the Fourier representation and take into
account the ratio: ∫

dr⊥
eiq⊥·r⊥√

r2⊥ + (z − z′)2
=

2π

q⊥
e−q⊥|z−z

′|. (2.11)

The result is as follows:

δF = 1
2(2π)2

∫
dq⊥

[∫ L
2

−L
2

dz ϕ∗q⊥
(z)
(
B1q

2
x +B2q

2
y + PE −B3

∂2

∂z2
− 2B13iqx

∂
∂z

)
ϕq⊥(z)+

+2π P 2

q⊥ε
q2x
∫ L

2

−L
2

dz
∫ L

2

−L
2

dz′ e−q⊥|z−z
′|ϕ∗q⊥

(z′)ϕq⊥(z)+

+
(
B3ϕ

∗
q⊥

(z)
∂ϕq⊥ (z)

∂z
+ 2B13iqxϕ

∗
q⊥

(z)ϕq⊥(z)
)∣∣∣L2
−L

2

]
.

(2.12)

The free energy (2.12) is a quadratic form, 1
2

(
ϕ, M̂ϕ

)
. We select by square brackets

kernel of the operator explicitly:

δF = 1
2(2π)2

∫
dq⊥

∫ L
2

−L
2

dz ϕ∗q⊥
(z)
∫ L

2

−L
2

dz′
[
δ(z − z′)

(
B1q

2
x +B2q

2
y + PE−

−B3
∂2

∂z′2
− 2B13iqx

∂
∂z′

)
+ 2π P 2

q⊥ε
q2x e

−q⊥|z−z′|

+δ(z − z′)
(
δ
(
z′ − L

2

)
− δ

(
z′ + L

2

)) (
B3

∂
∂z′

+ 2B13iqx
)]
ϕq⊥(z′).

(2.13)

The resulting expression for the free energy enables us to find the correlation function
for the angle ϕ, ie, c-director fluctuations:

gq⊥ (z, z′) =

∫
dr⊥ e

−iq⊥·r⊥ 〈ϕ (r⊥, z)ϕ (0, z′)〉 . (2.14)

Here 〈...〉 represents the statistical averaging over all configurations of the angle ϕ

field. Correlation function gq⊥ (z, z′) is the core of inverse operator M̂−1, multiplying by
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kB T , where T is the temperature and kB is the Boltzmann constant. Hence, the correlation
function gq⊥ (z, z′) must satisfy the equation:

M̂g = kB T δ (z − z′) , (2.15)

or in explicit form:(
B1q

2
x +B2q

2
y + PE −B3

∂2

∂z2
− 2B13iqx

∂
∂z

)
gq⊥(z, z′)+

+
∫ L

2

−L
2

dz′′ 2π P 2

q⊥ε
q2x e

−q⊥|z−z′′| gq⊥(z′′, z′)+

+
(
δ
(
z − L

2

)
− δ

(
z + L

2

)) (
B3

∂
∂z

+ 2B13iqx
)
gq⊥(z, z′) = kBT δ(z − z′) .

(2.16)

To solve the integral-differential equation, it is convenient to enterthe following func-
tion vq⊥ (z, z′), defined as:

vq⊥ (z, z′) = q⊥

∫ L
2

−L
2

dz′′ e−q⊥|z−z
′′| gq⊥(z′′, z′). (2.17)

This allows us to solve the following system of differential equations instead of the
integral-differential equation:

(
−∂2z − 2b13iqx∂z + b1q

2
x + b2q

2
y + PE

B3

)
gq⊥(z, z′)+

+ 2π P 2

B3 q⊥ε
q2x vq⊥(z, z′) = kBT

B3
δ(z − z′)

(−∂2z + q2⊥) vq⊥(z, z′)− 2q2⊥gq⊥(z, z′) = 0,

(2.18)

Here, we use the notations:

∂z = ∂
∂z
, ∂2z = ∂2

∂z2
,

b1 = B1

B3
, b2 = B2

B3
, b13 = B13

B3
.

The boundary conditions for the system (2.18) have the form:{
±∂zvq⊥

(
z = ±L

2
, z′
)

+ q⊥vq⊥

(
z = ±L

2
, z′
)

= 0

∂zgq⊥

(
z = ±L

2
, z′
)

+ 2iqxb13gq⊥

(
z = ±L

2
, z′
)

= 0.
(2.19)

The first of these conditions permits the removal of terms with δ-functions from the left-hand
side of Eq. (2.16), and the second follows from the rule for differentiating of the function
vq⊥ (z, z′) at the boundary of the film.

For the solution of the system (2.18) with boundary conditions (2.19), it is convenient
to enter two four-dimensional vectors in the same way as it was done in [10]:

W = (g , v , ∂z g , ∂z v)T ,

D = kBT
B3

(0 , 0 , 1 , 0)T .
(2.20)

Here, the upper index “T ” denotes the transposition. In the given notations, the
system (2.18) has the form:

(∂z − Ĥ)W = −Dδ(z − z′), (2.21)

where:

Ĥ =


0 0 1 0
0 0 0 1
a b − f 0
−2q2⊥ q2⊥ 0 0

 . (2.22)
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We have introduced here the following notation:

a = b1q
2
x + b2q

2
y + PE

B3
,

b = 2π P 2q2x
B3 q2⊥ε

,

f = 2b13qx i.

The boundary conditions for the Eq. (2.21), as it follows from (2.19), take the following
form:

Γ̂σWq⊥

(
z = σ

L

2
, z′
)

= 0, (2.23)

where σ = ± corresponds to z = ±L/2, and the matrix Γ̂σ has the form:

Γ̂σ =

(
f 0 1 0
0 q⊥ 0 σ1

)
. (2.24)

The boundary conditions (2.23) are satisfied by the vectors proportional to the fol-
lowing linearly independent vectors:

w(1) = (1 , 0 , −f , 0)T ,

w(σ) = (0 , σ1 , 0 , −q⊥)T ,

Therefore, the solution of Eq. (2.21) satisfying the boundary condition (2.23) can be found
in the form:

Wσ
q⊥

(z, z′) = e(z−σ
L
2 )Ĥ (w(1)C(1)

σ (z′) + w(σ)C(2)
σ (z′)

)
. (2.25)

Here, W+
q⊥

(z, z′) corresponds to Wq⊥ (z, z′) at z > z′ and W−
q⊥

(z, z′) corresponds to

Wq⊥ (z, z′) at z < z′. Unknown functions C1
σ(z′) and C2

σ(z′) can be found by substituting
of Eq. (2.25) into Eq. (2.21) and integrating the resulting equation with respect to z over
the interval [z′ − ε, z′ + ε] where ε → + 0. As a result, we obtain the following algebraic
vector equation for the functions C1

σ(z′) and C2
σ(z′):

W+
q⊥

(z′, z′)−W−
q⊥

(z′, z′) = −D. (2.26)

The solution of this equation can easily be found in the following form:(
C

(1)
+ , C

(2)
+ , C

(1)
− , C

(2)
−

) T

= −Ŝ−1e(
L
2
−z′)ĤD. (2.27)

Here, Ŝ−1 is the matrix inverse to the matrix Ŝ consisting of the following columns:

Ŝ =
(
w(1), w(+), −e−LĤw(1), −e−LĤw(−)

)
. (2.28)

The functions C1
σ(z′) and C2

σ(z′), found in Eq. (2.27), can be substituted into Eq. (2.25).
The desired the correlation function gq⊥(z, z′) is given by the first component of the found
four-dimensional vectorWq⊥ (z, z′).

3. Light scattering by c-director fluctuations

Light scattering in Sm-C* occurs with fluctuations of the permittivity, which are
connected with the fluctuations of c-director. In the lowest approximation with respect to
the angle ϕ, we have:

δε̃αβ = ε̃a

(
∂nα
∂ϕ

nβ + nα
∂nβ
∂ϕ

)
ϕ. (3.1)
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Here, ε̃a is the anisotropy of the permittivity at optical frequencies. In the Born approxima-
tion, the intensity of the scattered light can be represented as [12-14]:

I =
V I0k

4
0

(4πR)2
e(s)α e

(s)
β Wανβµ(qsc)e

(i)
ν e

(i)
µ , (3.2)

where I is the intensity of the scattered light, I0 is the intensity of the incident beam, V is
the scattering volume, k0 is the wave number of the incident and scattered beams, R is the
distance from the film to the observation point, e(i) and e(s) are the polarization vectors in
the incident and scattered rays, qsc = ks−ki is the scattering vector, ki and ks are the wave
vectors of the incident and scattered rays. The function Wανβµ(qsc) is the Fourier transform
of the correlation function for permittivity fluctuations at optical frequencies, namely:

Wανβµ(q) =
1

L

∫ L
2

−L
2

dz

∫ L
2

−L
2

dz′ e−iqz(z−z
′)

∫
dr⊥e

−iq⊥·r⊥ 〈δε̃αν(r⊥, z)δε̃βµ(0, z′)〉 . (3.3)

Here, for the wave vector used, the notation q = (q⊥, qz). After substituting Eqs. (3.1) and
(3.3) into Eq. (3.2), and taking into account the definition (2.14), we obtain the following
expression for the intensity of light scattering:

I∼ε̃2a
[
e(s)α

(
∂nα
∂ϕ

nβ + nα
∂nβ
∂ϕ

)
e
(i)
β

]2
Gqsc

, (3.4)

Where:

Gq =
1

L

∫ L
2

−L
2

dz

∫ L
2

−L
2

dz′ e−iqz(z−z
′)gq⊥(z, z′). (3.5)

The numerical calculations were performed for the beam incident on the film surface at the
angle θi relative to the z axis in the xz plane. Fig. 2 shows the geometry of the optical
experiment for the case of incidence of the beam normal to the Sm-C* film.

Fig. 2. Direction of the wave vectors of the incident and scattered rays in an
optical experiment, ki and ks, respectively. Also shown are the direction of
the polarization vectors in the incident and scattered rays: e(i) and e(s)
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The wave vectors of the incident and scattered rays and the polarization vectors in
this geometry are given by:

ki = k0(sin θi, 0, cos θi) ,
ks = k0(sin θs cosϕs, sin θs sinϕs, cos θs) ,
e(i) = (1, 0, 0) ,
e(s) = (− sinϕs, cosϕs, 0).

(3.6)

Here, θi and θs polar angles of the incident and scattered rays, ϕs is the azimuth
angle of the scattered beam. In this case, we obtain from Eq. (3.4) the following angular
dependence of the scattered light intensity:

I∼ε̃2a sin4 θ cos2 ϕs Gqsc
. (3.7)

It should be noted that the angular dependence of the intensity is determined entirely
by the last two factors in Eq. (3.7), while the first two factors are material constants.

The numerical calculations were performed via Eq. (3.7) for the free standing Sm-C*
film with the following parameters: L = 10−4 cm, θ = 15◦, ε̃a= 5, k0= 105 cm−1, E=0.3 stat-
volt/cm = 8994 V/m, K11=0.7·10−6 dyn=0.7·10−11 N, K22=0.4·10−6 dyn=0.4·10−11 N,
K33 = 1.7 · 10−6 dyn=1.7·10−11 N. For spontaneous polarization, different values were used,
namely, P = 10, 15, 20 statcoulomb/cm2 = 3.34·104, 5.01·104, 6.67·104 nC/m2.

In Figs. 3 and 4 are shown the angular dependences for the scattered light intensity
in the case where the xz plane is the scattering plane. Since in this case ϕs = 0, it follows
from the Eq. (3.7) that precisely the same angular dependence has the correlation function
of the c-director fluctuations Gqsc

.

Fig. 3. The angular dependence of the scattered light intensity is shown
for different spontaneous polarization values. For solid, dashed and dot-
ted lines, the spontaneous polarization values are respectively: 10, 15, 20
statcoulomb/cm2. The beam of light falls on the film at an angle of 45◦ to the
normal. The scattering plane coincides with the xz plane
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Fig. 4. The same as in Fig. 3, but in this instance, the light beam’s angle of
incidence is perpendicular to the film’s surface. Positive values of θs correspond
to ϕs = 0◦, and negative to ϕs = 180◦

As can be seen from Figs. 3, 4, the correlation function of c-director fluctuations
Gq and the scattered light intensity are significantly dependent on the spontaneous polar-
ization P. These dependences are mainly determined by the electrostatic interaction of the
polarization charges. With increased spontaneous polarization P, the correlation function
Gqsc

and the scattered light intensity are reduced. Hence, the c-director fluctuations are
suppressed with increasing P ; i.e., the system becomes more rigid in orientation, as was
noted in [4-9, 15].

In Figs. 5 and 6 are shown respectively the dependences of the scattered light intensity
and the correlation function Gqsc

on the azimuthal angle ϕs at normal incidence of light on
the film. The incident beam is polarized in the direction of the x axis, perpendicular to
the external electric field. The scattered beam propagates at an angle of 10◦ relative to
the normal to the smectic layers and is polarized in the xy plane. Fig. 5 shows that the
correlation function Gqsc

significantly depends on the value of the spontaneous polarization P
and the azimuthal angle ϕs. The function Gqsc

reaches a maximum when qsc is within the xy
plane, and minimal, if qsc ∈ xz. Fig. 6 shows that in accordance with Eq. (3.7), the effects
associated with the geometry of the experiment are added to the above relationships in the
intensity of the scattered light. If the direction of the wave vector and the polarization vector
in the incident and scattered rays are given by Eq. (3.6), the maximum intensity should be
observed in the scattering plane xz, and the minimum occurs in the xy plane.

4. Conclusion

A number of works have suggested that the electrostatic interaction between the
polarization charges may be very important in the study of Sm-C* [4-8, 16-19]. Systems
with a large spontaneous polarization have been shown to increase the effective rigidity of
the orientation and increase the effective orientation viscosity [4-9, 15]. We have studied



498 D. A. Murich, V. P. Romanov, S. V. Ul’yanov

Fig. 5. The dependence of the correlation function Gqsc
on the azimuthal

angle ϕs is shown for the same spontaneous polarization values as in Fig. 3.
A beam of light falls perpendicular to the surface of the film. The value
θs = 10◦ remains constant

Fig. 6. The dependence of the scattered light intensity on the azimuthal angle
ϕs is shown for the same conditions used in Fig. 5
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the role of the Coulomb interaction between the polarization charges in the formation of the
correlation function of director fluctuations in freely standing Sm-C* films of finite thickness.
The film considered was in an external electric field directed along the layers. At equilib-
rium, the c-director helicoid was unwound. The obtained correlation function permitted the
calculation of the angular dependence for the scattered light intensity. As a result of the
calculations, the correlation function for the orientation fluctuations and the scattered light
intensity were found to significantly depend on the magnitude of the spontaneous polariza-
tion. These relationships are caused by the Coulomb interaction between the polarization
charges occurring due to orientation fluctuations. Increasing the magnitude of polarization
was shown to significantly reduce the correlation function of the orientation fluctuations as
well as the scattered light intensity, indicating that the suppression of the director fluctu-
ations occurs as a result of the electrostatic interaction between the polarization charges.
This can be regarded as a definite increase in the orientation rigidity of the system.
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1. Introduction

At the theoretical department of Physical Faculty at Saint Petersburg State Univer-
sity, there is a scientific school with long-standing experience in various fields of stochastic
systems, stochastic dynamics, and their applications to the physics of condensed matter.
V. P. Romanov, to whose memory is devoted the current issue, contributed to this school by
his works on stochastics aspects of light propagation in fluctuating nematic liquid crystals
[1-3].

Over the past few decades, increasing efforts have been undertaken to devise and carry
out the exact stochastic (Monte Carlo) simulations of many-body quantum dynamics. The
field of research, which is the subject of such an activity, is truly interdisciplinary: quantum
optics [4], utracold atoms in traps [5-7], quantum phase transitions [8], open quantum systems
[9], and the measurement theory [10]. The motivation behind such studies range from
purely practical (to provide exact data in order to verify a theory, or in order to interpret
an experiment) to fundamental (to characterize the relationship between the classical and
quantum computational complexity).

In order to devise a Monte Carlo simulation algorithm for quantum dynamics, we
need to represent the quantum dynamics as an equivalent (with respect to average observable
properties) probabilistic model. Such a model is called a stochastic representation. In this
work, we focus only on classical diffusive stochastic representations of the reversible dynamics
for quantum systems with pairwise interactions. Here, the adjective “classical” means that
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the quantum dynamics is mapped onto a classical stochastic process, rather than onto some
quantum non-commutative extension of stochastic calculus [11].

Despite the fact that more than thirty years have passed since the fundamental work
of Drummond et al. [4], where the first exact classical stochastic representation was intro-
duced, this field of research still remains at an early stage of development. This is reflected in
the fragmentedness of the literature on this subject: novel stochastic methods are constantly
being invented [12-20], but based on entirely different and unrelated principles.

The classical stochastic representations of reversible quantum dynamics can be di-
vided into two major groups: quantum dynamics in the generalized phase space, and sto-
chastic wave-function methods. In our recent paper [21], we have demonstrated that the
latter group of methods actually has the mathematical structure of the former, i. e. these
two groups can be united into one common group.

In this work, we make an attempt to summarize various approaches in the literature
[12-20] by defining the most general formulation for the classical stochastic representation
of quantum dynamics. In Sec. 2, we define the notion of the classical stochastic representa-
tion. In such a representation, the mappings, which associate the classical quasiprobability
distributions and functions with the quantum states and observables, appear as linear op-
erators. In Sec. 3 we discuss (at the physical level of rigor) the general implications of the
proposed definition of the classical stochastic representation. In particular, we demonstrate
that, provided the mathematical properties of the representation are sufficiently regular, the
representation reduces to an expansion of the density operator over a certain overcomplete
operator basis. In Sec. 4, we illustrate our definitions by providing a concrete implementa-
tion of the classical stochastic representation: we present the recently derived [21] ordered
operator correspondences for the stochastic wave-function method of Carusotto et al. [22].

2. The classical stochastic representation

Suppose that we are given a many-body quantum system with a Hamiltonian Ĥ:

Ĥ =
∑
r,s

hrsâ
†
râs +

1

2

∑
r,s

Vrsâ
†
râ
†
sâsâr, (1)

containing a two-body interaction. Here, we assume that discretization of the continuous
system was carried out [21], and the annihilation âr and creation â†s operators adhere to the
bosonic commutation relations: [

âr, â
†
s

]
= δrs, (2)

where r and s are the (multi-)indices of the discretization lattice sites [21]. The exact
quantum evolution is governed by the full many-body quantum Liouville equation:

∂

∂t
ρ̂ =

1

i~

[
Ĥ, ρ̂ (t)

]
, (3)

where the density operator ρ̂ (t) determines the state of the system at time t.
Summarizing various classical stochastic representations which are presented in the

literature [12-20, 23, 24], we arrive at a general formulation for what we call here the “classical
stochastic representation”. We select a certain convex set P+ of physical density operators
which are characteristic to our system. That is, if we take an arbitrary density operator
ρ̂0 ∈ P+ as the initial condition for Eq. (3) at t = 0, then, at any later time t, the solution
ρ̂ (t) of Eq. (3) still belongs to the set P+.

In a classical stochastic representation of quantum dynamics, the quantum state
should be represented by a quasiprobability distribution in a certain (abstract) space L. The
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prefix ’quasi’ means that such distributions do not correspond to any physical probabilities,
and such distributions do not even satisfy the Kolmogorov axioms, since the elements λ
of the space L cannot be interpreted as elementary events (usually, the Dirac distributions
corresponding to the elements λ do not correspond to any physical state). The space L is
usually called the generalized phase space [23-26], due to its intrinsic analogy to the phase
space in the deformation quantization [27]. We suppose that the stochastic representation
provides us with a methodology for how to assign a positive quasiprobability distribution
P (λ) to any ρ̂ ∈ P+. Such a procedure is given by the (possibly nonlinear) mapping Cρ:

Cρ [ρ̂] = P (λ) , where P (λ) > 0 for every λ ∈ L. (4)

In a classical stochastic representation, the average value for the observable 〈ô〉 should be
represented by a classical expectation over the quasiprobability. Therefore, we need a second
mapping, Co:

Coô = O (λ) , (5)

which defines how the quantum observables in our stochastic representation are delineated
by classical functions O (λ) in the space L. Then, we have the expression for the expected
value 〈ô〉:

〈ô〉 = Trôρ̂ =

∫
dλO (λ)P (λ) , (6)

which is required to be valid for every classical representation of the observable O (λ) and
for every quasiprobability P (λ) from the image imCρ. We assume that the mapping Co is
a linear operator.

We are not only interested in the expected values of the observables, but also in their
evolution over time. We want the time evolution in our representation to be represented
in such a way, that it could be simulated by Monte Carlo methods. Thus, we need a third
mapping, Cs:

Cs

{[
Ĥ, ·

]
/i~
}

= H. (7)

This defines how the quantum Liouville superoperator
[
Ĥ, ·

]
/i~ is being represented by

such integro-differential operator H : D → D, that the quantum Liouville equation (3) is
now represented by the differential Chapman-Kolmogorov master equation:

∂

∂t
P = HP . (8)

For example, if we are interested in a diffusive stochastic representation, we may look for such
a stochastic representation which possesses such a mapping Cs that H is a Fokker-Planck
operator (in the Ito form [28]):

H = −
∑
i

∂

∂λi
Ai (λ) +

1

2

∑
i,j

∂2

∂λi∂λj
D (λ) , (9)

where λi is a component of the vector λ (if the space L is multidimensional). In this case,
we can simulate the quantum dynamics by numerically integrating the stochastic differential
equation

dλi = Ai (λ) dt+
∑
j

Bij (λ) dWj, (10)

where the Wiener increments have the standard statistical properties, E [dWi] = 0 and
E [dWidWj] = δijdt; D = BBT [28]. We assume that the mapping Cs is a linear operator.
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The practical Monte Carlo simulation involves the following stages. First, we rep-
resent the initial condition ρ̂ (t = 0) as a positive quasiprobability distribution P (λ, t = 0)
using the mapping Cρ. Then, we sample the initial conditions λ (t = 0) for the stochastic
process (10) from the initial probability P (λ, t = 0) using the importance sampling method
[29]. Each sampled initial condition λ (t = 0) is propagated in time by the numerical integra-
tion of the stochastic differential equation (10). The average value of the observable 〈ô〉 (t)
at a time t is evaluated as the classical expectation 〈ô〉 (t) = E [O (λ (t))] over an ensemble
of trajectories λ (t).

3. Some properties of the stochastic representations

3.1. The mapping for observables Co

Our classical stochastic model, as defined in the previous section by the tuple (P+, L,
Cρ, Co, Cs), should bear a physical meaning. Let us examine what consequences can be drawn
from this statement. The state of a physical system is completely defined by its observable
properties. In the quantum case, the latter statement is true, since the density operator
ρ̂ is completely defined by all the moments of the canonically conjugate variables [30-32].
Therefore, the most important ingredient of our otherwise completely abstract model is the
mapping Co for the observables. Let us write the trace formula (6) as a dot product:

〈ô〉 = Trôρ̂ = 〈O∗,P〉S+
. (11)

Suppose that all the observable operators ô belong to some operator space O+, and all their
possible classical representaions O belong to some space S+. Then, the mapping Co is acting
between the spaces O+ and S+,

Co : O+ → S+. (12)

Suppose that S+ is chosen to be the minimal possible space, i.e. S+ = imCo. Note that the
spaces O+ and S+ are real. Since the physical consistency requires that different ô should be
mapped onto different O, we conclude that Co is a bijection. Now, since the average values
of the observables are computed according to the dot-product formula (11), we see that one
can actually introduce a space of quasiprobabilities D, for which the dot product (11) is
well-defined for any O ∈ S+. We require that the space D is such that one can introduce
a dot-product 〈·, ·〉D in it. Further, we call D “the space of admissible quasiprobability
distributions”. From Eq. (11), it is seen that the space D is split into two subspaces:

D = R⊕ Z, (13)

where the subspace Z consists of all such quasiprobabilities Z (λ) which are orthogonal to
every O∗ (λ) ∈ S∗+: 〈O∗,Z〉S+

= 0. The space R is the orthogonal complement to Z in

the space D (in the sense of the dot-product 〈·, ·〉D). If we add any element Z ∈ Z to the
quasiprobability P , then the observable properties of the state P+Z are the same as those of
P . Therefore, if our model is physically consistent, the quasiprobabilities P and P+Z should
correspond to the same density operator ρ̂. Hence, if the space Z is not trivial, it contributes
to the non-uniqueness of the quasiprobability representation. The opposite is also true: every
element Z such that it can be added to any P without changing the corresponding physical
state ρ̂, should belong to Z. We call the space R the “minimal representation space”, because
(i) for every density operator ρ̂, there is a unique quasiprobability R ∈ R such that it has
the same observable properties as ρ̂, and (ii) the quasiprobabiliy representation R of a given
density operator ρ̂ has the lowest possible norm ‖R‖D =

√
〈R,R〉D among all the possible

quasiprobability representations of ρ̂. We call the space Z the ’zero representation space’,
since it contains all the quasiprobabilities which correspond to ρ̂ = 0.
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Note that we can extend the definition of the mapping Co from the real space O+

of Hermitian operators to the complex space O = O+ ⊕ iO+ of non-Hermitian operators.
Indeed, an arbitrary operator ô can be decomposed into Hermitian ô+ and skew-Hermitan
ô− parts:

ô = ô+ + ô−. (14)

However, iô− is a hermitian operator. Therefore, we can map ô as:

Coô = Co
{
ô+ + ô−

}
= Coô

+ − iCo
{
iô−
}
. (15)

Now, if we extend the real space S+ to the complex space S = S+ ⊕ iS+, the mappig
Co becomes a bijection between O and S. For example, if the stochastic representation is
sufficiently well-defined, we can map the nondiagonal projections |n〉 〈m| of some orthonormal
basis {|n〉}, onto

Co {|n〉 〈m|} = Onm (λ) . (16)

Next, we should determine whether the trace formula (11) is valid for non-hermitian ô? This
is indeed the case: since the relation (11) is linear with respect to ô and with respect to O (λ),
we can split ô into hermitian and skew-hermitian parts, and perform the same operation as
in Eq. (15).

3.2. Expansion over overcomplete basis

One important consequence of the arguments in the preceding section is that, using
the map Co, we can define the inverse mapping for the density operators:

〈m |ρ̂|n〉 = Tr (|n〉 〈m|) ρ̂ =

∫
dλOnm (λ)P (λ) . (17)

Introducing the operator Λ̂ (λ) defined by its matrix elements:〈
m
∣∣∣Λ̂ (λ)

∣∣∣n〉 = Co {|n〉 〈m|} = Onm (λ) , (18)

we obtain the expansion of density operators over the operator basis Λ̂ (λ):

ρ̂ =

∫
dλΛ̂ (λ)P (λ) . (19)

This equation defines the mapping from the space of admissible quasiprobability distributions
D to a certain space P of operators, which contains the convex set of physical density
operators P+: P+ ⊂ P . Note that since the matrix elements of Λ̂ (λ) belong to the space S,

the operator basis Λ̂ (λ) is overcomplete (if the space Z is non-trivial):∫
dλΛ̂ (λ)Z (λ) = 0 for any Z ∈ Z. (20)

Now, by substitution of the density operator expansion (19) into the trace formula (11), we
obtain the trace representation of the map Co:

Coô = O (λ) = Tr ôΛ̂ (λ) . (21)

Since every operator can be expanded over the projections |n〉 〈m|, and Co is a bijection, we
conclude that Onm (λ) is a basis in the space S.
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3.3. The mapping for density operators Cρ

In this section, we will connect the properties of the mapping Cρ with those of Co. Let

us denote by C
(R)
ρ the inverse of the mapping defined by the expansion (19), R = C

(R)
ρ ρ̂, and

C
(R)
ρ : P → R is a bijection. Then, the physical and mathematical consistency of our model

requires that Cρρ̂ − C(R)
ρ ρ̂ ∈ Z for any ρ̂. This means that we have a (non)linear operator

Cρ − C(R)
ρ which for every density operator ρ̂, associates a certain quasiprobability Z ∈ Z.

As long as the density operators ρ̂ and the quasiprobabilities R (λ) are in a one-to-one
correspondence, we may write:

Cρρ̂ = R (λ) + α [R] (λ) , (22)

where R = C
(R)
ρ ρ̂, and α is a certain (non)linear mapping, α : R → Z. Therefore, the

existence of the mapping Cρ guarantees that we can choose at least one such mapping α,
that the quasiprobabilities in Eq. (22) become real and positive.

3.4. The mapping for the Liouville superoperator Cs

Consider the action of the quantum Liouville superoperator:

ρ̂′ =
[
Ĥ, ρ̂

]
/i~, (23)

which is a linear operator P → P (assuming that ρ̂′ ∈ P ). Substituting ρ̂′ =
(
C

(R)
ρ

)−1
R′

and ρ̂ =
(
C

(R)
ρ

)−1
R into Eq. (23) , we obtain the operator H(R) : R→ R defined as:

R′ (λ) = H(R) [R] (λ) =
1

i~
C(R)
ρ

{∫
dλ′
[
Ĥ, Λ̂ (λ′)

]
R (λ′)

}
(λ) . (24)

Here, we assume that the space D of admissible quasiprobabilities is such that we can move
the linear operators through the integration whenever necessary. In this manner, we obtain
the stochastic representation for the Liouville superoperator. Note that the definition of
H(R) [Eq. (24)] can be extended to the whole space D in a consistent manner: we have
H(R) [R+ Z] = H(R) [R] for any quasiprobability Z ∈ Z due to the basis overcompleteness
(20). Now, suppose that there exists another linear operator H : D → D, which differs from
H(R), but which also represents the superoperator (23). Then, the physical and mathematical
consistency of our model requires that

(
H−H(R)

)
P ∈ Z for any P ∈ D. Introducing

the space A of linear operators α : D → Z, we obtain the general form of all possible
representations of the superoperator (23):

P ′ (λ) = H [P ] (λ) = H(R) [P ] (λ) + α [P ] (λ) (25)

for arbitrary α ∈ A. The existence of the mapping Cs, which is postulated in Eq. (7),
guarantees that we can always choose such α ∈ A that H becomes a generator of a stochastic
process.

We see that the mapping Co [Eq. (5)] together with the trace formula (6) are the
most important components of the stochastic representation: they completely define the
mathematical structure of our stochastic representation, which is given by Eqs. (19), (21),
(22) and (25).
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3.5. Quasiprobability master equation

Having described the general form for all the ingredients in our stochastic represen-
tation, let us now discuss under what conditions we can obtain the master equation (8),
and when it represents indeed the exact quantum dynamics given by the quantum Liouville
equation (3). We have discussed the representation of the right hand side of Eq. (3) in the
previous section, and there, we have assumed that the space D is selected so that such a
representation is valid. Then, the general form of the master equation is:

∂

∂t
P = HP + α [P ] , (26)

for arbitrary α ∈ A. The necessary condition for Eq. (26) to be valid for a given initial
condition P (λ, t = 0) ∈ D is that the α should be such that at any later time the solution
P (λ, t) should belong to the space D. Further restrictions come from the left-hand side of
Eq. (26): to arrive at the term ∂P/∂t, we differentiate by t the expansion (19), and we need
to move the time derivative through the (usually) improper integral. Therefore, an additional
constraint is imposed on the solution of Eq. (26): for each time moment t, there should exist
an arbirtrary small but finite interval [t− ε, t+ ε] such that the improper integral in the
expansion (19) is converging uniformly with respect to t ∈ [t− ε, t+ ε]. If these conditions
are violated, then the results of Monte Carlo simulations would show systematic errors with
respect to the exact quantum dynamics Eq. (3), and phenomena like the so-called “spiking
behavior” and “unaccounted boundary terms” would be observed [11, 23, 33].

3.6. Annihilators of the overcomplete basis

In the previous section, we have seen that the space A of operators α : D → Z
plays an important role in the stochastic representation. First, these operators α allow us to
transform the representation H [Eq. (25)] of the quantum Liouville superoperator into the
form which admits the stochastic interpretation; second, the operators α allow us to adjust
the quasiprobability master equation [Eq. (26)] so that it is valid and that it possesses no
systematic errors with respect to the exact quantum dynamics [Eq. (3)].

Here, we obtain the characterization of the space A which is more useful in practice
[21]. Suppose that the space of admissible quasiprobability distributions D is such that for
the operators α ∈ A there exist their adjoints with respect to the dot product 〈, 〉S:

〈O∗, αP〉S =
〈(
αTO

)∗
,P
〉
S
. (27)

Here, by superscript T we have denoted the transposition operation, which is defined as
the composition of Hermitian conjugation and the complex conjugation, αT =

(
α†
)∗

; the

domains are αT : S → S; here O ∈ S and P ∈ D. As far as αP ∈ Z, we have:〈(
αTO

)∗
,P
〉
S

= 0 for any P ∈ D. Therefore, αTO is an observable which is zero for

every state, and we conclude that αTO = 0. In particular, since
〈
m
∣∣∣Λ̂ (λ)

∣∣∣n〉 ∈ S, we have:

αT Λ̂ = 0 for any α ∈ A. (28)

According to mathematical convention, we call the operators αT “the annihilators of the
basis Λ̂ (λ)”.

The definition (28) has practical benefits due to the way in which one usually con-
structs the stochastic representations [12, 17, 20, 22, 34]. Suppose that we are given a
concrete physical system. Then, at the first stage, one usually starts from an appropriate
self-consistent field model, which takes into account all the major features of this system on
a qualitative level. As a rule, this corresponds to the assumption that the density operator
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ρ̂ can be well approximated by a certain operator ansatz Λ̂ (λ). At the second stage, one is
looking for a way to incorporate the noise into this self-consistent field model, so that the
resulting stochastic representation is equivalent to the exact quantum dynamics. Therefore,
the common situation is that we are given a certain operator ansatz Λ̂ (λ), and we need to
investigate the possibilities that it provides for the stochastic representations. Then, it is
much easier to find the differential identities of the form (28), to transpose them, and to add
them into the master equation (26), than to find the spaces Z, D, and A.

4. Example of a stochastic representation: the stochastic wave-function
method

In our recent work [21], we have studied the stochastic wave-function method of Caru-
sotto et al. [22]. In this method, one selects the N -particle Hartree-Fock state projections:

Λ̂
(
φ,φ+∗) = |N : φ〉

〈
N : φ+

∣∣ , (29)

as the operator ansatz for the density operator ρ̂. Here, the Fock state is defined as

|N : φ〉 =
[∑

k φkâ
†
k

]N
|0〉 /
√
N !. Therefore, the space L consists of all the vectors λ =(

φ,φ∗,φ+,φ+∗). Now, in order to define the stochastic representation, we need to find all
the necessary mappings for operators and superoperators.

4.1. Operator correspondences for the density operator

In [21], the mapping Cρ is constructed in the following way. Suppose that we have
presented the density operator ρ̂ as an antinormally ordered operator series,

ρ̂ = c0 +
N∑
m=1

m∏
j=1


N∑
kj=1

âkj


m∏
j=1


N∑
k′j=1

â†k′j

h
(
xk1 , . . . ,xkm

∣∣xk′1 , . . . ,xk′m ) , (30)

where N is the size of the discretization lattice. Then, the corresponding quasiprobability
P (λ) = Cρρ̂ is found within two steps. First, we perform the replacements âkj → φ∗kj ,

â†k′j
→ φk′j in Eq. (30), and multiplicate each monomial by a normalization factor:

P (λ) =

 1

ΓN (N)N !
c0 +

1

Γ (m+N)N !

∞∑
m=1

m∏
j=1


N∑
kj=1

φ∗kj


m∏
j=1


N∑
k′j=1

φk′j


× h

(
xk1 , . . . ,xkm

∣∣xk′1 , . . . ,xk′m )
 δS (‖φ‖ − 1) δ

(
φ+ − φ

)
, (31)

where the normalization factor is

ΓN (p) = S2N−1
(N − 1)!

(N − 1 + p)!
, (32)

and S2N−1 is the volume of the unit sphere in CN . However, the quasiprobability P (λ)
which is obtained in Eq. (31), is not positive in general. We make it positive within the
second step, by employing the method of Carusotto et al. [22, 35]; we write the density
operator expansion for the basis (29),

ρ̂ =

∫ N∏
k=1

dφkdφ
∗
k

N∏
k=1

dφ+
k dφ

+∗
k P

(
φ,φ∗,φ+,φ+∗) |N : φ〉

〈
N : φ+

∣∣ . (33)
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Then we separate the phase of P (λ):

P (λ) = |P (λ)| eiξ(λ). (34)

Next, we absorb the phase into |N : φ〉
〈
N : φ+

∣∣:
ρ̂ =

∫ N∏
k=1

dφkdφ
∗
k

N∏
k=1

dφ+
k dφ

+∗
k |P (λ)|

∣∣N : φeiξ(λ)/2N
〉 〈
N : φ+e−iξ(λ)/2N

∣∣ . (35)

If we change the variables as φeiξ(λ)/2N → φ, φ+e−iξ(λ)/2N → φ+, and calculate the Jacobian
determinant, we can return to form (33), where P is now real and positive. However from
the point of view of the stochastic simulations, one may stop at (35); we sample the initial
conditions with the probability distribution |P (λ)|, and each time we multiply the sampled
wave functions by the phase factor e±iξ(λ)/2N .

4.2. Operator correspondences for the observables

The mapping Co is constructed in the following way. Suppose that we have presented
the observable operator Ô as a normally ordered operator series:

Ô = c0 +
N∑
m=1

m∏
j=1


N∑
kj=1

â†kj


m∏
j=1


N∑
k′j=1

âk′j

h
(
xk1 , . . . , xkm

∣∣xk′1 , . . . , xk′m ) . (36)

Due to the linearity of the mapping Co, it is sufficient to consider the terms

Ô = â†k1 . . . â
†
kl
âk′1 . . . âk′m . (37)

Then, we employ the trace representation (21):

Coâ
†
k1
. . . â†kl âk′1 . . . âk′m = Tr â†k1 . . . â

†
kl
âk′1 . . . âk′m |N : φ〉

〈
N : φ+

∣∣
= φ+∗

k1
. . . φ+∗

kl
φk′1 . . . φk′mδlm

N !2

(N −m)!

〈
φ+ |φ

〉N−m
. (38)

4.3. Operator correspondences of the star-product type

In order to find the mapping Cs for the quantum Liouville superoperator, we proceed
in a constructive way [21]. We note that for a Hamiltonian of the form (1), the action of

the Liouville superoperator
[
Ĥ, ·

]
/i~ is constructed from the multiplications by âs and â†s

from the left and from the right. Since such multiplications, e. g., âs × · and · × âs, are also
superoperators, we find the mapping Cs for the left multiplication by a number-conserving
normally-ordered product of creation and annihilation operators [21]:

Cs

[
â†k1 . . . â

†
kl
âk′1 . . . âk′l × ·

]
= (−1)l

∂

∂φk1
. . .

∂

∂φkl
φk′1 . . . φk′l , (39)

and for the right multiplication,

Cs

[
· × â†k1 . . . â

†
kl
âk′1 . . . âk′l

]
= (−1)l

∂

∂φ+∗
k′1

. . .
∂

∂φ+∗
k′l

φ+∗
k1
. . . φ+∗

kl
. (40)
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Using these relations, we can evaluate the operator H:

H = Cs

[
Ĥ, ·

]
/i~ = −

∑
r

∂

∂φr
Ar [φ]−

∑
r

∂

∂φ+∗
r

(
Ar
[
φ+
])∗

+
1

2

∑
r,s

∂

∂φr

∂

∂φs
Vrs

φrφs
i~

+
1

2

∑
r,s

∂

∂φ+∗
r

∂

∂φ+∗
s

(
Vrs

φ+
r φ

+
s

i~

)∗
. (41)

We see that the operator H does not have the required form of the genuine Fokker-Planck
operator in complex variables [21]. In particular, the drift terms lack their complex conju-
gates, and the diffusion matrix is not Hermitian. Nevertheless, we can solve this issue by
adding the annihilator α to the master equation (41).

4.4. Annihilators of the overcomplete basis

As was described in Sec. 3.6, the properties of the stochastic representation are most
conveniently described in terms of the differential identities of form (28). In work [21], we
find the following differential identities for the Hartree-Fock state projections (29): (i) the

analyticity of the basis Λ̂
(
φ, φ+∗) with respect to its variables;

∂

∂φ∗k
Λ̂
(
φ, φ+∗) = 0,

∂

∂φ+
k

Λ̂
(
φ, φ+∗) = 0; (42)

(ii) the homogeneity of the Hartree-Fock state,[
N −

∑
k

φk
∂

∂φk

]
Λ̂
(
φ,φ+∗) = 0, (43)[

N −
∑
k

φ+∗
k

∂

∂φ+∗
k

]
Λ̂
(
φ,φ+∗) = 0. (44)

From expressions (42)-(44), we conclude that the operator α, in the general form (26) of the
master equation, has the form:

α =
∑
k

∂

∂φ∗k
l∗k +

∑
k

∂

∂φ+
k

l+k +

[
N +

∑
k

∂

∂φk
φk

]
d+

[
N +

∑
k

∂

∂φ+∗
k

φ+∗
k

]
d+∗. (45)

Here, lk, l
+
k , d, d+ are some linear operators D → D.

In work [21] it is discussed in detail how we can choose such parameters lk, l
+
k , d, d+

that the master equation (26) with H [Eq. (41)] becomes the Fokker-Planck equation, and
satisfies the validity conditions discussed in Sec. 3.5.

5. Conclusion

In this work we have considered the most general definition of the classical stochastic
representation of the many-body quantum dynamics. Such representation should provide
several mappings: for density operators Cρ, for observables Co, and for superoperators Cs.
The most important postulated property of the stochastic representation is the classical
representation of the trace formula for average values of the observables.

The main result of this work is that when the mathematical properties of the sto-
chastic representation are regular enough, and it is physically consistent, then the stochastic
representation is reduced to the expansion of the density operator over a certain overcomplete
operator basis Λ̂ (λ). This operator basis Λ̂ (λ) defines all the propertes of the stochastic
representation: the general form of all the mappings. Moreover, the overcompleteness of the
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basis leads to the existence of equivalent transformations of quasiprobability master equa-
tions, which allows us to perform their stochastic unraveling. Such a structure is already
known to occur in the representations of quantum mechanics in generalized phase spaces
[23-26]. We also demonstrate that the stochastic wave-function methods [8, 12-20, 36] also
fall into this category of stochastic representations.
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1. Introduction

Over the last couple of decades, there has been an increased interest in studying
nano-objects of various types including the polymer molecules. Modern facilities are now
able to synthesize macromolecules with complicated architecture, such as stars, brushes, nets
or dendrimers. In this paper, we restrict ourselves to the simulation study of star-shaped
molecules. Due to their specific structural features, these polymers have essentially new
characteristics in comparison to linear chains. As a result, their average size is considerably
smaller than that of the linear polymers with the same number of segments. Consequently,
they have greater concentration of monomers that leads to greater volume effects. Star-like
molecules can be considered as unique objects, combining properties of linear polymers and
colloid particles as was also pointed out in [1, 2]. It was correctly mentioned in [3] that the
star polymer with a small number of arms is close in its behavior and properties to that of a
linear polymer, while with an increased number of arms, it becomes closer to a rigid spherical
particle. The main aim of this paper is to observe how initial structural characteristics, such
as the number of its arms, influence its equilibrium structural properties, including features
of the coil-globule transition. This problem is also discussed in a number of papers [4, 5] so
it would be desirable to compare our data with that of [4]. It is known that in the star-like
polymers, there can be observed transitions of two types: liquid-crystal (1st order) and the
coil-globule (2nd order), wherein the second order transition is very sensitive to the polymer’s
topology.
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It should also be stressed that studies of star-like polymers are important because of
their possible application for the transport of DNA and drug substances into cells [6–8].

The considered model is presented in section 2. The results for the athermal and
thermal cases are discussed in sections 3 and 4 correspondingly. Conclusions are given in
section 5.

2. Model

In this work, we consider the model of a regular neutral polymer star on a simple
cubic (SC) lattice. Lattice models have been widely used for a long time in the study of
polymers [9]. These models are still useful now [10–14], since such an approach allows one
to obtain reasonable results with minimal computational requirements.

Star-like polymers (for convenience, we refer to as ”star”) can be represented as f
chains fixed by their single ends to a common center. We consider cases of f � 6 where
f=1 and f=2 correspond to linear chains. Each arm is a chain of Narm bonds (segments)
and Narm + 1 monomers (knots). The total number of segments in a star is N = fNarm.
Each i -th monomer has coordinates (xi, yi, zi). The segments are being generated with the
aid of semi-phantom random walks along the lattice with reverse steps being forbidden [15],
contrary to the case of free (or phantom) walks. In order to change the configuration of
the star, an arm and its k0-th monomer are randomly chosen and a new piece of this arm,
starting from k0 up to the end of the arm, is newly generated.

In our work, we use the entropic sampling simulations [16, 17] within Wang-Landau
algorithm [18]. This method was successfully applied in our previous works [13,15,19–21] as
well as by other authors [4, 12, 22–24] in polymer studies. An important attractive feature
of this method is in its ability to obtain statistics for very rare events with relative ease.
Hence, this method provides a means for calculating the equilibrium characteristics of the
studied system over a wide range of temperatures, including the phase transition area. The
calculation time required was about a few hours on a standard 4-core processor in most
instances.

3. Athermal case

In the athermal case, the interaction between monomers is reduced to the exclusion
of intersections. In order to learn how strongly the fixation of all arms’ ends at the same
point (in the center of the star) restricts their freedom, it is worth considering their excess
entropy. The complete number of conformations for a semi-phantom star with f � z arms
is z!(z − 1)N−f/(z − f)! [21]. So, the entropy can be expressed as:

S = ln

(
z!(z − 1)N−f

(z − f)!
Ω0

)
, (1)

where z=6 is the coordinate number of our SC lattice and Ω0 is the ratio of the self-avoiding
conformations which we obtain in the same way as in our preceding paper [21]. Values of
Ω0 were calculated for stars with the total number of segments N � 800. The error does
not exceed 15%. The entropy of the phantom chain (star) is ln(zN ). So the specific excess
entropy of our system (relative to this basic system) is:

ΔS

N
=

1

N
ln

(
z!(z − 1)N−f

(z − f)!
Ω0

)
− ln z. (2)
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Fig. 1. Specific excess entropy (relative to the phantom chain) as a function
of the inverse number of segments for stars with different numbers of arms
(3÷ 6), for a chain, and for ring [15].

The dependence of ΔS/N on 1/N is presented in Fig. 1. It is seen that for the 3-arm
star, the curve in this scale is rising and is rather close to that of the single chain. But for
f=4, the dependency already begins to decrease; and with an increased number of arms, this
tendency becomes more pronounced. This picture demonstrates that increasing the number
of arms results in increased configurational restrictions. For comparison, Fig. 1 presents the
appropriate curve for ring chains [15] and it is seen that restrictions caused by closure of the
chain are even greater than in the case of when the 6 arms were affixed to the center of the
star.

4. Thermal case

In the thermal case, we account also for interactions of non-bonded monomers if they
occur in contact with each other (i.e. at a distance of the lattice constant). In this case, an
energy (ε > 0 or ε < 0) is attributed to each such contact. The value of ε can characterize
the solvent quality of the real polymer solutions. In this work, we present only the most
interesting case — attraction (ε < 0). The energy in the given conformation is E = εm,
where m is the number of contacts, m ∈ [0, mmax]. As a result of the simulation for a given
star, we obtain a distribution of conformations over the number of contacts Ωm for a given
star. Knowledge of Ωm allows calculation of equilibrium properties over a wide temperature
range, according to the canonical expression:

〈F 〉 (T ) =

mmax∑
m=0

Fme
−Em/kBTΩm

mmax∑
m=0

e−Em/kBTΩm

, (3)

where F is a certain physical quantity and Fm is its distribution over the number of contacts
which is also determined during simulation. In this paper, we obtained such distributions for
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the module of the radius-vector of the center of mass, mean square of the radius of gyration
and its orthogonal components. In the limit T → ∞, equation (3) yields the athermal values.

Fig. 2. Specific configuration energy as a function of temperature for stars
with different numbers of arms (3 ÷ 6) and for a chain. Total number of
segments N=70 for f=5 and N=72 for all the rest.

We have studied stars with different numbers of arms (from 3 to 6) and approxi-
mately equal total number of segments: f=3, Narm=24; f=4, Narm=18; f=5, Narm=14; f=6,
Narm=12. Also, for comparison, the chain (i.e. f=2, Narm=36) has been considered. The case
with a fixed number of arms (f=6) was studied earlier in [19–21]. Fig. 2 presents tempera-
ture dependencies of the specific configuration energy according to (3) with Fm = εm. Here
and subsequently, the temperature is given in |ε|-units, kBT/|ε|. A monotonic growth of the
energy was observed, with the curves being close to each other and a very small difference
between them is only noticeable at higher temperatures.

In order to observe structural transitions, it is also useful to calculate the heat ca-
pacity:

C(T ) =
∂E

∂T
=

〈E2〉 (T )− (〈E〉 (T ))2
T 2

. (4)

The temperature dependence of the specific heat capacity is presented in Fig. 3. It was
observed that for all the considered cases, there exists a maximum which becomes wider and
is shifted to lower temperatures with an increased number of arms. The latter provides the
increase of the total monomer density, such that it hinders the collapse of the coil-globule
transition. Similar results were obtained in [4], where the fluctuating bond model was used.

Additionally, we present several structural characteristics for our models. In order
to observe the coil-globule structure transition, we calculated the mean square radius of
gyration for a star. For each conformation, the radius of gyration was determined and was
ultimately averaged separately for each number of contacts using the following equation:

〈
R2

I

〉
m
=

1

2N2

〈
N∑
i=1

N∑
j=1

|rij |2
〉

m

=
1

N

〈
N∑
i=1

(ri −Rc)
2

〉
m

. (5)
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Fig. 3. Specific heat capacity as a function of temperature for stars with
different numbers of arms (3 ÷ 6) and for a chain. N=70 for f=5 and N=72
for all the rest. Legend, see in Fig. 2.

Here, rij is the distance between monomers and the sum is taken over all monomeric pairs, Rc

is the center of mass vector. The obtained data is canonically averaged according to formula
(3). The dependence of the mean square radius of gyration on temperature is shown in Fig.
4a. In Fig. 4b data is presented for the T -dependence of the factor g = 〈R2

I〉star / 〈R2
I〉chain.

The latter is shown to be non-monotonic and there exists a temperature at which the star
attains the most extended state in comparison with that of the corresponding chain. At
higher temperatures, for increasing f, the difference between the size of the star and the size
of the chain becomes larger. For decreasing temperatures, the size of the stars lessens and
a transition from the coiled state to that of the globule occurs. The size of the globule does
not depend on the number of arms and is determined only by the total number of segments.

Limiting values of g at T → ∞ are presented in Table 1. Also, there are presented
values of gph for the phantom (ideal) star model [9], according to the expression gph = (3f −
2)/f 2, together with the results of our simulation. For the latter purpose, the distribution of
the conformations Ωn and the square radius of gyration R2

In over the number of intersections
n and the corresponding average was determined according to the expression:

〈
R2

I

〉
ph

=

nmax∑
n=0

R2
InΩn

nmax∑
n=0

Ωn

. (6)

It is interesting to note that g-values for the athermal case with intersection avoidance appear
to be in sufficiently fair agreement with those of phantom random progression cases. It could
be affirmed that for stars with small number of arms (f � 6) the volume effects do not differ
much from those of chains with the same total number of segments.

Fig. 5 presents temperature dependencies for the reduced modulus of the center of
mass radius-vector Rc/Narm . Its location was determined relative to the position of the star
center, and was fixed as the coordinate’s origin. For the chain (f=2) , the dependency was
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a

b

Fig. 4. Mean square radius of gyration (a) and g-factor (b) as functions of
temperature for stars with different numbers of arms (3 ÷ 6). N=70 for f=5
and N=72 for all the rest. Legend, see in Fig. 2.

Table 1. Limiting values of the mean square radius of gyration 〈R2
I〉, and

factor g for stars under athermal and ideal conditions.

f lim
T→∞

〈R2
I〉 g 〈R2

I〉ph gph g, ideal star [9]

2 29.1 1 13.4673 1 1
3 23.3474 0.8023 10.6939 0.7940 0.7778
4 18.7997 0.6460 8.7705 0.6512 0.625
5 15.2897 0.5254 7.2798 0.5406 0.52
6 13.6292 0.4684 6.5164 0.4839 0.4444
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Fig. 5. Temperature dependence of the reduced modulus of the center of mass
radius-vector Rc/Narm for stars with different number of arms (3 ÷ 6). N=70
for f=5 and N=72 for all the rest. Legend, see in Fig. 2.

shown to increase. For stars with f=4, 5, 6, there exists a maximum that becomes more
pronounced with an increased number of arms f. This might lead one to suppose that in the
region of transition to the compact conformation, the internal state of the star is unstable,
with its form essentially deviating from a symmetric one.

In order to analyze a star’s form, it is necessary to calculate the orthogonal com-
ponents of the square radius of gyration [23, 25]. First, all the components were obtained
and then, matrix diagonalization was performed, such that the three nonzero components
L2
1 < L2

2 < L2
3, and that R2

I = L2
1 + L2

2 + L2
3. These were initially averaged for each value of

energy and finally, the canonical averages according to the relation (3) were obtained. All
three components have different values, so we can state that the simulated stars have an
average form of the three-axis ellipsoid. Knowledge of these components makes it possible
to calculate the asphericity parameter of the star [11]:

δ = 1− 3(sf1sf2 + sf2sf3 + sf3sf1), (7)

where the reduced components are sf1 = L2
1/R

2
I, sf2 = L2

2/R
2
I, sf3 = L2

3/R
2
I. The asphericity

parameter ranges from 0 (absolute symmetry, sphere) up to 1 (the form of a rod). In the
globular state, the star with any number of arms has a form similar to that of a sphere (Fig.
6a), and with elevated temperature, the asphericity increases. For the chain, this rising δ(T )
is monotonous and for stars, this dependency has a maximum, which becomes more distinct
with increased f. The maximum is slightly shifted to lower temperatures with increased f.
Such a tendency can be explained in the following way: the greater the monomer density
inside the star, the greater the relative asymmetry the star requires to attain a globular
state. It is also clear from the figures that the greater the number of arms, the smaller the
deviation of the star’s form from an ideal sphere.

We have also considered the parameter that allows us to distinguish between the
oblate and the elongated forms [11]

S∗ = (3sf1 − 1)(3sf2 − 1)(3sf3 − 1). (8)
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a

b

Fig. 6. Temperature dependence of the asphericity δ (a) and of the parameter
S* characterizing the form (b), for stars with different number of arms (3÷6).
N=70 for f=5 and N=72 for all the rest.

This parameter ranges over the interval [-0.25, 2], so it can be both negative (oblate form)
and positive (elongated form). The temperature dependency of S* is presented in Fig. 6b.
It is seen that S∗ > 0 over the entire temperature range, and hence, the star has the average
form of a slightly elongated sphere. It is also worth noting that there is a temperature for
which the elongation for stars has a slight maximum while for a chain, the dependency S*(T )
is monotonous. With the transition to the globular state (T < 1), the elongation vanishes.

Fig. 7 presents the dependencies δ(T ), S*(T ) for 6-arm stars with different arm
lengths. Increasing the arms’ length was shown to shift the maxima of δ and S* to higher
temperatures and make it slightly more narrow.
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a

b

Fig. 7. Temperature dependencies of the asphericity δ (a) and of the param-
eter S* characterizing the form (b), for five 6-arm stars with varying arm
lengths (Narm=5, 8, 12, 16, 20). Symbols in lines are used for marking different
lines.

5. Conclusion

In this paper, we have studied a lattice model of regular, non-charged star polymer
with the attractive interactions between segments and with varying number of arms. The
effect of these characteristics upon temperature behavior of structural characteristics for
star polymers is demonstrated. Using the entropic sampling method [18], we could calcu-
late structural properties for stars over a wide temperature range and show that at certain
temperatures, a transition of the coil-globule type occurs. This transition shifts to lower
temperatures with an increased number of the arms, since it is more difficult to collapse
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stars with greater number of arms into a compact globule. In the area of this transition, the
form of the star becomes most asymmetric i. e. an elongated ellipsoid.

The number of segments in the considered stars was not very large, however the ap-
plied method provides an opportunity to increase this value. Moreover, the next step of this
work can imply simulation of star polymers where electrostatic interactions are considered.
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The scattering of elastic waves is studied in the vicinity of a vacuum-medium boundary. The Green’s function

for a half-space is re-derived within the mixed 2D-Fourier representation, which is convenient for studying

layered media. Monte-Carlo simulations of elastic wave scattering from random inhomogeneities within a

simplified scalar model are performed, accounting for a boundary-induced term in the Green’s function. The

multiply scattered elastic waves’ radiation is shown to decay with distance from the source much slower in

vicinity of boundary than in an infinite medium, due to the boundary condition requirements.
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1. Introduction

We consider the problem of scattering for radiation generated by a point-like source
of harmonic oscillations in an elastic half-space. The field of the point-source, known as the
Green’s function of the wave equation, is fundamental for the theory of the single-, as well
as multiple- scattering in random media ( [1]).

The problem of the displacement field generated by a point-like source in an elastic
bounded medium has been considered for more than 150 years, beginning with [2], and [3].
This problem is nevertheless still relevant today ( [4–6]).

There is considerable interest in coda waves, which were interpreted in [7] as scattering
from lithospheric heterogeneities (see, e.g., [8–11]). Great attention has been paid in the last
few decades to the multiple scattering of waves of different physical natures in random media (
[12]). In particular, remarkable progress has been achieved in multiple light scattering (see,
i.g., [13]). Subsequent methods elaborated for light scattering in random media were applied
to the investigation of elastic field scattering, mainly for seismic issues ( [14–20]).

Previously, the multiple scattering of elastic waves were studied using the Monte
Carlo method ( [14, 21, 22]) for a one-mode scalar model. Such a one-mode model can be
justified with the elastic waves transfer equation ( [23]), which assumes the shear mode to be
dominant. Realistically accounting for the mode conversions allowed the authors ( [18]) to
show that the shear mode becomes dominant very rapidly in the coda. Detailed Monte Carlo
simulations were performed in ( [24]), taking into account mode conversions and considering
multiple scattering in an infinite space.
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In the case of an electromagnetic field, the larger share of the wave refracting at the
boundary with vacuum escapes from the medium due to small reflectivity; the reflected share
of radiation is on the order of several percent for most dielectric materials. In contrast, for
elastic wave radiation, there occurs a total reflection at the boundary of an elastic medium
with a vacuum, requiring that the radiation incident upon the boundary should be com-
pletely returned back to the medium. Thus, while the corrections to the Green’s function
caused by the boundary can be neglected for the light scattering, for acoustic radiation, the
specific boundary contributions to the acoustic Green’s function should turn out to be quite
important.

In earlier simulations of multiple light scattering, we developed the semi-analytic
Monte-Carlo approach ( [25]) for a scalar model based upon the Bethe-Salpeter equation,
successively describing a number of correlation and coherent phenomena in random media
optics. Here, we generalize this approach for the multiple scattering of elastic waves, also
in the scalar one-mode approximation. We perform the elastic wave multiple scattering
simulation, describing radiation transfer in the framework of a simplified Bethe-Salpeter
equation, within the one-mode approximation. A crucial distinction of the present approach
is that calculating the iterative expansion terms for the Bethe-Salpeter equation in scattering
demands we use the exact form of the scalar Green’s function for the half-space geometry,
thus explicitly accounting for boundary conditions at the vacuum-elastic medium boundary.
To the best of our knowledge, such an approach to the boundary effect problem in multiple
scattering has not been applied before. We perform the Monte Carlo simulation for multiple
scattering of waves propagated from a point-like radiation source to a point-like receiver.
For comparison, we present the simulation results obtained using Green’s function for an
unbounded space. We found that using the exact Green’s function for a half-space and the
Green’s function for an infinite space gave rather different results. The simulations have
shown that multiply scattered radiation, obtained with proper accounting for the boundary,
propagates in the vicinity of vacuum-medium boundary for much longer distances than would
be the case for a simplified approach, wherein one neglects the boundary effect on the Green’s
function.

The paper is organized as follows: sction 2 contains general equations of elastic wave
theory; section 3 presents the Green’s function for a half-space within the 2D-Fourier repre-
sentation; in the fourth section the Monte Carlo procedure accounting for boundary effect
is described; section 5 contains results of simulations, and section 6 contains conclusions.

2. Generals

The elastic field, described as displacement vector u(r, t) dependent on space r and
time t ( [26]), in an homogeneous medium satisfies the wave equation:

∂2u/∂2t− c2tΔu+
(
c2t − c2l

)
grad divu = 0, (1)

where ct =
√

μ/ρ and cl =
√
(K + 4μ/3)/ρ are the velocities of transverse and longitudinal

elastic waves, respectively; ρ is the density, μ and K are the shear and the compression
moduli. The boundary conditions at the vacuum-medium interface B are defined as:

σn|B = 0, (2)

where n is the normal vector to surface B, and σ(r, t) is the stress tensor, with components

σij = (K − 2μ/3) δij divu+ μ

(
∂ui

∂rj
+

∂uj

∂ri

)
. (3)
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We consider harmonic fields with the temporal dependence of the form ∝ exp(−iωt),
where ω is the frequency. For the harmonic point-source with frequency ω, the displacement
field is described by the tensor Green’s function G(r, r′;ω) which satisfies the equation:

ρ
[(
c2t − c2l

)∇⊗∇− I
(
ω2 + c2tΔ

)]
G(r, r′, ω) = Iδ(r− r′), (4)

where I is the identity tensor, ⊗ denotes the tensor product, r′ and r are the source and
receiver positions. Further, for brevity, we omit the argument ω � 0.

For an infinite homogeneous medium, the Green’s function G(r, r′) = G0(R) with
R = r−r′ due to translational invariance. This Green’s function in the (r, ω)-representation
is known to be (see, i.g. [4], Eq. (4.43)):

G0(R) =
1

ρc2t

eiktR

4πR

[(
I− R⊗R

R2

)
+

(
i

ktR
− 1

k2
tR

2

)(
I− 3

R⊗R

R2

)]
+

+
1

ρc2l

eiklR

4πR

[
R⊗R

R2
−

(
i

klR
− 1

k2
l R

2

)(
I− 3

R⊗R

R2

)]
, (5)

where kl = ω/cl and kt = ω/ct are the longitudinal and transverse wave numbers respectively.
The radiation condition adds to kt,l infinitesimal damping Im (kt,l) = +i0. Forbidding waves
to propagate from infinity to the source requires that the Green’s function should satisfy the
Sommerfield radiation condition. As can easily be seen, the near-field asymptotics G0(R) ∝
R−1, whereas terms of the form R−3 and R−2 cancel each other out in the short distance
limit, R → 0, in contrast with the electromagnetic field, containing ( [27]) asymptotic term
R−3.

For a half-space medium, the 2D Fourier transform over transversal variables x,
y turns to be an effective method for solution of the wave equation due to its cylindrical
symmetry ( [4,28]). Thus, in this (q⊥, z)-representation, the wave equation (1) for temporally
harmonic displacement takes the form:(

K2∂
2/∂z2 + iK1∂/∂z + K0

)
u(q⊥, z) = 0, (6)

where K2, K1 = K1(q⊥) and K0 = K0(q⊥) are the 3× 3-matrices,

K0 =
(
ω2 − c2t q

2
⊥
)
I− (

c2l − c2t
)
Q⊗Q, K1 =

(
c2l − c2t

)
(Q⊗ n+ n⊗Q) ,

K2 = c2t I+
(
c2l − c2t

)
n⊗ n,

(7)

and the transversal vector q⊥ is presented formally as the 3D-vector Q = (q⊥, 0).
There are six independent solutions of Eq. (6):

u±
j (q⊥, z) = e±j (q⊥)e±iκj(q⊥)z, j = 1, 2, 3, (8)

where κ1,2(q⊥) = κt(q⊥), κ3(q⊥) = κl(q⊥),

κt =
√
k2
t − q2⊥, κl =

√
k2
l − q2⊥, (9)

are the eigenvalues and

e±1 (q⊥) = q⊥ × n/q⊥, e±3 (q⊥) = q±
l

(
q2⊥ + |κl|2

)−1/2
,

e±2 (q⊥) = (±κt(q⊥)q⊥/q⊥ − q⊥n)
(
q2⊥ + |κt|2

)−1/2
(10)

— eigenvectors of the second order matrix differential operator in Eq. (6), with

q±
l = (q⊥,±κl(q⊥)) (11)
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being the 3D wave vector. The waves with superscripts “±” propagate along axis z in
directions z → ±∞, respectively. These normal waves have simple physical interpretation:
u±
1,2(q⊥, z) are the transverse waves with wave vectors q±

t and u±
3 (q⊥, z) are the longitudinal

waves with wave vectors q±
l . Unit vectors e

±
j are the polarizations of these waves.

It should be noted that due to the equality κ1 = κ2, one can take as a set of eigen-
vectors e±1,2 any pair of linear independent vector satisfying to the orthogonality condition

e±1,2 ⊥ q±
t . We have fixed the choice requiring supplementarily the orthogonality relations

e±1 ⊥ n, e±1 ⊥ q⊥ and e±1 ⊥ e±2 should be fulfilled. Then, the subscript j = 1 corresponds to
SH-wave, j = 2 — to SV-wave, and j = 3 — to the P-wave.

3. The Green’s function in a Half-Space

Let an elastic medium occupy the half-space z > 0. There have been several deriva-
tions beside the classic ones for the Greens function in an elastic half-space; our approach is
quite close to that used by Johnson. The Green’s function within the (q⊥, z) -representation
with the δ-form source obeys the equation:

ρ
(
K2∂

2/∂z2 + iK1∂/∂z + K0

)
G(q⊥; z, z′) = Iδ(z − z′). (12)

The solution of Eq. (12) supplemented with boundary conditions at z = 0 can be sought as
a sum of two terms

G(q⊥; z, z′) = G0(q⊥; z − z′) + GB(q⊥; z, z′), (13)

where G0 is the Green’s function for the infinite homogenous medium and GB, being the
solution of the homogeneous wave equation(

K2∂
2/∂z2 + iK1∂/∂z + K0

)
GB(q⊥; z, z′) = 0, (14)

satisfies to the boundary condition.
The first term, the Green’s function for an infinite homogeneous medium (5), can be

written in the form:

G0(q⊥, z − z′) = i
(
2κtρω

2
)−1

[
κ

−1
t eiκt|z−z′| (k2

t I− q±
t ⊗ q±

t

)
+ κ

−1
l eiκl|z−z′|q±

l ⊗ q±
l

]
, (15)

where superscripts “+” must be chosen for z − z′ > 0 and “−” for z − z′ < 0 in q±
t,l.

Since components of the tensor Green’s function can be interpreted as matter dis-
placements, induced by the point source, the boundary conditions (2) give:

(B1∂/∂z + iB0)G(q⊥; z, z′)|z=0 = 0, (16)

where z′ is an arbitrary point inside the medium, z′ > 0,

B0 = μQ⊗ n+ (K − 2μ/3)n⊗Q, B1 = μI+ (K + μ/3)n⊗ n. (17)

Additionally, one should require there should be no wave propagation from infinity,
+∞, to the source. Since, for the body term G0(q⊥; z, z′), this requirement is fulfilled, it
should also be fulfilled for the term GB(q⊥; z, z′).

The solution for matrix equation (14), containing no wave propagation from infinity,
can be written as:

GB(q⊥; z, z′) =
3∑

j,m=1

Cjmu
+
m(q⊥; z)⊗ u−

j (q⊥;−z′), (18)

where Cjm = Cjm(q⊥) are the coefficients determined by the set of boundary conditions (16),

(B1∂/∂z + iB0)GB(q⊥; z, z′)|z=0 = − (B1∂/∂z + iB0)G0(q⊥; z, z′)|z=0 . (19)
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Physically, the (j,m) term describes wave u−
j incident upon the boundary and reflected

as wave u+
m, propagating from boundary to receiver. We schematically illustrate in Fig. 1

the propagation of waves, constituting the Green’s function G(r′, r), in a half space with
boundary B, from the source to receiver.

B
Vacuum

Elastic 
medium

Source

Receiver

r'

r

z = 0 

z

Fig. 1. Schematic source and receiver arrangement in the half-space geometry.
The solid and dash circular arcs represent waves G0 and GB, respectively, and
B is the boundary of the medium-vacuum.

Substituting Eqs. (18) and (15) into (19), we obtain a set of algebraic equations for
nine coefficients Cjm with solution in the form:

Cjm = −iamj

(
2ρc2jκjD

)−1
, (20)

where j, m = 1–3; c1,2 = ct, c3 = cl, and

a11 = D, D = 4κtκlq
2
⊥ + E2, E = k2

t − 2q2⊥, a22 = a33 = D − 2E2,

a23 = −4clc
−1
t κlq⊥E, a32 = −a23c

2
t c

−2
l κtκ

−1
l , a1j = aj1 = 0 (j = 2, 3).

(21)

Performing the inverse Fourier transform we present the boundary induced term GB

in the physical space as follows:

GB(R⊥; z, z′) = − i

2ρ

3∑
j,m=1

c−2
j

∫
dq⊥
(2π)2

amj

Dκj
eiq⊥·R⊥ei(κmz+κjz

′)e+m(q⊥)⊗ e−j (q⊥). (22)

The 2D-integrals are expressed through 1D-integrals for the Bessel functions. The (j,m)-
term in this sum can be described as an input for the transformation of the j-mode incident
wave into the m-mode generated wave. The zero values for coefficients a12, a21, a13, a31
correspond to the well-known selection rules ( [4]).

Various contributions to integrals (22) over q⊥ reproduce the known types of elastic
waves of different physical nature. The vicinity of stationary phases in exponentials of
Eq. (22) yields the known formulas of geometrical acoustics describing all pairs of different
modes of incident and reflected waves. The pole singularity due to the zero of determinant
D(q⊥) in the integrand, gives rise to surface Rayleigh waves. The zeros of κj at q⊥ = kt,l,
being the branch points of the integrands, give rise to head waves.

In the far-field zone, q⊥R⊥+zκm+z′κj � 1, the integrands in Eq. (22) contain rapidly
oscillating exponents and the method of stationary phase can be applied. The relevant



Boundary effect on multiple scattering of elastic waves 529

contribution to each integral comes from the range of the stationary point qjm
st = qjmR⊥/R⊥,

(0 � qjm < kt,l), which can be found as the root of equation:

z′qjmκ−1
j (qjm) + z qjmκ

−1
m (qjm) = R⊥. (23)

As a result, this contribution can be presented as follows:

Gst
B(R⊥; z, z′) ∼ −

3∑
j,m=1

1

ρc2j
Fjm(qjm)

eiΦjm(qjm)

4πRjm(qjm)
e+m(q

jm
st )⊗ e−j (q

jm
st ), (24)

where

Rjm =
√(

Rj
inkj +Rm

refkmκ
2
jκ

−2
m

)
R⊥q−1

jm , (25)

and Rj
in(qjm) and Rm

ref(qjm) can be interpreted as the geometric acoustic path of an elastic
wave traveling from the source to the boundary in the form of the j-th mode and reflected
from the boundary to the receiver as the m-th mode, and:

Φjm = qjmR⊥ + κm(qjm)z + κj(qjm)z
′ (26)

is the total phase, and Fjm(qjm) = amj(qjm)/D(qjm) are the generalized reflection coefficients.
Coefficient Fjm describes conversion of the j-th incident mode into the m-th reflected mode
at the medium-vacuum boundary. It also accounts for phase shifts and the solid angle
transformation occurring at reflection of spherical waves (see Sec. 6 in [4], cf. in optics [29,
30]).

It should be noted that the terms of asymptotic formula (24) can be interpreted as
five spherical waves generated by three imaginary sources.

The near-field zone asymptotics of the Green’s function, described by (22), as well as
the Rayleigh wave contribution, were considered within the approach outlined in [31].

There have been several derivations for the Green’s function in an elastic half-space,
however, our approach is quite similar to that used in ( [28]).

4. Multiple scattering in a half-space

In addition to the coherent wave propagating from a source in a heterogeneous elastic
medium, scattered waves also appear. The radiation is scattered from fluctuations of density
ρ(fl)(r) as well as material parameters, which are generally described with the fourth rank
tensor C(fl)(r). For a locally-isotropic medium, it can be written as:

C
(fl)
αβγζ(r) = K(fl)(r)δαβδγζ + μ(fl)(r)

(
δαγδβζ + δαζδγβ − 2

3
δαβδγζ

)
, (27)

where K(fl)(r) and μ(fl)(r) are the random, or fluctuating compression and shear modules.
We present the material parameters as

ρ(fl)(r) = ρ+ δρ(r), C(fl)(r) = C+ δC(r), (28)

where δρ(r) and δC(r) are random fluctuations with respect to the average values for ρ and
C.

The wave equation for the Green’s function G(fl) in a random medium in the (r, ω)-
representation can be written as:[

ρ(fl)(r)δαγω
2 +

∂

∂rβ

(
C

(fl)
αβγζ(r)

∂

∂rζ

)]
G(fl)

γη (r, r
′) = −δαηδ(r− r′). (29)
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For an homogeneous non-fluctuating medium, it returns to (4). The differential
equation (29) can be written in the form of an integral equation (see [32]):

G(fl)(r, r′) = G(r, r′) + ω2

∫
G(r, r1)δρ(r1)G

(fl)(r1, r
′) dr1−

−
∫

∂G(r, r1)

∂r1
δC(r1)

∂G(fl)(r1, r
′)

∂r1
dr1. (30)

Here, G(r, r′) is the Green’s function of an homogeneous medium occupying the half-space.
Our aim is to study the effect of the boundary on multiple scattering. Multiple

scattering has been studied in detail for the case of an electromagnetic field for some time.
However, the boundary conditions turn to be quite different for elastic or electromagnetic
fields. Namely, for the case of elastic waves and a medium-vacuum boundary, the scattered
radiation remains in the medium, in contrast with the electromagnetic field, which permits
us to disregard a reflection at the dielectric-vacuum boundary.

In order to illustrate the influence of boundaries on the multiple scattering of elastic
waves we introduce a number of simplifying assumptions.

First, we will neglect the tensorial character of the wave equation (30). Then, the
Green’s function for a half-space takes the form of sum of two spherical scalar waves:

G(r, r′) = G0(r− r′) +GB(r; r
′); (31)

here, the first term is the field of the point-source in an infinite medium:

G0(r− r′) = 1/(4πρc2) |r− r′|−1
exp (ik |r− r′|) , (32)

and the second one:
GB(r; r

′) = −G0(r− r′M) (33)

can be interpreted as the field of the source’s mirror image, located at point r′M = (x′, y′,−z′)
where r′ = (x′, y′, z′) and c is the velocity of the considered wave mode. (Formally the tensor
equations (13), (5) and (24) are reduced to scalar ones, (31)–(33), if cl = ct = c; this
condition is non-physical for an elastic medium, but simplifies greatly the mathematical
aspects of multiple scattering analysis and simulation.) The wave number k = k′ + ik′′

contains both the real part, k′ = ω/c, as well as the imaginary part, k′′ = 1/(2l), where l
is the extinction length; the extinction is contributed by elastic scattering and adsorption,
namely l−1 = l−1

a + l−1
s where ls is the scattering mean free path and la is adsorption length.

A similar scalar model has been used in a number of Monte-Carlo simulations for seismic
problems (see, e.g., [22, 33]).

Secondly, we will neglect fluctuations of elastic moduli as compared with the density
fluctuations. This approach corresponds to the widely-known assumption that the fluctu-
ations of thermodynamic variable derivatives are to be smaller than those of the variables
themselves; thus we neglect the second integral term in (30).

As a result, we arrive at the one-mode scalar approximation for the considered wave-
scattering problem. In particular, we neglect the difference in reflection for the specific modes
of different types and do not consider the non-trivial transformation of the longitudinal and
transverse waves under scattering. These effects are significant, and thus, require special
consideration. Note also that with these simplifications, the simulation of the elastic field
transfer turns to be exactly the same as simulations of light radiation in a random medium in
the scalar field approach framework ( [25]). Additionally, to make the boundary conditions
as distinct as possible from that of light scattering, we presently add a term accounting for
the contribution of reflected radiation for every scattering event.
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The intensity of scattered radiation, Isc(r, r
′), transferred from the source in point r′

to receiver located in r, is proportional to the square of the Green’s function modulus:

Isc(r, r
′) ∝ ∣∣G(fl)(r, r′)

∣∣2 . (34)

Iterating the integral equation (30) and multiplying it by its complex conjugate, one presents
the quadratic form (34) as a series in orders of scattering.

For problems dealing with multiple scattering, all the contributions wherein the phase
shift between the pair of complex-conjugated fields is not compensated are known to be
neglected due to the random configuration of the medium’s inhomogeneities. As a result,
one can restricts oneself only with ladder contributions, wherein paths traveled by a pair of
complex-conjugated fields coincide. Thus, the multiple scattering intensity can be presented
as the series:

Isc(r, r
′) ∝

∑
σ0,1

∫
Λ(r, rσ1

1 )B
(
kσ1

(s)1 − kσ0

(i)0

)
Λ(r1, r

′σ0) dr1+

+
∑
σ0,1,2

∫
Λ(r, rσ2

2 )B
(
kσ2

(s)2 − kσ1

(i)1

)
Λ(r2, r

σ1
1 )B

(
kσ1

(s)1 − kσ0

(i)0

)
Λ(r1, r

′σ0) dr1dr2 + . . . , (35)

where the propagator in an infinite medium Λ(R,R′) describing the radiation transfer be-
tween two successive scattering events occurring at points rj+1 and rj is formed by the
product of pair of the Green’s function (31)

Λ(rj+1, r
σ
j ) =

∣∣G0

(
rj+1 − rσj

)∣∣2 . (36)

The cross-terms G0G
∗
B, G

∗
0GB are omitted due to chaotic randomization of phase shifts over

the inhomogeneities.
Subscripts j = 1, 2, . . . , n enumerate the scattering events, therewith indices j = 0

and j = n + 1 refer to the source and receiver , r0 = r′, rn+1 = r, respectively, (Fig. 2a);
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Elastic medium 
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r
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r2 r3
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d
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Fig. 2. a) The stochastic trajectory presented as the path traveled by a
“phonon packet” undergoing a sequence of n scattering events. b) Wave vec-
tors of incident, kσ

(i)j , and scattered, kσ
(s)j , elastic waves involved in the j-th

scattering event. Superscripts σ = 0 and σ = 1 correspond to the direct prop-
agation of the beam and to propagation with intermediate reflection, respec-
tively.

rσj =

{
rj , σ = 0,

rjM , σ = 1,
(37)
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points rj and rjM are the positions of the j-th scatterer and its mirror image, r0M rn+1,M

are the mirror images of the source and the receiver (Fig. 2b). Wave vectors of incident,
kσ
(i)j , and scattered, kσ

(s)j , elastic waves in j-th scattering event are

kσ
(i)j = k′ (rj − rσj−1

)
/
∣∣rj − rσj−1

∣∣ , kσ
(s)j = k′ (rσj+1 − rj

)
/
∣∣rσj+1 − rj

∣∣ . (38)

Summing over σ0, σ1, . . . in Eq. (35), we account for reflections of incident and
scattered beams of all scattering orders. Thus, accounting for the boundary effect doubles
the number of terms of Eq. (35) with the scattering order increasing per unit.

The phase function B(q) is the Fourier transform of the density correlation function

B(q) =

∫
〈δρ(R)δρ(R′)〉e−iq(R−R′) dR,

where q is the momentum transfer q = k(s)−k(i). For the isotropic scattering phase function,
B(q) is constant; for anisotropic scattering, it depends on the scattering angle θ through wave
vectors of incidence k(i) and k(s), q = 2k′ sin(θ/2).

Accounting for the explicit form of the Green’s function of a scalar field for a half-
space (31), (32), the propagator, describing the radiation transfer between two successive
events of scattering in Eq. (35), can be written as follows:

Λ
(
rj+1, r

σ
j

)
=

(
4πρc2

∣∣rj+1 − rσj
∣∣)−2

exp
(− ∣∣rj+1 − rσj

∣∣ /l) . (39)

The exponential decay factor comes from the imaginary part of the wave number in Eq. (32).

Within the Monte-Carlo method, one simulates a stochastic trajectory (Fig. 2). The
average over these trajectories gives the scattered radiation intensity.

A random trajectory is constructed recurrently. Let rj be the position of the j-th
scattering event. We define the position of the next scattering event as rj+1 = rj+r. Let U1,
U2, and U3 be three independent random variables uniformly distributed within the interval
(0; 1); one determines spherical coordinates of vector r with rj as polar axis, namely the
distance r = |r|, and polar and azimuthal angles, θ and φ, via these random variables, as
follows.

The distance r =
∣∣rj+1 − rσj

∣∣ is generated using the substitution r = −l lnU1. In
this way, the inverse transform sampling method is realized (see, i.g., [34]) which takes into
account the exponential decay in Eq. (39).

The azimuthal φ is distributed uniformly, φ = 2πU2.

The angle θ in the own coordinate frame for vector rj is generated using the substi-
tution θ = F−1 (U3), where F−1 is the inverse transform of function:

F (x) =

(∫ π

0

B (2k′ sin(θ/2)) dθ
)−1 ∫ πx

0

B (2k′ sin(θ/2)) dθ.

The (j+1)-th scatterer position rj+1 and superscript σj are defined as follows. If the
point rj + rn is located inside the elastic half space (i.e. rjz + rnz � 0) then rj+1 = rj + rn
and we take σj = 0. Otherwise, the point rj + rn is reflected: rj+1 = (rj + rn)M and we
take σj = 1.

The number of scattering events, nmax, are determined with the requirement that the
numerical data become stable. In our simulations nmax did not exceed several hundreds.
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5. Results of simulation

We performed the Monte-Carlo simulation for elastic radiation transfer in the vicinity
of a boundary with vacuum for a scalar scattering model for distances far exceeding the char-
acteristic extinction. The approach based on the radiative transfer theory requires that the
wavelength should be small, as compared to the extinction length. Performing calculations,
we take the sound velocity as c = 2.5× 103 m/s, and the radiation frequency as f = 102 Hz,
which produces the wavelength of λ = 25 m. We then take the extinction length, range as
l = 200 m to l = 1000 m.

To account for scattering anisotropy, we apply the Henyey-Greenstein phase function

B (2k′ sin(θ/2)) ∝ (1− g2)(1 + g2 − 2g cos θ)−3/2. (40)

containing the unique parameter, the mean cosine of scattering angle, g = 〈cos θ〉. This
function, widely used in many radiation transfer problems ( [1]), is a particular realization
of the von Kármán phase function (see for example [35]):

B (q) ∝ (
1 + q2a2

)−3/2−κ

, (41)

well-known in geophysics, with the Hurst exponent κ = 0 and characteristic size of inhomo-
geneities a being specified as a = k−1√g/(1− g).

We have also used the optical theorem (see, e.g., [36,37]) which relates the extinction
length l and phase function B(q).

We have shown the intensity of multiply scattered radiation as a function of the
distance between the source and receiver. We present results for two positions of the source,
either at the surface, or at one kilometer deep d in the medium; the receiver is placed at the
boundary.

In Figs. 3a and 3b, the presented results for scattered intensity calculations were
shown to be dependent on the distance between the source and the receiver. In Fig. 3a results
are presented for isotropic scattering, g = 0, and in Fig. 3b — for anisotropic scattering,
g = 0.8.

For isotropic scattering, the plots of intensity for multiply-scattered radiation, shown
in the same units as function of the source-receiver distance, turn out to be quite close for
both geometries. For small distances it can be explained by equal values for the ballistic
“phonon” inputs which are dominant at this spatial range, while with increased distances,
the depth of the source positions becomes negligible in comparison to the distance along the
surface.

For anisotropic scattering, the picture is different. The intensity of multiply scattered
radiation turns to be noticeably smaller for the geometry with an imbedded source, as
compared to the surface-based source. For comparison, we show the simulation results
obtained for the model wherein the boundary of the medium is accounted for only in the
spatial integrals over half-space in the series over the scattering orders obtained by iterations
of integral equations like the Bethe-Salpeter equation Eq. (30). Such an approach was
specifically used in [14, 15]. The principal distinction of our approach is that we not only
account for the boundedness of the scattering medium by performing the spatial integrations,
but also the fact that the integrand itself, being the pair product of Green’s functions, varies
approaching the boundary range. For both geometries, the radiation intensity is seen to be
smaller for isotropic as well as anisotropic scattering, and decays with distance much faster.
Physically, this can be explained by the loss of “phonons” at the boundary due to the neglect
of reflection.
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Fig. 3. Intensity of multiply scattered radiation via distance between source
and receiver. The sampling volume N = 2 × 106. The receiver moves along
the surface, and the source is located: � and � — at the surface, � and ♦ —
at the depth of 1 km; For both plots: � — and ♦ — the reflection of radiation
at the boundary is neglected thoroughly, for � and � the total reflection at
the boundary is supposed. a) isotropic scattering, g = 0, scattering mean free
path ls = 1000 m. b) anisotropic scattering, g = 0.8, scattering mean free
path ls = 200 m, adsorption length la = 10000 km for both figures.

In media with an anisotropic scattering indicatrix, the transport length ltr = ls(1 −
〈cos θ〉)−1, is known ( [1]) to take part of the universal spatial scale for multiple scattering
instead of the scattering mean free path ls. Thus, we plot the distance between source and
receiver in units of ltr. This permits us to compare results for simulations of acoustic as well
as optical models with quite different spatial dimensions.

This effect is especially pronounced within the boundary region, when the source and
receiver are both near the surface. It should be noted that the curves, plotted in terms
of transport length, would appear to be quite non-sensitive to anisotropy of the scattering
cross-section. This verifies the widely acknowledged assumption regarding the validity of the
diffusion mechanism for radiation transfer independently of the physical nature of radiation.

6. Conclusion

Thus, numerical simulations performed for a quite simplified model of an elastic
medium exhibit the important role boundary conditions play in the description of multiple
scattering; we have shown that proper accounting for the boundary requires that the form
of the Green’s function itself should be modified due to the boundary conditions.

Simulating the elastic random wave transfer, we have used a previously-developed ap-
proach for the study of multiple scattering of light in random media. However, the boundary
conditions for elastic waves highlight a fundamental distinction from that of light scattering.
The boundary brings about reflected and refracted waves; for dielectric media, the reflected
light radiation, in most cases, can be neglected, since it leads to small radiation amount
dependent on the reflectivity mismatch. In contrast, for an elastic medium at the boundary
with a vacuum, the total radiation is returned back; thus the boundary effect turns out to
be much stronger for an elastic waves as compared with optics.
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The results obtained permit us to conclude that under similar conditions, multiply
scattered elastic waves travel much longer on an acoustic path, than the light waves, over
relevant extinction scales.

For the scalar model considered presently the effect of boundary is simply accounted
for due to the fact that the boundary-induced term of the Green’s function long-range
asymptotics takes the form of a spherical wave generated by a single virtual mirror image
source. For a more sophisticated problem of elastic wave multiple scattering, one is to take
into account the tensorial character of the Green’s function. The boundary-induced term
specifically describes, in the far field zone, non-trivial transformations at the vacuum-medium
boundary of three incident elastic wave modes into three reflected ones as inputs of different
mirror image sources for different types of incident-reflected modes pairs. Near the boundary,
above all, the Rayleigh surface waves’ input must also be taken into account. We hope that
the simulations performed here can be generalized, accounting for all elastic wave modes.
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The work of Knill et. al. (2001) established the possibility of nondeterministic realization of certain quantum logic

operations using linear optical elements, ancilla photons and postselection techniques. It was also shown that any

discrete unitary operator acting on N optical modes can be implemented by a triangular multiport device constructed

from a series of beam splitters and phase shifters (see work of Reck, Zeilinger et. al., 1994). Here, we consider

the rectangular linear optical multiport that is used for the probabilistic realization of unitary transformations on n

qubits. This kind of linear optical scheme is suitable for probabilistic realization of unitary operators using ancilla

photons and projective measurements. Qubits are encoded into the bosonic states of optical modes in two possible

polarizations, and a number of ancilla photons and photodetectors are used for postselection of the qubits’ state,

based on the output of the detectors. We derive a procedure of evolutionary operator calculation for schemes

of the considered type and present algorithms for their efficient computation on symmetric state space. We also

provide complexities for different algorithms for the computation of evolutionary operator and estimate demands

of resources in each case. A destructive Toffoli gate, acting on three qubits, using one ancilla photon and a

photodetector, is implemented using schemes of the presented type.

Keywords: Quantum computing with linear optics, Projective measurements, Postselection, Photon detectors,

Realization of unitary operator, Toffoli gate.
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1. Introduction

The usage of photons and linear optical elements, such as beam splitters, phase shifters,
mirrors, presents the possibility of realizing controllable and scalable quantum computing [1].
Photons demonstrate easily observable, obvious quantum effects and are also able to maintain
their coherent states for a long time. Construction of optical devices is comparably easy [1, 2].
For instance, these devices do not require low temperatures (except for realization of single-
photon sources). In 2001, E. Knill and R. Lafflame published the work [2] which established the
possibility of constructing quantum logic gates based on linear optics. Projective measurements
and ancilla photons were used to introduce theinteraction between photons in order to implement
non-deterministic realizations of certain quantum operations, like CNOT [3–5].

The experimental realization of unitary operators U(N) transforming N optical modes
using beam splitters and phase shifters was proposed in paper [6]. Here we present another type
of optical multiport that transforms states of photon qubits and performs quantum teleportation
by means of a number of ancilla photons and the detectors provided. The problem is to
experimentally realize multiqubit unitary operators using this type of optical schemes. The
main result, presented in this paper, is a procedure for calculating the evolutionary operator
corresponding to mentioned optical schemes and efficient computational algorithms. This result
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introduces a step towards creating a method for the automatic construction of non-deterministic
linear optical multiports corresponding to a given quantum circuit.

This paper has five sections. In section 2, we derive the evolutionary operator corre-
sponding to a rectangular optical lattice having two-mode linear optical elements in its nodes.
This can be implemented using beam splitters coupled by single-mode optical fibers. For the
described network, we learn how to compute the corresponding single-particle evolutionary
operator. In sections 3 and 5, we show how to efficiently compute multiparticle evolutionary
operator. On the basis of the optical network considered in section 2 and inspired by CNOT
gate, presented in [7], we propose a destructive Toffoli gate acting on three qubits (see Sec. 4).

2. Constructing evolutionary operator for rectangle linear optical multiport

Consider the rectangular grid having n rows and m columns (see Fig. 1) in which the
nodes are polarizing beam splitters with no phase shift. Here, we compute the single-particle
evolutionary operator for this optical grid. Taking into account only the transmitted and reflected
modes, an evolutionary operator for this scheme can be implemented by scattering matrix that
transforms the amplitudes of the 2(n + m)-mode state. Each beam splitter is associated with a
unitary transformation on four optical modes:

H ′a
V ′a
H ′b
V ′b

 =


cos(θ) − sin(θ) 0 0

sin(θ) cos(θ) 0 0

0 0 cos(θ) − sin(θ)

0 0 sin(θ) cos(θ)




H ′c
V ′d
H ′d
V ′c

 , (1)

where (a, b) and (c, d) denote input and output spatial modes, H and V denote two possible
polarizations and parameter θ describes reflectivity and transmittance of the beam splitter [6,8].

FIG. 1. Grid network with input ports c1 . . . cn,
a1 . . . am and outputs g1 . . . gn, D1 . . . Dm, for con-
venience of further calculations some ports are la-
beled twice

FIG. 2. Subscheme N(1. . .i, j)

First, we consider separately j-th column of length i (see Fig. 2). We denote this subscheme as
N(1. . .i, j) and find out how it affects the state of the photon. We imply that initially photon
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is in the modes (Haj, V aj;Hc1,j, V c1,j, . . . Hci,j, V ci,j), so the input state for N(1. . .i, j) is the
following 2(i+ 1)-mode state (order of basis elements is preserved):

|ϕ1...i,j〉in = ϕHaj
∣∣Haj

〉
+ ϕV aj

∣∣Vaj〉+ ϕHb1,j
∣∣Hb1,j

〉
+ ϕV b1,j

∣∣Vb1,j〉+ . . .+

ϕHbi,j−1

∣∣Hbi,j−1

〉
+ ϕV bi,j−1

∣∣Vbi,j−1

〉
,

which is transformed into an output state of the form:

|ϕ1...i,j〉out = ϕHDj
∣∣HDj

〉
+ ϕV Dj

∣∣VDj〉+ ϕHb1,j
∣∣Hb1,j

〉
+ ϕV b1,j

∣∣Vb1,j〉+ . . .+

ϕHbi,j
∣∣Hbi,j

〉
+ ϕV bi,j

∣∣Vbi,j〉 ,
assuming that finally the photon can be found in the modes (HDj, V Dj;Hb1,j, V b1,j . . . Hbi,j,
V bi,j). Input and output states of the particle corresponding to the transformation on 2i modes
given by the subscheme N(1. . .i− 1, j) are respectively of the following form:

|ϕ1...i−1,j〉in = ϕHaj
∣∣Haj

〉
+ ϕV aj

∣∣Vaj〉+ ϕHb1,j−1

∣∣Hb1,j−1

〉
+ ϕV b1,j

∣∣Vb1,j〉+ . . .+

ϕHbi−1,j−1

∣∣Hbi−1,j−1

〉
+ ϕV bi−1,j−1

∣∣Vbi−1,j−1

〉
,

|ϕ1...i−1,j〉out = ϕHwi,j |Hwi,j〉+ ϕV wi,j |V wi,j〉+ ϕHb1,j
∣∣Hb1,j

〉
+ ϕV b1,j

∣∣Vb1,j〉+ . . .+

ϕHbi−1,j

∣∣Hbi−1,j

〉
+ ϕV bi−1,j

∣∣Vbi−1,j

〉
.

For each subscheme, we write a transition matrix, that changes the basis of the input
states to the basis of the output states and matches the corresponding scattering matrix. Let then
U (i−1,j) be matrix of size 2(i−1)×2(i−1) corresponding to scattering operator of N(1. . .i−1, j)
so |ψ1...i−1,j〉 = U (i−1,j) |ϕ1...i−1,j〉. If we compare the |ϕ1...i,j〉in and |ϕ1...i−,j〉in states, then the
latter doesn’t have a spatial mode bi,j−1 and has wi,j instead of Dj . Using this remark and
assuming that element in the node (i, j) is associated with scattering matrix T (i,j) (see (1)) with
matrix elements ‖tk,l‖4

k,l=1, we get the following system:

ϕHwi,j
ϕV wi,j
ϕHb1,j
ϕV b1,j

...
ϕHbi−1,j

ϕV bi−1,j


= U (i−1,j)



ϕHaj
ϕV aj
ϕHb1,j−1

ϕV b1,j−1

...
ϕHci−1,j−1

ϕV ci−1,j−1


,


ϕHDj
ϕV Dj
ϕHbi,j
ϕV bi,j

 = T (i,j)


ϕHwi,j
ϕV wi,j
ϕHbi,j−1

ϕV bi,j−1

 ,

from which the recurrent relation for the scattering matrix U (i,j) of size 2(i+ 1)× 2(i+ 1), that
transforms |ϕ1...i,j〉in into |ϕ1...i,j〉out is:

U (i,j) =



t1,1 t1,2 0 . . . 0 t1,3 t1,4
t2,1 t2,2 0 . . . 0 t2,3 t2,4
0 0 1 0 0 0

...
...

. . .
...

...

0 0 0 1 0 0

t3,1 t3,2 0 . . . 0 t3,3 t3,4
t4,1 t4,2 0 . . . 0 t4,3 t4,4




0 0

U (i−1,j) ...
...

0 0

0 . . . 0 1 0

0 . . . 0 0 1

 , (2)
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where U (1,j) = T (1,j). Obviously, each factor of expression (2) can be transformed to block-
diagonal form, where each block is unitary. Then, we conclude that U (i,j) is also unitary, as
expected.

To finish the construction of the grid scattering matrix, we consider a rectangular sub-
scheme having i rows and j columns with top-left angle matching the one of the large scheme.
Let it be denoted as N(1. . .i, 1. . .j) (see Fig. 1). The corresponding input and output states are
respectively of the form:

|ϕ1...i,1...j〉in = ϕHaj |Haj〉+ ϕV aj |V aj〉+ . . .+ ϕHa1 |Ha1〉+ ϕV a1 |V a1〉+ ϕHc1 |〉+ ϕV c1 |〉+
. . .+ ϕHci |Hci〉+ ϕV ci) |V ci〉 ,

|ϕ1...i,1...j〉out = ϕHDj |HDj〉+ ϕV Dj |V Dj〉+ . . .+ ϕV D1 |V D1〉+ ϕHb1,j |Hb1,j〉+
ϕV b1,j |V b1,j〉+ . . .+ ϕHbi,j |Hbi,j〉+ ϕV bi,j |V bi,j〉 .

If Y (i,j−1) is the matrix of the operator corresponding to N(1. . .i, 1. . .j − 1), then using the
recurrence for calculating U (i,j), we get the following system:



ϕHDj−1

ϕV Dj−1

. . .

ϕHD1

ϕV D1

ϕHb1,j−1

ϕV b1,j−1

. . .

ϕHbi,j−1

ϕV bi,j−1


= Y (i,j−1)



ϕHaj−1

ϕV aj−1

. . .

ϕV a1

ϕHc1
ϕV c1
. . .

ϕHci
ϕV ci


,



ϕHDj
ϕV Dj
ϕHb1,j
ϕV b1,j

...
ϕHbi,j
ϕV bi,j


= U (i,j)



ϕHaj
ϕV aj
ϕHb1,j−1

ϕV b1,j−1

...
ϕHbi,j−1

ϕV bi,j−1



from which, we eventually derive the following recurrent relation for matrix of operator Y (i,j)

of size 2(i+ j)× 2(i+ j):

Y (i,j) =



1 0
O . . . O

0 1

U
(i,j)
1 O U

(i,j)
2




1 0 O
0 1

O Y (i,j−1)

 , (4)

where U (i,j)
1 = U (i,j)[1 . . . 2(i+1); 1, 2] and U (i,j)

2 = U (i,j)[1 . . . 2(i+1); 3 . . . 2(i+1)] (here we de-
note submatrix of matrix M with rows r1, . . . , rn and columns c1 . . . , cm by [r1, . . . , rn; c1 . . . , cm]).
Following the same reasoning as for U (i,j), it is also obvious that Y (i,j) is unitary. Hereby, for
scattering matrix of the large scheme (see Fig. 1), it is enough to compute Y (m,n).
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3. Multiparticle systems

Consider the scheme on Fig. 1 and an arbitrary state of n photons incident to ports
c1, ...cn:

|ϕ0〉 =
∑
ρ∈Πl

ϕ(ρ)
∣∣ρ1
c1
. . . ρncn

〉
,

∑
ρ∈Πn

|ϕ(ρ)|2 = 1,

Πk = {H,V }×k. (5)

which is a state of n qubits encoded into photon polarization modes H and V . Suppose we
define a state of m ancilla photons incident to ports a1, ..., am as:

|ϕA〉 =
m⊗
1

ϕHaj
∣∣Haj

〉
+ ϕVaj

∣∣Vaj〉 ,
and input state as |ϕin〉 = Sym(ϕ0 ⊗ ϕA). Then, we can write the output in the following form
(see (5)) :

|ψout〉 =
∑
τ∈Tm′
P∈Πm′

µ(τ)
∣∣∣P 1 . . . Pm′

〉
τ

∑
ρ∈Πn′

ψ(ρ, P, τ)
∣∣∣ρ1 . . . ρn

′
〉+ c⊥ |ψ⊥〉 ,

Tk = {{Dsi}k1| si ∈ 1, . . . , k; si+1 ≥ si} (6)

where |ψ⊥〉 is a state orthogonal to those having only one photon in each of modes g1, . . . , gn′ .
The product of state vectors is defined as their symmetrization:∣∣∣P 1 . . . Pm′

〉
τ

∣∣∣ρ1 . . . ρn
′
〉

=

∑
σ∈Σρ,P,τ

|σ1〉 . . . |σn′+m′〉√
|σ|!

,

Σρ,P,τ = {π(P 1
Dτ1

, . . . , Pm′

Dτm′
, ρ1

g1
, . . . , ρn

′

gn′
)}.

Evolutions generated by linear optical elements preserve the photon total number so
n′ = n + m −m′. Suppose that we detect photons in modes D1, . . . , Dm′ . As seen from (6),
with the appropriate choice of ancilla photon states and postselection based on polarization and
quantity of photons on each detector, we can project the output in modes g1, . . . , gn′ into the
state having

∑
ρ∈Πn′

|ψ(ρ)|2 = 1, thus meaning that we received a state of n′ qubits. The scheme
is considered non-destructive in case n = n′ and destructive if n′ < n as we collapsed the state
of one or more qubits.

Let scheme with evolutionary operator U transform state of q = n + m input photons.
In order to obtain the transformation for bosonic states, we compute the restriction of the
multiparticle evolutionary operator U⊗q on its invariant subspace Spi. Then, the input state
space is given by:

Sp0 = span
(
{|X1m1〉 ⊗ |X2m2〉 ⊗ . . .⊗

∣∣Xqmq〉 |Xi ∈ {H,V },
mj ∈ {c1, . . . , cn, a1, . . . , am} , i, j = 1 . . . q}) , (7.1)

where cj are spatial modes corresponding to input ports of the scheme. The restriction operator
can be computed as follows, assuming that matrix of U⊗q is of size 2q × 2q and dim(Spi) = k:

U⊗qi = R†iU
⊗nRi, (7.2)

where Ri is a 2q × k matrix which columns represent basis vectors of Spi. It can also easily be
shown that for invariant subspaces, the restriction operator is unitary.
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4. Constructing Toffoli gate using linear optics

Inspired by non-destructive CNOT gate presented in work [7] and with use of algorithms
given in section 5, it became possible to construct a scheme implementing quantum Toffoli
transformation. Although it is known that at least five two-qubit gates are necessary for a non-
destructive Toffoli gate [9]. It turns out that for the destructive Toffoli gate on three bosonic
qubits only eight polarization modes are needed (see Fig. 3). We use an ancilla photon in equal
superposition state and an arbitrary three-qubit state on left input ports of the following scheme:

FIG. 3. Destructive Toffoli gate

|ψa〉 =
1√
2
|Ha〉+

1√
2
|Va〉 ,

|ψ0〉 = α1 |HcHc′Ht〉+ α2 |HcHc′Vt〉+ . . .+ α8 |VcVc′Vt〉 .
The initial state |ψin〉 = Sym(ψ0 ⊗ ψA) is transformed into the output state, which can be
written in the form of equation 6 (see section 3):

|ψout〉 =
1

2
√

2
|Hda〉

(
α1

∣∣HdcHdc′
Ht

〉
+ α2

∣∣HdcHdc′
Vdt
〉)

+

1

2
√

2
|Vda〉 (α3 |HdcVdcHdt〉+ α4 |HdcVdcVdt〉) +

1

2
√

2
|Hda〉

(
α5

∣∣Hdc′
Vdc′Hdt

〉
+ α6

∣∣Hdc′
Vdc′Vdt

〉)
+

1

2
√

2
|Hda〉

(
α7

∣∣VdcVdc′Vdt〉+ α8

∣∣VdcVdc′Hdt

〉)
+

√
2

2
|ψ⊥〉 .

In the output state, the probability amplitudes of vectors from the following sets are equal to 0 :

S1 = {
∣∣HdcVdc′Hdt

〉
,
∣∣HdcVdc′Vdt

〉
,
∣∣VdcHdc′

Vdt
〉
,
∣∣VdcHdc′

Hdt

〉
},

S2 = {|VdcHdcHdt〉 , |VdcHdcVdt〉 , |VdcVdcHdt〉 , |VdcVdcVdt〉 , |HdcHdcHdt〉 , |HdcHdcVdt〉},
S3 = {

∣∣Vdc′Hdc′
Hdt

〉
,
∣∣Vdc′Hdc′

Vdt
〉
,
∣∣Vdc′Vdc′Hdt

〉
,
∣∣Vdc′Vdc′Vdt〉 , ∣∣Hdc′

Hdc′
Hdt

〉
,
∣∣Hdc′

Hdc′
Vdt
〉
},
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therefore, when the following events occur:

• A1 = {Each spatial mode has only one photon, photodetector registers single H-polarized
photon}, P (A1) = 1

4
,

• A2 = {2 photons in mode dc, photodetector registers single V -polarized photon},
P (A2) = 1

8
,

• A3 = {2 photons in mode dc′ , photodetector registers single H-polarized photon},
P (A3) = 1

8
,

we get a quantum Toffoli transformation preserving the state of the controlled qubit, which
succeeds with probability P (A1) + P (A2) + P (A3) = 1

2
. The main difficulty concerning

implementation of this scheme lies in necessity to count photons using photodetectors, although
such devices seem to be available now.

5. Algorithm realization

We present an algorithm for efficient calculation of the evolutionary operator correspond-
ing to a system of p particles and rectangle linear optical multiport considered in section 2 (see
Supplementary Materials). This is an optimization of the straightforward algorithm achieved
by means of sparse matrices and lazy tensor product calculation. It should be noted that when
running procedure 2 (see Supplementary Materials) in parallel, due to the fact that first three
nested loops are independent, it becomes possible to obtain a linear performance increase that
is proportional to the number of processors in use, whereas number of threads can grow up to
Size(Sp)2(p!).

6. Conclusion

In this paper, a rectangular linear optical grid was considered. Similar to the triangular
multiport presented in work [6], in order to implement unitary transformation of N optical modes
a number of beam splitters proportional to N2 is required. However, the optical networks
considered in the current paper are comparably easy to construct and permit the usage of a
sufficient number of ancilla photons and detectors to realize quantum teleportation. The formal
procedure of evolutionary operator calculation, corresponding to a given rectangular optical
network, introduces a step towards the efficient experimental realization of an arbitrary unitary
operator. At present, there are also several other problems of interest: construction of quantum
logic gates based on linear optics, the problem of simulation of quantum optical gates with
noise and implementation flaws being taken into account. Substantial problems that prevent
these schemes from being used in practice are qubit phase drifts and photon loss, which is why
effective correcting codes for qubit states are necessary. Unsolved technical problems are the
construction of an extremely sensitive and low-latency photodetector and reliable single-photon
sources.
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7. APPENDIX

Here we present procedures for calculation of evolutionary operator corresponding to
system of p particles and rectangle linear optical multiport (see alg. 1, 2, 3).

• @Transition Matrix Sparsed (see alg. 1) calculates matrix Ri and stores it in a sparse
matrix.
• @Kron And Mult Sparsed (see alg. 2) calculates U⊗ni (see article, eq. 7.2).
• @Lazy kron (see alg. 3) is an auxiliary function for @Kron And Mult Sparsed that

calculates tensor product matrix elements.

Complexities of simple and optimized procedures for calculation of evolutionary operator are
summarized in table 1. In table 2 dimentions of most important subspaces of Sp0 (see article,
eq. (7.1)) are given. In table 3 we present mean time and space resource demands for calculation
of evolutionary operator on symmetric subspace.

TABLE 1. Complexity of procedures depending on subspace size Size(Sp) and number
of particles p

Procedure Time Space
Transition Matrix Sparsed O (Size(Sp)(p+ 1)!) O (3(2p)p)

Transition Matrix Simple O

(
Size(Sp)

(
1+ O(Size(Sp)(2p)p)

(p+ 1)!
(1− (2p)p)

1− 2p
+ p!(2p)p

))
Kron And Mult Sparsed O (Size(Sp)2(p!)2p) O (Size(Sp)2)

Kron And Mult Simple O

(
1− (2p)2p

1− (2p)2
+ O ((2p)2p+

Size(Sp)4(2p)2p

)
Size(Sp)(2p)p)

TABLE 2. Subspaces
of Sp0.

Subspace Size
(Sp) (Size(Sp))
Full (2p)p

Asym
(

2p
p

)
Sym

(
3p−1
p

)
Coinc 2p

TABLE 3. Mean time and space for evolu-
tionary operator calculation on symmetric sub-
space using an approx. 50 GFLOPS processor

Time (s) Space (MB)
p simple sparsed simple sparsed
3 0.46 0.034 0.224 0.014
4 2 · 104 25.09 69.16 0.4623
5 1.6 · 1010 2.9 · 104 38.9 · 103 16.43
6 2.09 · 1016 4.8 · 107 34.15 · 106 618.45
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Algorithm 1 Transition Matrix Sparsed

Require: p ≥ 3, Sp {args: p for number
of particles, matrix Sp which rows repre-
sent basis vectors of a given subspace.
In MATLAB environment function that
generates Sp for symmetric subspace may
look like a

Sp = combinator(2 ∗ p, p, ′c′, ′r′).
}
idx, jdx, vals← array((2p)p)
cnt← 0
for i = 1 to len(Sp) do
Perms← uniqueperms(Sp(i))
for j = 1 to len(Perms) do
pos← 1
for k = 1 to p do
pos← l ∗ (pos− 1) +Perms(j, k)

end for
cnt← cnt+ 1
idx(cnt)← i
jdx(cnt)← pos
vals(cnt)← 1/sqrt(len(Perms))

end for
end for
T = make sparse matrix(idx, jdx, vals)

ahttp://www.mathworks.com/
matlabcentral/fileexchange/
24325-combinator-combinations-and-permutations

Algorithm 2 Kron And Mult Sparsed

Require: p ≥ 3, U, Sp {args: p for number
of particles, U for single particle evolution-
ary operator (see article, eq. 4), and ma-
trix Sp for basis vectors of given subspace
(see 1)}
T ← Transition Matrix Sparsed(Sp, p)
m← len(Sp)
Ur ← matrix(m,m)
for i = 1 to m do
tmp norm i← T (i, 1)
for j = 1 to m do
tmp norm j ← T (j, 1)
for r = 1 to len(T (i)) do
crj ← 0
for r = 1 to len(T (j)) do
up elem ← Lazy kron(T (i, r),
T (j, l), p, U)
crj ← crj+up elem∗tmp norm

end for
Ur(i, j) = Ur(i, j) + tmp norm j ∗
crj

end for
end for

end for
return Ur

Algorithm 3 Lazy kron

Require: 1 ≤ i, j ≤ (2p)p, p ≥ 3, U {args: i, j for row and col-
umn of element to be calculates, p for tensor product order and
U for single-particle evolutionary operator (see article, eq. 4)}
res← 1
while p > 0 do
ic, jc← i % rows(U), j % cols(U)
if ic is 0 then
ic← rows(U)

end if
if jc is 0 then
jc← cols(U)

end if
res← res ∗ U(ic, jc)
i← ceil(i/rows(U))
j ← ceil(j/cols(U))
p← p− 1;

end while
return res
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A method of thermal measurements has been proposed for determining the real surface contact area. Mea-

surement of the true contact area is somewhat difficult. We propose here a method of contact area measure-

ment, which is, in essence, an idealization of the well-known probe method employed in surface studies. In

this study, to determine (estimate!) the fraction of the contact surface area projected onto the plane of a

geometrical area of the section of the surface, it is proposed to use the electrothermal analogy. Considered

in terms of this analogy, electrical conductance is assumed to correlate with heat transfer. As a result, the

real contact area is found to be millions of times smaller than the area of the plane surface.
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1. Introduction

Calculation of the true contact area between solid bodies, if it is to be made with
due allowance for the processes involved, is an intricate problem of tribology, as well as that
of engineering and materials sciences [1]. The space between the areas in contact is usually
filled by an intermediate phase and products of destruction. This space is naturally pervaded
by electric fields generated by atoms and molecules of the surface. Any attempt at modeling
the real contact area should lean upon surface shape measurements made before contact [2],
but the assumptions made in simulation about the shape of the overlaying contact surfaces
largely depreciate these measurements [1].

The measurement of the true contact area is met with some difficulty. Indeed, mea-
surements conducted by traditional methods involving contact with a painted surface will
obviously yield an overestimate because of squeezing and adhesion, which, in the absence
of a color layer, may be completely absent. The method based on measuring the electrical
resistance of contacts does not actually permit operation without the application of pressure
and the unavoidable fracture in the contact areas. The techniques involved in nondestructive
testing depend markedly on the thickness of the layer within which radiation interacts with
matter.

It is difficult to correctly estimate the effects of the potentials generated by surface
atoms in these methods (for more details cf. [3, 4] and references therein).

We are proposing here a method of contact area measurement, which is, in essence, an
idealization of the well-known probe method employed in surface studies. In this approach,
the point probe is actually an atomically sized part of the surface of the body brought in
contact with an atomically sized region of the body under study.
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2. Formulation of the problem

First, we let heat (phonons) and electric current (electrons) be transported only
within small areas Si (i = 1, 2, 3. . . ), within which the distance between atoms of the
bodies brought in contact is on the order of the lattice constant of these bodies, or on the
order of interatomic distances in amorphous bodies. In this study, to determine (estimate!)
the fraction of the contact surface area

∑
i Si⊥ = Sr projected onto the plane of a geometrical

area S of this section of the surface, we propose to use the electrothermal analogy.
Considered in terms of this analogy, electrical conductance G is assumed to correlate

with heat transfer, which in common notation (see, e.g., [5]), is written as αSr, where α is
the heat transfer coefficient. The inverse quantity, 1/α, is usually termed thermal resistance
or the Kapitsa resistance. The use of the heat transfer coefficient at the boundaries of solids
is fully justified. Indeed, contact between solids, except for very small areas, is actually that
between the liquid mixtures covering these surfaces [5].

Let a certain amount of heat cross the boundary per unit time and unit area. Then,
the heat conductance flux in the first body, which has the temperature T1 far from the
point of contact and T ′1 at the boundary, the heat transfer flux between the boundaries with
temperatures T ′1 and T ′′1 , and, finally, the hear conductance flux in the second body with
the temperatures T ′′2 at the boundary and T ′′ far from it, are equal. These fluxes can be
cast as

λ1
δ1

(T1 − T
′

1) = α(T
′

1 − T
′′

2 ) =
λ2
δ2

(T
′′

2 − T
′′
),

where λj and δj are, accordingly, the thermal conductivities and the characteristic dimensions
of temperature variation for each of the bodies, with j = 1, 2. Obviously enough, at the
boundary, there is a temperature jump δT = T ′1 − T ′′2 .

The main assumption maintained in this work is that a solid can be considered
as an array of quasi-one-dimensional linear filaments. We will limit ourselves to a purely
mechanical model of connection [6-7], neglecting all rheological effects, adhesion, structure
change as a result of contact, and all electric and quantum potentials of interactions. This
should not qualitatively change the estimates, to which we are going to adhere in what
follows.

The conductivity of a quantum point contact between two one-dimensional conduc-
tors, one of which is located in body 1, and the other, in body 2, can be calculated in the
quantum one-dimensional filament approximation using Landauer’s relation [8, 9]:

G = G0

∑
ti(ni1 − ni2), (1)

where ti is the normalized squared amplitude of transit of an electron with charge e in
contact numbered i, nij is the number of such electrons specified in accordance with the
Fermi-Dirac distribution for each of the conductors with the number j = 1, 2, G0 = e2/(π~)
is the conductance quantum, and, as usual, ~ is Planck’s constant.

By electrothermal analogy, for the heat transfer quantum we have ~ωdω/(π~δT ),
where ω is the phonon frequency, and δT is the temperature jump at the boundary. The
frequency ω must naturally be smaller than the lowest of the Debye frequencies ω* charac-
teristic of bodies in contact.

Thus, Eq. (1) for heat transfer can be recast as:

αSr =
1

π

∫ ω∗

0

~ωdω
n1 − n2

δT
t, (2)



Estimation of the contact area of solids by electrothermal analogy 549

where t is the normalized squared amplitude of transfer, i.e., the transfer coefficient of a
phonon of frequency ~ω, and

nj =
1

exp
(

~ω
kTj

)
− 1

is the number of such phonons specified in accordance with the Bose-Einstein distribution
for each of the contacting bodies numbered j = 1, 2, and k is the Boltzmann constant.

3. Estimation of the projection of contact area

Obviously, at high enough temperatures (n1 − n2)/δT ∼= k/(~ω).
The square of the amplitude t of phonon transfer (vibration) over two semi-infinite

one-dimensional chains coupled elastically at the boundary was calculated for frequencies
lower than the lowest of the Debye frequencies for the corresponding contacting bodies [5].
It was shown [5] that t may be considered frequency independent and equal to:

t =
4ρ1c1ρ2c2

(ρ1c1 + ρ2c2)
2 ,

where ρj and cj are, accordingly, the densities and sound velocities in the bodies in contact.
In this approximation, the integral in Eq. (2) can readily be taken to yield:

αSr =
k2Θ∗
π~

4a

(1 + a)2
,

where Θ* is the lowest of the Debye temperatures for the materials in contact, and the
parameter

a =
ρ1
ρ2

c1
c2
,

is the relative characteristic of the contacting materials. It is usually a quantity on the order
of unity.

In an experiment, one usually studies the amount of heat P crossing a “geometric”
surface per unit time. It is known that P = αSδT . Thus, we come to the relation suitable
for the subsequent estimation:

Sr

S
=
k2Θ∗
π~

4a

(1 + a)2
δT

P
(3)

The temperature jump at the boundary is usually [1] on the order of δT ∼= 10K,
already at milliwatt-scale power, so that the real contact area turns out to be millions of times
smaller than the area of the plane surface. Taking into due account the various rheological
phenomena, adhesion and interaction potentials may significantly alter this estimate.

The relation operating with a temperature difference between the contacting bodies
offset from the points of contact, ∆T = T ′ − T ′′, would probably be more suitable for
practical measurements than Eq. (3). We thus come to the following equation:

Sr

S
=
k2Θ∗
π~

4a

(1 + a)2

[
∆T

P
− 1

S

(
δ1
λ1

+
δ2
λ2

)]
.

4. Conclusion

A method of thermal measurement has been proposed for determining the real surface
contact area. This method can be employed both directly for a preliminary evaluation of the
contact area and in the method of mechanical or atomic force sensing to refine the contact
area of the probe with a sample surface.
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The mesokinetic model of the polymeric body formation was formulated, describing the nucleation, growth

and aggregation of macromolecules followed by the aggregates’ assembly into the nanostructured body.

According to this model, the near-surface nanostructure of the polymeric body retains the information on

how it was formed, and this information can be extracted from the morphological characteristics of the

microrelief of the body while maintaining its integrity, that is, body has the morphological memory. The

mesokinetic model was used to study film formation by the evaporation of an o-xylene or toluene solution of

polystyrene, which provided an opportunity to identify the kinetics of nanostructure formation found in the

surface area of the film after completion of the process. It turned out that at the beginning of evaporation,

a number of the primary macromolecules in the form of spheroidal nanoparticles were formed, and then, the

primary aggregates coalesced into the secondary aggregates forming the ordered chains of nanoparticles.

Keywords: polystyrene, microrelief, primary (nanoparticles) and secondary (microparticle) units.
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1. Introduction

According to the electron micrographs of polymers (films, granules, membranes, etc.)
published in the literature, many of these substances have nanostructured microrelief. We
observed such microrelief on the surface of polystyrene granules purchased from “Aldrich”
(Germany), as indicated by Fig. 1, which shows that the near-surface areas of the stud-
ied granules have a multilevel hierarchical nanostructure. They consist of aggregates of
polystyrene molecules in the form of spheroidal nanoparticles, aggregated into the chains,
combined into microparticles, which form a granule. Fig. 1 leads to the question, whether
the microrelief of the polymeric body retains information about how it was formed. Is it
possible, focusing on electron microscopic images of the microrelief, to determine the speed
of the elementary processes that lead to this microrelief? As it is known, the exact answer to
this question may be provided by studying the kinetics of elementary processes for monomer
integration into oligomer and polymer molecules, the formation of aggregates from polymer
molecules (associates, floccules, colloidal particles) and aggregates association in a polymeric
body (solidification, crystallization) [1-8]. Methods of studying of these elementary processes
have been developed and are widely used [3-11]. In this case, the design of experiments and
interpretation of the results is based on kinetic models that enable the successful descrip-
tion of many experimental results [11-15], but do not allow their quantitative prediction,
as each model inevitably contains arbitrary assumptions that reduce its predictive ability.
With this in mind, this article attempts to formulate a mesokinetic model in which the only
arbitrary assumption is the crucial role of binary collisions of particles in the system, and
other assumptions are included in the unknown frequency functions and are available for
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experimental determination. The proposed model was used to study the microrelief of the
films formed by evaporation of a polystyrene solution (Fig. 2), which led to the concept of
morphological film memory. The study of the microrelief of granules from Aldrich (Fig. 1)
as well as the study of the electron-microscopic images of many polymeric bodies described
in the literature has led to the same conclusion. This enabled us to assert that many poly-
meric bodies possess morphological memory which is different from the shape memory and
other types of polymer memory [16-18] with the memory carrier being localized at the body
surface, rather than within its volume.

Fig. 1. Electron micrograph of the surface area of a typical polystyrene gran-
ules from “Aldrich” (Germany). Microscope CamScan, a sample was prepared
by the standard method

2. Model of nanostructure formation

The processes in a homogeneous solution of a monomer A which evaporates at a
predetermined speed are studied. At the time t = 0 the polymerization initiator B is added
into the solution, which leads to the formation of polymeric molecules which combine together
to form ordered aggregates. Upon evaporation of the solution, its volume decreases, leading
to an increase in the concentration of molecules and aggregates, which do not evaporate.
During the evaporation, an increasing number of the molecules and aggregates is brought
into contact with each other, and at the moment tF of the complete removal of the solvent
they form a polymer body with the following hierarchical structure, its nanolevel consisting
of polymer molecules, microlevel – by the aggregates, and macrolevel – by the body itself.

At 0 < t < tF the solution contains monomer molecules (j = 0), polymer molecules
(j = 1) and aggregates (j = 2, 3...).

The state of each particle is characterized by parameters ~X = {n1 . . . ni . . . nm, υ,
X1 . . . Xi . . . Xp}, where ni is the number of A molecules, which have formed one of the
m of polymer molecules of the particle, with a total number of the A molecules equal to
n =

∑m
i−1 ni; υ is a particle volume; Xi is a parameter of shape, composition or structure of

the particle. The condition for the conservation of the number of atoms introduced into the
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Fig. 2. Microrelief of the film obtained by removing the solvent from
the o-xylene solution of polystyrene. The conditions of film formation:
V0 = 36, 5 cm3, T = 293K, initial concentration of polystyrene in the solu-
tion M0 = 0.15 g/cm3, S = 1200 cm2. Microscope CamScan

system in the molecules A is fulfilled:

CA0V0 =

∫
V

[
CA (1− ε) +

∑
j

∑
n

nNjn (t)

]
dV, (1)

where CA0 and CA are the initial and the current concentration of the A molecules in the
solution; V0 and V are the initial and the current volume of the system; ε is the share
of the system volume occupied by the polymer molecules and aggregates; Njn (t) is the
concentration of macromolecules and aggregates, including n molecules of A by the time t.

The volume V is equal to:

V = V0

∫ t

0

υLSωSdt, (2)

where υL is the volume change after the evaporation of one of the solvent molecules; S is
the area of the evaporation surface; ωS is the flow of solvent molecules in the vapor at the
moment t.

At 0 < t < tF the concentration Njn (t) in each system area changes due to the
associations of the particles, because of the binary collisions and fragmentation of molecules
and aggregates under the influence of thermal motion and mechanical effects. Therefore:

∆Njn(t) =
(

Ωj+ − Ωj− − div ~Jjn
)

∆t, (3)

where ∆Njn(t) is the change of the Njn(t) between the time moments of t and t + ∆t; Ωj+

and Ωj− are the frequency functions that characterize the processes that lead to an increase

and decrease of n of the particles of jth type; ~Jjn is the flow of the particles in the condition
(j, n) through the given area.
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Therein:

Ωj+ = αjn−1Njn−1CA + αj−1,n−aNj−1,n−aNj−1,a +
∑
k>j

βk,n+bNk,n+b, (4)

Ωj− = αjnNjnCA +
∑
k>j

αjnNjnNk,a + βjnNjn, (5)

where Njn = Njn(t); αjn and βjn are functions that characterize the frequency of association
and fragmentation of particles; a and b are the characteristic changes of n during a single
act of unification and fragmentation.

With the known frequency functions αjn(n, t) and βjn(n, t), equations (1)–(5) allow
one to calculate the volume fraction of the area filled with the particles of jth type:

εj(t) =
∑
n

υAjnNjn(t), (6)

where υAj is the volume per single A molecule after its transition into the polymer molecule
of the jth type particle.

From relations (4)–(6), it follows that moving from the concentration Njn(t) to the
distribution function ϕjn = ∂Njn/∂n and expanding αjnϕjn and βjnϕjn in Taylor series
limiting to three terms of the expansion, equation (3) can be written as:

∂ϕjn
∂t

=
∂2 (Djnϕjn)

∂n2
− ∂ (Gjnϕjn)

∂n
+Wjk − div ~Jjn, (7)

where Djn = 1
2

(a2αjnCA + b2βjn); Gjn = aαjnCA−bβjn. Wjk is the function of the transition

of the particles of jth type in the groups of particles of other kth types, related by the
frequency functions in accordance with the conditions (4) and (5).

Therein:

εj(t) =

∫
n>nj0

υAjnϕjn(t)dn, (8)

where nj0 is a number of molecules A, forming a particle of minimum size, to which the
speed of enlargement Gjn can be attributed.

The solution of equation (7) with the corresponding boundary conditions can provide

the ability to search the particle distribution function for a status parameter ~X, which

can be expressed as ϕj

(
~X, t
)

= ϕjn(t)fj (υ)n fj (X1)n ...fj (Xi)nυ ...fj(Xp)nυ, where fj (υ)n
and fj (Xi)nυ are the distribution density on υ of the particles with the given n and the
distribution density on Xi of the particles with the given n and υ.

3. Morphological body memory model

Within the framework of the considered model, the microrelief of the body at time t
is represented by a set of ordered aggregates, among which the molecules are located, with
the degree of filling of the volume of the body’s surface area by particles of:

εS =

∫
n>nj0

υAjnϕjn (tF )S dn, (9)

where ϕjn (tF )S is the distribution on n of particles of the jth type on the body’s surface
area at the moment tF . Distribution ϕjn (tF )S, as well as any distribution on any area of the
system, is an integral of equation (7) and is determined by which of the frequency functions
αjn (n, tF ) and βjn (n, tF ) occurred at t → tF . Consequently, the information about the
functions αjn (n, tF ) and βjn (n, tF ), included in this integral, can be extracted from the
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distribution ϕjn (tF )S. Taking this into account, functions ϕjn (tF )S can be considered as
carriers of the body morphological memory of the process which during the time tF has led
its microrelief into the state represented by the equation (9). According to equations (1)–(8),
the frequency functions depend on the system properties ~y = {CA0, V0, S, ωS}, accordingly
the microrelief saves the information about the conditions in which the body was formed.

The distribution ϕjn (tF )S can be variable. For the formation of macromolecules not
prone to aggregation in a homogeneous system under the condition of independence of αjn
and βjn, this distribution on n is determined by integrating the equation (7) in the form:

∂ϕjn
∂t

= D1n
∂2ϕ1n

∂n2
−G1n

∂ϕ1n

∂n
. (10)

If the conditions
⇀
y are such that α1nCA >> β1n, integration leads [19,20] to the

formula

ϕ1n (tF )S = CB0

[
(πAp)−1/2 exp

(
−X2

−
)
− 1

2p
exp

(
n− n10

p

)
erfc (X+)

]
, (11)

where CB0 is the initiator concentration in the initial solution:

A =

∫ t

0

G1ndt; p = D1n/G1n;X± = (n− n0j ± A) / (4πAp)1/2 ; erfc (X+) =
2√
π

∫ ∞
X+

e−X
2

dX.

Equation (11) describes the molecular weight distribution of the polymer molecules
forming the microrelief of the body, provided that the body was formed according to the
model (1)–(8) in the independence of D1n and G1n on n. Given this, we can assume that
in systems where the experimental data on the microrelief is described by relation (11),
this condition is realized, and the information about it is accumulated by the distribution
ϕ1n (tF )S.

When t > tF , the distribution ϕ1n (tF )S can change under the influence of various

factors, so that going from n to ~X:

ϕj

(→
X, τ

)
S

= ϕjn (tF )S Pj

(→
X, tF , τ

)
, (12)

where ϕj

(→
X, τ

)
S

is the distribution function on ~X of the near-surface particles of the jth

type after influences on the body over time τ ; Pj (n, tF , τ) is the indicator of the microrelief
stability to external influences.

Function Pj

(
~X, tF , τ

)
, which characterizes the degree of preservation of the body’s

morphological memory after its use, can be defined in the framework of our model after
detailing of the respective frequency functions.

From the above, it follows that if after the formation and use of the body the mi-
crorelief remains on its surface, allowing one to experimentally determine the distribution
functions of the structural elements of the microrelief on morphological parameters of the
state and to present them as a solution of the equation (7), it can be argued that the body
has morphological memory. According to the electron micrographs published in the litera-
ture, there are several polymeric bodies exhibiting morphological memory. Such a memory
is also possessed by many inorganic nanostructured materials, although their nanoparticles,
after aggregation, often become indistinguishable.
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4. Experimental study of polystyrene film formation. Methods and results

In conducting this research, we used a previously-described technique [21,22]. The
polystyrene granules from Aldrich were dissolved in a solvent capable of rapid evaporation
under normal conditions. A portion of the solution with a predetermined polystyrene content
was introduced into a flat glass cuvette, which was then placed in the thermostatic chamber
of a scale for continuous weighing, so that the weight change of the cuvette with the solution
during the evaporation of the solvent was observed. Evaporation was carried out so that
only the molecules of the solvent evaporated, making it possible to determine the rate at
which the concentration of the polystyrene solution increased by measuring the rate at
which the mass of the cuvette decreased. When the mass of the cuvette stopped changing,
the formed polymer film was removed from the cuvette, its near-surface areas were studied
using a scanning electron microscope, and the distribution functions of particle images of
its microrelief on size were determined: θk (`) = Bk (`) /Bk0, where Bk (`) is the number
of measured particles of kth type, that are smaller than ` = s1/2 at the area of the image
of s ; Bk0 is the total number of particles measured. The particles which had homogeneous
images were taken for primary nanoparticles (k = 1), the ordered clusters of primary particles
were taken for the aggregates (microparticles, k = 2), and the groups of orderly contacted
assemblies were taken for the secondary aggregates (k = 3). In some experiments, a solution
of C60 was added to the initial solution of polystyrene, and then the action was taken as
described above.

The experiments have shown that the rate of the solvent removal from the cuvette
was varied in two steps, as can be seen in Fig. 3, which shows the data on weight changes
of the toluene solution of polystyrene in the cuvette. Therein the condition was fulfilled:

J = J0∆ + J1 exp [−ω (t− t1)] (1−∆) , (13)

where J0 and J1 are flows of evaporated solvent molecules from the surface of the cuvette
at t < t1 and t = t1; ∆ = 1 at t < t1 and ∆ = 0 at t > t1; J0 = 2, 06 · 10−3mol/(m2 · s);
J1 = 2, 53 · 10−3mol/(m2 · s); ω = (2, 3± 0, 5) · 10−3c−1 is the empirical parameter.

By the end of the second step, when the evaporation was almost complete, a polymer
film was formed in the cuvette which had properties that did not alter after transferring it to
an electron microscope. Microrelief of the film was created by the microparticles, single or
combined into the chains spheroidal nanoparticles were found on their surface and between
them (Fig. 2). For the microparticles and their constituent nanoparticles the functions θk (l)
are presented as functions of Z, shown in Fig. 4, where Z = (l − lk0)/(lkM − lk0), lk0 is the
minimum size of measured particles of kth type; lkM is the size corresponding to the condition

θk(lkM) = 0, 5 (Table 1). The corresponding differential distribution functions ψk (l) = ∂θk(l)
∂l

are described by the formula:

ψk (l) =

[
(πAkpk)

−1/2 exp
(
−X2

−
)
− 1

2pk
exp

(
l − lk0
pk

)
erfc (X+)

]
, (14)

where Ak, pk lk0 are empirical parameters, some of which are listed in the Table 2; X± =

(l − lk0 ± Ak) / (4πAkpk)
1/2.

Functions θ1 (l) of nanoparticles, included in the microparticles of different sizes, were
similar. They changed when fullerene was introduced into the system (Fig. 4). In particular,
during the formation of the film using an o-xylene solution of polystyrene at V0 = 36, 5 cm3,
M0 = 0, 15 g/cm3 and initial fullerene concentration of MC = 10−5−10−4 g/cm3, the function
θ1 (l) shifted toward larger units provided the following:

l1M = lM0

(
1 + 5, 1 · 102MC/M0

)
, (15)
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Fig. 3. Change of mass M of the polystyrene solution in toluene. The ex-
perimental conditions: solvent: toluene, T = 293 K, V0 = 0.463 cm3, initial
solution weight M0 = 0.439 g, S = 15.2 cm2

Table 1. The characteristic size of the film nanostructure elements

Nanoparticle type MC/M0 lko, nm lkM , nm
nano 0 21±2 45±1
micro 0 280±20 750±20
nano 3 · 10−4 24±2 53±2
nano 1 · 10−3 26±2 65±2

Table 2. The parameters of the differential distribution functions of nanopar-
ticles microrelief on size

Body type lko,nm Ak,nm pk,nm n10

film nanoparticle 21±2 43±1 2,0±0,2 (3,1±0,1)·108

film microparticle 280±40 690±10 30±3 (7,4±0,5)·109

where lM0 is the size in the absence of fullerene.

5. Discussion

The obtained data characterize the near-surface area of the system, which at the
beginning of the process was the initial solution, and in the end, was an ordered layer of
microparticles that are shown in Fig. 2. The change in the properties of the near-surface area
occurred in two stages, as indicated by Fig. 3 and equation (13). According to equation (13),
processes in the subsurface solution did not affect the flow J of evaporated solvent molecules
at t < t1 and reduced the flow to the J1 = 0 for t > t1, and the function J(t) underwent
the change at t = t1, similar to the changes that take place at the border in supersaturated
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Fig. 4. Integral distribution functions of the structural elements of the films
microrelief on size. 1 - nanoparticles; 2 - nanoparticles with fullerene content
3·10−4; 3 - nanoparticles with fullerene content 1·10−3; 4 - microparticles

metastable environments. Given these facts, we can assume that in the first stage (t < t1),
the formation of the nanoparticles and their aggregation onto the microparticles took place,
and in the second stage (t > t1), the enlargement of microparticles and their association
in the aggregates dominated, forming the nanostructure which is shown in Fig. 2. This
conclusion needs to be made to explain the proximity of the θ1(l) functions of nanoparticles
within the microparticles of different sizes (Figure 4). This closeness indicates that the
microparticles were formed surrounded by nanoparticles which have acquired a stable θ1(l)
function prior to their significant association in the microparticles, i.e. in the first stage of
the process. With this in mind, the data in Fig. 4 can be regarded as an appearance of the
film’s morphological memory, which preserves the information about the two-step process.
The presence of morphological memory is also witnessed by formula (15), which allows one
to determine the quantity of the fullerene in the system during film formation using the data
on the θ1(l) functions. Information on the kinetics of nano- and micro-particle formation
can be extracted from formula (14). This formula is a solution of the equation:

∂ψk(l)

∂t
= Dkl

∂2ψk(l)

∂l2
−Gkl

∂ψk
∂l

, (16)

at the boundary condition: [
Gklψk(l)−Dkl

∂ψk(l)

∂l

]
l→l0k

= δ(t), (17)

where Gkl and Dkl are the parameters satisfying the conditions
∫ t
0
Gkldt = Ak and Dkl/Gkl

=

pk; δ(t) is the Dirac function. Equation (16) can be obtained using the relations (3)–(6),

similar to the equation (7), assuming that Wjk = 0, div ~Jjn = 0, n = πl3/6υAj, and

Gkl = akαkl − bkβkl (18)
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Dkl = 1/2(a2kαkl + b2kβkl (19)

Here, ak and bk are the effective changes of l at the single acts of integration and disin-
tegration of the particles; αkl and βkl are the repetition frequency of these acts, independent
on l, so that:

pk =
ak
Zk

(
1 + q2kZk

)/
(1− qkZk) (20)

at Zk = βkl/αkl and q = bk/ak.

These facts allow us to assume that the groups of nanoparticles in the first stage
and the microparticles in the second stage were formed according to the same accretion
mechanism (i.e. attaching of small particles to larger particles). This is indicated by the fact
that the distribution of nanoparticles as well as microparticles is described by equation (14),
characterizing a plurality of particles, each of them is coarsened by attaching the fragments
significantly smaller than the particle itself. According to relations (14), (15) and (17), the
nanoparticle nuclei were in the initial solution or were formed after the start of evaporation
during the time much smaller than t1. Their parameter, n10, can be estimated, assuming
that n10 = π

6
l310/υAk, where υAk is the volume of the styrene molecule in its crystal. Doing

so gives a figure of n10 = (3.1− 3.2) · 108 styrene molecules.

Based on equations (7), (14), (16)–(20), the nanoparticles on the first stage and the
microparticles on the second stage undergo accretion independently (Wjk = 0) at homoge-

nization of the near-surface solution areas at t > t1(div ~Jjn = 0). This finding is consistent
with formula (13). Additionally, relations (7), (14) and (16) indicate that the rate of inte-
gration of nano- and microparticles does not depend on their size. According to formulas
(3)–(7), the independence of Dkl and Gkl from l may be due to the fact that the nano-
and microparticles had constant number of active centers, to which the macromolecules at-
tached. As such centers, the nanoparticles could contain the ends of macromolecule chains,
from which they consisted of, collected in the groups responsible for the independence of the
parameters ak and bk on l and for the formation of chains of nanoparticles, from which the
microparticles were composed.

According to the model ((1)–(7)), the independence of Dkl and Gkl on l does not ex-
clude their dependence on evaporation time. This dependence is reflected by the parameters
Ak and pk in equation (14). Equation (14) is a solution of equation (16) for an arbitrary func-
tion Ak(t) and a constant parameter pk. According to the formulas (17)–(20), the constancy
of the parameter pk may be due to the fact that the frequency functions αkl(l, t) and βkl(l, t)
are such that the values Zk and qk are constant or Zkqk << 1. More detailed information
on the frequency functions in the model ((3)–(20)) cannot be extracted from the data on
microrelief. However, it can be assumed that the function Ψ1(l) characterizes the primary
aggregates of macromolecules (j = 2), as indicated by the value n10, and the function Ψ2(l)
refers to the ordered groups of aggregates (secondary aggregates j = 3). Given this, one can
proceed from the function Ψ1(l) to the distribution ϕ2(n, t)s, using the condition:∫

l>l10

Ψ1(l)dl =
1

N2

∫
n>n10

ϕ2(n, tF )sdn, (21)

where N2 is number of primary aggregates per unit volume of the near-surface layer of the
film at t = tF . A similar relation leads to a transition from the function Ψ2(l) to the

distribution ϕ3(n, t)s. At the transition from ϕ3(n, t)s to ϕ3( ~X, τ)s it can be taken that

P3( ~X, tF , τ) = 1.
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6. Conclusions

It has been established that by evaporation of o-xylene and toluene solutions of
polystyrene, polymeric bodies are formed which have a two-tier hierarchical nanostructure
microrelief, and each level of the nanostructure has a stable distribution function of its
structural elements on size. The results of these functions’ determination coincide with the
solution of the kinetic equations for the model of polymer body formation by evaporation of
the polymer solution, beginning with the primary aggregates of macromolecules (nanopar-
ticles), continued with the association of nanoparticles into the secondary aggregates of
macromolecules (microparticles) and completed with the association of microparticles in the
polymer bodies.

This model is based on the conservation of the number of atoms in the system and
on the consolidation of nano- and microparticles as a result of binary collisions, and does
not contain arbitrary assumptions. Therefore, the fit of the model to the experimental
data can be considered as an indication of the fact that these processes actually took place
during evaporation of the solution of polystyrene, and nano- and microparticles retained
the information on how they were being consolidated, and this information can be obtained
without destroying the film, defining the distribution function of the structural elements
of the microrelief on size. Research methods used in this paper are not specific to the
polystyrene. There are a wide range of polymers which have electron micrographs published
in the literature that show microrelief, thus making them prime candidates for study using
the above-described model.
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1. Introduction

The possibility of collective spontaneous emission was first indicated by Dicke [1].
Later, these effects were detected in cesium atomic beams [2], as well as in ensembles of ru-
bidium atoms [3,4]. The ideas of Dicke were subsequently developed in numerous publications
(see for instance [5, 6]), which included mostly bi-level systems with different ways of popula-
tion inversion, possibly leading to superradiance - high intensity pulses, followed by a certain
delay in relation to the inverse state formation time. It should be emphasized that generally
speaking, population inversion is not a necessary condition for the creation of superradiance.
This phenomenon can occur if a dipole moment is induced on the upper state [7, 9]. This is
known as induced superradiance. The present work is not directly related to superradiance as
such. Below, within the framework of the ideas used for superradiance, we will investigate the
collective polarization emission of a complex atomic system which has been placed in a strong
magnetic field, the lower state of which, is populated by axially symmetric interactions.

2. Statement of the problem

In this paper, we consider the time dependance of the 33S1 state of the He atom, the
excitation of which is performed by a 23P multiplet of this atom. It is assumed that the system
has been placed in a magnetic field strong enough to break the thin bond of the P-multiplet
under consideration. We will also assume that the 23P state is populated from the ground state
of this atom by a proton or electron impact or other axially symmetric excitation sufficient to
break the fine bond, and its symmetry axis makes an angle θ with the axis OZ of the laboratory
frame of reference. As a result of this excitation, the ordering of the angular moments of the T 0

0

population and the longitudinal alignment of T 2
0 will be induced on the 23P -levels in the frame

of reference associated with the anisotropy axis. Then, by introducing a parameter α = T 2
0 /T

0
0 ,

which may be called the anisotropy parameter for the population efficiencies of the 23Pj state
magnetic sublevels in the laboratory frame of reference XY Z, one can write:

σj,m;j′,m′ =
1

2j + 1
A(0)(j, j′, l, s) + α

∑
q

(−1)j
′+m′

[
j j′ 2

m −m′ q

]
D

(2)
0,q(θ)A

(2)(j, j′, l, s), (1)
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where l and s are the orbital and the spin moments, D2
m,m′(θ) elements of three-dimensional

rotation [10], and A(k)
j depends on coefficients of vector moment addition:

A(k)(j, j′, l, s) = (−1)j
′+s+k+l

√
(2j + 1)(2j′ + 1)

{
l l k

j j′ s

}
. (2)

The Hamiltonian operator of the atomic system placed in a strong magnetic field of
strength H is defined by the orbital L̂ angular momenta and Ŝ – the spin moments:

Ĥ = Ĥ0 + µ0H(L̂+ 2Ŝ) + V̂ , (3)

where µ0 – is the Bohr‘s magneton, and operator V̂ describes the excitation of 33S1 state,
from the lower 23P ones (hereinafter referred to as the state of ‘b’ and ‘a’, respectively) by
electromagnetic field polarization. This polarization makes an angle χ with the OZ axis of the
laboratory frame of reference as follows:

(Vab)ma,mb
= 〈jama |dz| jbmb〉 = h̄ Ω̃(Wab)ma,mb

, (4)

where Ω̃(t) = E(t)〈r〉/h̄ is the Rabi frequency, which depends on the value of electric field
strength

−→
E (t) and 〈r〉 – reducible matrix element of operator r̂. The elements of the Wa,b

matrix are defined by the regulations of the vector additions:

(Wab)ma,mb
=

h̄ΩR(−1)la+s+jblb+1
√

(2lb + 1) (2jb + 1)

[
jb 1 ja
mb 0 ma

]{
lb la 1

ja jb s

}[
lb 1 la
0 0 0

]
. (5)

The excitatory electric field E(t) leads to the polarization of the medium, which is
characterized by a polarization vector

−→
P . The value of this vector is proportional to the mean

value of the operator of dipole moment d̂, evaluated on the correlation density matrix:

−→
P = −n0=

[
Sp
(
ρabd̂

)]
. (6)

From the last relation, one can see that the polarization of the environment by the excita-
tion process is defined by the correlation density matrix and hence, depends on its variation. In
turn, the right hand side of the Liouville equation, which describes the variation of the density
matrix, contains the Rabi frequency, which depends on the electric field strength. So, the mutual
variation of the density matrix and the electric field is described by a system of self-consistent
equations:

d

dt
ρ̃aa(t) = Γρ̃bb(t)−

i

h̄
(Vab(t)ρ̃ba(t)− ρ̃ab(t)Vba(t)) ,

d

dt
ρ̃bb(t) = −Γρ̃bb(t)−

i

h̄
(Vba(t)ρ̃ab(t)− ρ̃ba(t)Vab(t)) ,

d

dt
ρ̃ab(t) = −Γ

2
ρ̃ab(t)−

i

h̄
(Ea − Eb) ρ̃ab(t)−

i

h̄
(Vab(t)ρ̃bb(t)− ρ̃aa(t)Vab(t)) ,

ρ̃ba(t) = ρ̃†ab(t),

∇2E − 1

c2
∂2

∂t2
E =

4π

c2
∂2

∂t2
P,

(7)
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where Ea and Eb are stationary energy levels of the lower and upper states and matrix Γ
describes the relaxation process. It should be mentioned that the 23P state of the helium atom
consists of three levels, one of which with j = 2 is metastable [11]. Since the lifetime of the
upper 33S1 state is approximately one-third the size of the lower 23Pj state, this system of two
multiplets can be considered self-contained, which means that the total population of levels ‘a’
‘b’ is conserved.

In order to simplify the main calculation it is necessary to move the squared momen-
tum and its projection from the base of the eigenfunction to the diagonalized base (M-base),
which describes the integration with the strong magnetic field. Diagonalization was performed
analytically using the Mathematica software package. As a result, two sets of orthogonal
eigenvectors were obtained, each of which corresponds to the eigenvalues of the state ‘b’
(ε)Mb

= µ0HMb, (Mb = ±2.0) and the state ‘a’ (ε)Ma
= µ0HMa, (Ma = ±3,±2,±1.0). In the

latter case, the states with Ma = ±1 are doubly degenerate. Then, in light of the information
above, the eigenvalues of the Hamiltonian operator in a strong magnetic field takes the form:
(Ea)M0

= Ea + (εa)M0
, (Eb)M = Eb + (εb)M .

In order to reduce the system (7) to a more convenient form for numerical computation,
it is first necessary to introduce dimensionless time τ = t/τ0, where τ0 = 36 ·10−9 sec [11] – the
lifetime of the excited 33S1 state, and secondly, to introduce the density matrix ρi,j(t) (i, j =
a, b), connected with the analogous matrix used previously with the relations (ρii(τ))M,M1

=

(ρ̃ii(τ))M,M1 (i = a, b), (ρba(τ))M,M1 = (ρ̃ba(τ))M,M1 exp[−iτ((Eb)M − (Ea)M1)], (ρi,j(τ) =

(ρj,i(τ))†). Additionally, it is assumed that the system is situated in a circular resonator, the
eigenfrequency of which coincides with the transition frequency between the upper and lower
multiplets. In order to eliminate rapidly oscillating terms in the system (7), the solution of
the last equation of this system may be searched in the form of a progressive wave E(t) =
−E(t)eiωt, and the response of the system in the form of a superposition of such waves P (t) =
<(P(t))eiωt + i=(P(t))eiωt. Then, assuming that the field and polarization vector amplitudes
are slowly varying, and that their values are independent of the space variables (mean field
assumption), then system (7) takes the following form:

d

dτ
ρaa(τ) = Γaρbb(τ) +

iΩR

2

[
ρab(τ) (Wba)I − (Wab)I ρba(τ)

]
,

d

dτ
ρbb(τ) = −Γρbb(τ)− iΩR

2

[
(Wba)I ρab(τ) +

i

2h̄
ρba(τ) (Wab)I

]
,

d

dτ
ρab(τ) = −Γ

2
ρab(τ) +

iΩR

2

[
ρaa(τ) (Wab)I −

i

2h̄
(Wab)I ρbb(τ)

]
,

d

dτ
ρba(τ) = −Γ

2
ρba(τ)− iΩR

2

[
(Wba)I ρaa(τ) +

i

2h̄
ρbb(τ) (Wba)I

]
,

∂

∂t
E = −4πωn0=P ,

(8)

where P = Sp (ρabr/a0) and n0 are the density of the particles. In order the last equation con-
tains dimensionless values one can introduce the dimensionless Rabi frequency ΩR = τ0E〈r〉/h̄.
Than the last equation of the system (6) takes the form:

d

dτ
ΩR = −Ω2

M Sp

(
ρab

r

a0

)
, (9)
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where the introduced denotation

ΩM =

√
4πn0

(ea0
h̄

)2
h̄ω
〈r〉
a0
,

which depends on 〈r〉 – the dimensionless mean value of operator r̂ in the state 33S1.

3. The results of numerical calculation. Discussion

Before considering the results of numerical calculations, it should be mentioned that
the fine splitting for the 23Pj state is relatively small and that this splitting is due to the
strong magnetic field, compared to the energy difference of the ‘centers of gravity’ of 23Pj and
33S1 multiplets, the radiation of the system under consideration should be similar to that of
the bi-level system considered in detail in [8]. The emissions of such a system are harmonic
oscillations, known as nutations. After this, the system was integrated using initial conditions
ΩR(0) = 0 and the density matrix values that were obtained in the previous step. The process
of integration was accomplished via the series expansion method that was described in detail
in our previous articles [12, 13]. The results of our calculations are represented on the Fig. 1 –
Fig. 5.

FIG. 1. The dependence of the induced Rabi frequency on dimensionless time
for two values of particle density n0 = 1011 and n0 = 1013 cm−3

In Fig. 1, the dependence of the induced Rabi frequency on dimensionless time is
shown for two values of frequency ΩM (two values of particles density n0). From this figure,
one can see that the nutation frequency increases with increasing ΩM . Also, one can see that the
nutations take place relative to some curve that shifts up the abscissa axis with increasing ΩM .
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FIG. 2. The dependence of the induced Rabi frequency on dimensionless time
for two laser detuning frequency values δ = 0, 0.5, 1

The dependence of the induced Rabi frequency upon time for some laser detuning
frequency values is represented in Fig. 2. From this plot, one can see that at zero detuning,
the dependence is represented by a sequence of rather short impulses. With increased signal
cleaning, the widths of the impulses first rapidly increase, however, with additional increased
detuning, the width of the impulses begins to decrease.

The dependence of induced Rabi frequency upon time for some values angle χ (the
angle between the direction of the magnetic field and the OZ axis of the laboratory frame
of reference) is illustrated in Fig. 3. From this figure, one can see that over the range of
angle 0 < χ < π/3 the emission signal increases and for χ > π/3 rapidly decreases, with the
signal vanishing at χ = π/2. A similar dependence for systems under coherent excitation was
reportedly fixed in our woks [12, 13]. It should be mentioned that such a dependence follows
from the fact that at χ = π/2, the system is in a state of coherent population trapping. In
other words, the population at the state 33S1 is zero, and thus, the system did not absorb the
electromagnetic radiation. The situation under consideration is illustrated on the Fig. 4, where
the dependence of the 33S1 state’s population for some values of angle χ is represented.

The problem is also illustrated here, in the frame of the approximate solution for sys-
tem (9) in the framework of perturbation theory over the Rabi frequency. By restricting to first
order perturbation theory over the Rabi frequency, one can write:

d

dτ
%ab(τ) = ΩRρaa(0) (Wab)I (τ),

d

dτ
ΩR(τ) = −Ω2

m=
[
Sp

(
ρab

rba
a0

)]
.

(10)
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FIG. 3. The dependence of the inducted Rabi frequency on dimensionless time
for two angle χ = 0, π/6, π/3, π/2. Curves 1 – 4

From these relations, it follows that:

d2

dτ 2
ΩR(τ) = −ΩR

{
Ω2
m=
[
Sp

(
ρaa(0) (Wab)I (τ)

rba
a0

)]}
. (11)

The right hand part of this relation can be calculated with help of Mathematica. The
resulting rather enormous relation takes a rather compact form in some cases. For instance, in
the case when χ = π/4 or χ = π/2, one can write:

d2

dτ 2
ΩR(τ) +

1

144
ΩM

2

(
11 + 8 cos

[
ΩL

h̄
τ

])
ΩR(τ) = 0, χ = π/4;

d2

dτ 2
ΩR(τ) +

7

72
ΩM

2 cos

[
ΩL

h̄
τ

]
ΩR(τ) = 0, χ = π/2.

(12)

Because of the assumption that only the induced emission was considered before, we
are therefore suggesting that in the system at τ < 0, the dipole moment was induced. So,
equations should be solved for the initial conditions ΩR(0) = 0.01, d

dτ
ΩR(0) = 1. The results

are represented in Fig. 5, from which, one can see that induced emission at χ = π/2 is
significantly lower than at χ = π/4.
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FIG. 4. The dependence of the 33S1 population for χ = 0, π/6, π/3 and π/2.
Curves 1 – 4

FIG. 5. The dependance on dimensionless time of of Rabi frequencies obtained
in the frame of perturbation theory χ = π/2 (lower curve), χ = π/4 (upper
curve)
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4. Conclusion

In this work, the induced emission of a complex atomic system in the presence of the
strong magnetic field was considered. The dependence of the induced emission on the atom’s
density and laser’s detuning was examined. It the case when the direction of the magnetic
field is orthogonal to the direction of the polarization of exiting radiation the induced emission
vanishes.
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The effect of fulleroid materials (fullerene C60 and fullerene soot which is used for fullerenes production) on

the mechanical properties of polymer nanocomposites based on polyamide 6 (PA6) was investigated. Composites

were synthesized by direct mixing in an extruder. Dielectric spectroscopy was used to investigate the influence of

nanoparticles on relaxation processes in the polymer matrix. It is found that the segmental relaxation processes

becomes faster with the addition of fullerene C60. In contrast, the secondary processes of PA6/fullerene C60

nanocomposites were observed to slow down with the addition of fullerene C60. This means that the local

‘molecular stiffness’ is increased, and a phenomenological link between the secondary relaxation times and the

mechanical properties explains the increase in the Young’s modulus of the nanocomposites upon the addition

of C60. These observations suggest that nanoparticles can have a qualitatively different effect on the matrix

polymer dynamics at different length scales, and caution must be taken in comparing the changes in the dynamics

associated with different relaxation processes.
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1. Introduction

Reinforcing thermoplastic polymers with nanoparticles to form nanocomposites is one
means to increase the usage of polymeric materials. A number of polymers can be considered
as competitive materials for tribological applications because of their low friction coefficients
against steel counterparts, good damping properties, and self-lubricating ability. Among thermo-
plastic polymers, PA6 has become a strong competitor matrix owing to its good thermal stability,
low dielectric constant and high tensile strength. PA6 has been reported to have a superior wear
resistance sliding against a steel counterface relative to other polymers. In order to meet the
special needs of tribological applications, polymer composites can be designed by selecting the
correct composition and choosing an appropriate manufacturing process. The improvement of
mechanical and/or tribological properties of polymers by incorporation of particulate filler ma-
terials has been widely studied [1]. Under extreme friction conditions, however, conventional
polymer composites usually are not effective for antiwear and friction reduction; for example,
under heavy load. Nanoparticle-reinforced polymer composites are the most rapidly growing
class of materials due to a good combination of high strength and modulus at very low level
of loading [2]. Nanocomposites are compatible with conventional polymer processing, thus
avoiding the costly lay up required for the fabrication of conventional fiber-reinforced compos-
ites. When the fillers’ sizes are on the order of nanometers, even small a concentration can
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lead to enhancements in properties unprecedented in conventional composites [3]. The unique
properties of polymer nanocomposites are attributed to the high filler surface area-to-volume
ratio, which results in significant interfacial contact areas between the polymer and the particles.
The large interfacial contact areas enable a substantial fraction of polymer segments to interact
directly with the filler particles, even at low particle concentrations.

Polymer/ fullerene C60 blends are an ideal system to study polymer-nanoparticles inter-
actions since fullerene C60 is monodisperse, available in high purity, and dispersible in many
polymer and block copolymers [4]. The most challenging problem in the fabrication of polymer
nanocomposites is dispersing the nanofillers in the polymer matrix [5]. Nanofillers strongly
self-associate into ropes and other high-ordered structures which are extremely difficult to dis-
perse in polymers. As result, the mechanical properties of polymer nanocomposites can be very
far from that which was predicted [6]. Here, we use broadband dielectric spectroscopy (BDS)
to directly measure the influence of fullerene C60 on the polymer relaxations corresponding
to different lengths and time scales. BDS is one of the most efficient tools for studying the
molecular relaxations of polymers. It covers a broad frequency range, allowing measurement of
different relaxation processes simultaneously, and even entire chain relaxation processes under
favorable circumstances [7].

We studied the influence of fullerene C60 or fullerene C60 containing materials on the
mechanical properties of PA6 based composites. In this paper, we report the data obtained from
BDS measurements.

2. Experimental

2.1. Material and manufacturing

Fullerene C60 (purity 99.9%), and fullerene soot, containing about 10.5% fullerenes,
which was supplied by ZAO ILIP (Russia), were used as fillers. The fullerene soot used is an
ultra dispersed carbon formed by a voltaic arc of graphite in an inert gas atmosphere during
fullerene production, with particle diameters of 0.5 –2.0 µm. Plasticizer ARMOSIL Er (AKZO
NOBEL, (amide of oleic acid)) was added to the 1% C60 samples to aid the C60 dispersion.

The granules of PA6 (Volgamidr 32, OAO Kuibishevasot, Russia, here after B32,
density 1.14 g/cm3) were used for the preparation of nanocomposites. We used a C60 solution
in o-xylene as the means for impregnating the granules with a calculated amount of fullerene.
The fullerene soot was premixed with calculated amounts of PA6 granules for 5 min in a
high-speed powder mixer. After that, the granules were dried for 5 h at 80 ◦C. The composite
preparation was carried out in a single screw extruder (Haake Rheocord, Germany) at a screw
speed of 50 rpm. Plasticizer ARMOSIL Er (AKZO NOBEL, (amide of oleic acid)) was
added to the PA6 granules with 1% C60 to aid the best C60 dispersion. The temperature setting
from the hopper to the die was 220/225/230/235 ◦C. During melt extrusion, ventilation was
kept on to remove trapped air in materials. After pelletizing, the nanocomposite granules
were dried for 5 h at 80 ◦C. Dried pellets were injected-molded (KM-160E injecting molding
machine, KraussMaffei, Germany) into standard test species. The temperature profile setting
from hopper to nozzle ranged from 200 – 215 ◦C and the mold temperature was kept at 25 ◦C.
The holding pressure and screw rotation speed were 300 bar and 100 rpm respectively with
throughput of 50 cm3/s. As a reference, neat PA6 was also similarly extruded and injected-
molded. For dielectric measurements, nanocomposite pellets were placed and melted in a
parallel-plate capacitor with 20 mm diameter; a pair of glass fiber with 80 µm diameter was
used as the spacer between electrodes.
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2.2. Mechanical properties

Tensile properties were measured in the accordance with ISO 527. Tests were con-
ducted using 6×6×40 mm3 specimens for tensile strength and Young’s modulus estimation on
a UTS 10 devise (UTS Test System, Germany) at an elongation rate of 2 mm/min. No less
than 5 specimens were taken for each sample to obtain an average value. Shore D hardness
test of composites were performed according to the ASTM 2240 using a Zwick/Roell Test
stand 7206.200 machine. To increases the accuracy of measurement, all samples’ surfaces were
well polished using high-grade sandpaper prior to test. An average hardness was calculated by
10 indentation measurements.

2.3. Microscopy

An optical microscope, Micromed Met 400 (Micromed Met, Russia), with magnification
up to 400×, was used to analyze the worn surfaces of the composites. Scanning electron
microscopy (SEM) images were obtained with Zeiss ULTRAplus FEG-SEM instrument with
magnification 2.000 – 30.000×.

2.4. Thermal properties

Differential scanning calorimetry (DSC) measurements were performed using a Netzsch
DSC 204F1 instrument at a scan rate 10 K/min. The thermal gravimetric analysis (TGA)
measurements were performed in an inert N2 atmosphere and an oxygenated atmosphere on a
NTZSCH TG 209 F1 instrument with Al2O3 pan using 2 – 3 mg of nanocomposite as probe.
The samples were heated 30 – 800 ◦C and the temperature was raised at the rate of 10 K/min.

2.5. Dielectric spectroscopy

Measurements were performed with an Alpha Analyzer combined with a Quatro Tem-
perature Control system unit that provides temperature stability of 0.1 ◦C, both by Novocontrol.
Complex dielectric permittivity ε∗(f) = ε′(f) − iε′′(f) was measured isothermally in steps
of 5 ◦C over the temperature interval −150 to +200 ◦C and frequency range from 10−2 to
106 Hz. Nanocomposite films were placed and melt in parallel-plate copper capacitor with
20 mm diameter, and a pair of glass fiber with 50 µm diameter was used as the spacers between
electrodes.

3. Results and discussion

3.1. Preparation of nanocomposites

The reinforcement effect in nanocomposites is very sensitive to the quality of the
nanoparticle dispersion [5]. Fabrication methods are overwhelmingly focused on improving
nanofiller dispersion because better filler distribution in the polymer matrices has been found to
improve the nanocomposites’ properties. In-situ polymerization is generally more effective than
other potential methods in dispersing nanofillers in a polymer matrix due to the high viscosities
of polymeric solutions and melts. Furthermore, in-situ polymerization methods enable covalent
bonding between the nanofillers and the polymer matrix by using various reactions to promote
compatibilization as was shown by us previously [8]. Conversely, mixing in an extruder is a
more acceptable industrial method for the preparation of polymer composites. This stimulated
us to use this method as a fabrication technique for the synthesis of PA6/fulleroid material
nanocomposites.

As an initial level of analysis, the dispersion state of fullerene C60 can be evaluated by
the polymer nanocomposite’s color. It is well known, that if fullerene C60 is semicrystalline
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or aggregated in a polymer matrix, the nanocomposite has a brownish color, while when it is
well dispersed in polystyrene the color is purple, or orange when in polymethylmethacrylate
(PMMA) [9]. We used a fullerene C60 solution in o-xylene as the means of impregnating the
granules with a calculated amount of the fullerene C60 because this pathway gives much better
results than pulverization [10]. As a result, the samples containing 0.01 wt.% of fullerene C60

after injecting molding were light cream colored. In the SEM images of these samples, one
can not find any aggregates of fullerene C60. However, it is well known that the results of
the scattering methods regarding dispersion of nanofillers in polymers are difficult to interpret
because of the low contrast, and because the precise rigid-rod behavior (I ∝ Q−1) is not
equivalent to good dispersion at all length scales [11]. Hence, the light cream color of the
nanocomposites may give evidence that the fullerene C60 dispersion is not on the molecular
level.

A similar way of preparing nanocomposites with 1 wt.% of fullerene C60 leads to
aggregation of nanofillers in the polymer matrix, as seen from the SEM images. To solve
this problem, we have added a plasticizer (ARMOSIL E, at 0.05 wt.%) to the composition.
The decrease in viscosity of the polymer melt allows for better dispersion of the filler and
the resulting nanocomposite after injection molding was light cream colored (similar to the
composite with 0.01 wt.% of fullerene C60). The SEM images of these samples also did not
show any aggregates of fullerene C60 (Fig. 1).

FIG. 1. SEM micrographs (×30 k) of polymer nanocomposites: (a) with 1 wt.%
of fullerene C60 and 0.05 wt.% of ARMOSIL E; (b) with 1 wt.% of fullerene
soot

The similarity of the quality of fullerene C60 dispersion in both composites (with 0.01
and 1 wt.% of fullerene C60) is supported by DSC measurements. The melting temperatures of
neat PA6 and the composites are nearly identical (Table 1).

To estimate the crystallinity of the samples, a value of 190.6 J/g was used for the melting
enthalpy of 100% crystalline PA6 [12].The degree of crystallinity, χ, was calculated from the
areas of the corresponding DSC melting peaks according to χ = Hm/∆H100, where χ is degree
of crystallinity, ∆Hm is the peak area of the consideration, and ∆H100 is the heat of fusion of
100% crystalline PA6. We have found that the crystallinity of nanocomposites is increased in
comparison with neat PA6 (from 22% to 26 – 27%), independently of the fullerene C60 content
(for nanocomposite with 1 wt.% of fullerene C60 this amount should be subtracted from the total
mass of the composite), allowing us to neglect any differences in the fullerene C60 dispersion
quality in both nanocomposites. A micrograph of the PA6 nanocomposite surface filled with
fullerene soot (Fig. 1) demonstrates that no segregation of soot particles is observed and that
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TABLE 1. Molten behavior of neat PA6 and nanocomposites

Loading, wt.% Tm (◦C) ∆H , J/g Crystallinity, %
B32 221 42.3 22

Fullerene C60

0.01 221 51.0 27
1a 220 48.1 25

Fullerene Soot
1 221 45.4 24

a0.05 wt.% of ARMOSIL E (AKZO NOBEL)

they are randomly distributed in the polymer matrix. This is favorable for achieving greater
matrix stiffness and consequently increases the toughening efficiency.

Thus, we see that our method for preparing the PA6/fulleroid materials is free from filler
aggregation, thus allowing us to investigate the influence of pristine fulleroid filler (with no
ropes and other high-ordered structures) on the properties of nanocomposites.

3.2. Mechanical properties

The main improvement in mechanical properties of nanocomposites relates to the large
increase in modulus. Usually, an increase in the modulus of approximately 10% per wt.% filler
has been observed in both in situ polymerized and melt processed PA6 nanocomposites [13].
Such an increase is too small for nanofillers which are used with much lower loadings. In
our previous work, both the tensile modulus and tensile strength of in situ-polymerized PA6
composites were improved by up to 15% with a loading of 0.01 wt.% fullerene C60. The tensile
mechanical properties of composites under study are summarized in Table 2.

TABLE 2. Effect of loading on the mechanical properties of the polymer nanocomposites

Loading,
wt.%

Young’s
modulus
(E), GPa

Tensile
strength
σ, MPa

Elongation
ε, %

Hardness
Shore D

(H)

Rigidity
(E/H)
×10−3

Resistance
to plastic

deformation
(H3/E2)×105

B32 0.693± 0.017 63± 1 290± 6 72.18 9.60 7.83

Fullerene C60

0.01 0.714± 0.022 65± 1 301± 6 73.35 9.73 7.74

1a 0.265± 0.037 11± 1 287± 2 48.93 5.42 1.65

Fullerene Soot
1 0.622± 0.045 62± 1 286± 14 73.06 8.51 10.15

a 0.05 wt.% of ARMOSIL E (AKZO NOBEL)

Table 2 shows that the Young’s modulus, the tensile strength and elongation of the melt
processed nanocomposite increase slightly at this filler loading. Furthermore, all of these param-
eters decrease significantly with an increase in the filler concentration. This is mainly attributed
to the carbon particles aggregating easily as the filler concentration is increased. Additionally,
the sample with 1% of fullerene C60 also contained ARMOSLIP E (0.05%) which acted as a
plasticizer. The difference in the properties of neat PA6 synthesized by us [8] and commercial
32 used as the choice of polymer for extrusion can be related to effect of reprocessing [14].
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The possibility of degradation is of clear importance here, since two mixing cycles are needed
to produce these materials. For nanocomposites, besides the possible degradation processes as-
sociated with the matrix, additional degradation processes due to the presence of nanoparticles
can occur. These processes can lead to additional degradation of the matrix induced by the
presence of nanoparticles, as the latter can act as a catalyst; degradation by modification of the
polymer/filler interface or degradation by collapsing and agglomeration of the nanoparticles. If
any of the above processes take place to a significant extent, they would influence the mechan-
ical properties. In our case the first two possibilities are excluded because the fullerene C60

prevents all free-radical degradation processes of polymers, including mechanodestruction. This
was supported by the data of TGA measurements (Fig. 2). As one can see, the TGA curves for
neat B32 and all nanocomposites are identical.

FIG. 2. TGA curve of neat PA6 (1); and with 1 wt.% of fullerene soot (2)

As can be seen from Table 2, the hardness of nanocomposites (without adding the
plasticizer) increased slightly in comparison to neat PA6, which can be connected with increased
crystallinity. According to conventional fracture mechanics theory, the ratio of the Young’s
modulus and hardness (E/H ratio) represents the rigidity of a material and the ratio H3/E2

represents the resistance to plastic deformation. Hence, the nanocomposite with 0.01 wt.% of
fullerene C60 added was found to be highly rigid and tough. Such spectacular increase of the
overall stiffness is generally reported upon the addition of very low fractions of nanofillers
(e.g., clay or phyllosilicates [15]). This remarkable improvement in mechanical properties
in regard to the neat PA6, compared to conventional polymer composites with similar filler
content, is attributed to the high specific area of the nanoparticles, and therefore, to the strong
interactions with polymer macromolecules [16]. PA6 is a crystalline thermoplastic polymer
and its crystalline structure can involve different forms which coexist in different amounts
depending on the processing conditions and additives. PA6 usually crystallizes into two forms:
α and γ [17]. Although the α and γ-forms are thermally stable, the addition of nanopatricles
can induce a crystal transformation from the α-form to the γ-form and inversely, that has
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been well documented using DSC, FTIR, XRD, and NMR measurements [18]. The PA6 α-
phase crystals were reported to exhibit a higher modulus than those of the γ-phase [19]. This
could be one of the reasons for the enhanced properties observed in PA6 composites reinforced
with various materials. The fullerene C60 [8] or fullerene C60-like inorganic fillers [13] have
an α-nucleation effect on the PA6-matrix upon in situ polymerization. It was manifested as
ground for reinforcing mechanism of such types of nanocomposites [20]. The thermal properties
of the composites were investigated by DSC. However, fullerene C60 does not change the
crystallization behavior of PA6 nanocomposites prepared by the extrusion method. Only the
α-form crystalline phase was found in B32 and the nanocomposites prepared by us. Therefore,
there should be other reinforcing mechanisms. Essentially these mechanisms should involve
active interactions between the fullerene C60 and PA6 chains.

Here, we use BDS to measure directly the influence of fullerene C60 on the polymer
relaxations corresponding to different lengths and time scales.

3.3. Dielectric spectroscopy

Complex dielectric permittivity ε∗ was measured over wide frequency and temperature
ranges. Fig. 3 is an isochronal graph of the dielectric loss of the B32 and nanocomposites as a
function of temperature.

FIG. 3. Temperature dependence of imaginary part of the dielectric permittivity
for neat PA6 (1); with 0.01 wt.% of fullerene C60 (2); with 1 wt.% of fullerene
soot (3) at 1 Hz

Three relaxations can be identified in all samples. They were identified and reported
for the pure PA6 [21–24]. In the present work, the effect of water on the relaxation processes
is considered to be negligible, due to the initial drying of the materials prior to testing. If
any small amounts of water remained in the samples, it was firmly bound water. Additionally,
similar amounts of bound water should be present in all tested samples, thereby making direct
comparison of the results possible.
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The main characteristic of each relaxation process is the most probable relaxation time,
τmax , determined according to [25] as:

τmax = τHN

sin

(
παβ

2(β + 1)

)
sin

(
πα

2(β + 1)

)


1

α

. (1)

Based on the previous experience, a model function has been fitted to the dielectric data,
with the Havriliak – Negami (N-H) phenomenological relation [26]:

ε∗ (ω) = ε∞ +
∆ε

(1 + (iωτNH)1−α)β
, (2)

being the most general form. In this expression, ε∗ = ε′ − iε′′, is the complex dielectric
function, ω = 2πf , f is the field frequency, ∆ε is the intensity of the dielectric process,
τNH = 1/2πfNH and fNH is the position of the relaxation process on the frequency scale,
ε∞ is ε′(f) for f � fNH , α and β are shape parameters representing the symmetrical and
asymmetrical broadening of the relaxation with respect to the Debye peak. Fig. 4 displays
the fits obtained when one NH term is used to fit the relaxation spectrum obtained for the
nanocomposite with 0.01 wt.% of fullerene C60 at 223 K. The quality of the fit is quite good
and the characteristic relaxation time for each relaxation process (Fig. 4a shows γ-relaxation
and β-relaxation) can be extracted.

FIG. 4. Decomposition in N-H distributions of the isothermal runs of imaginary
part of the dielectric permittivity for nanocomposite with 0.01 wt.% of fullerene
C60 sample (a) and with 1 wt.% and of fullerene C60 and 0.05 wt.% of ARMOSIL
E (b): (�) is experimental points; solid line is sum of calculated profiles

The γ- and β-relaxations are due to relatively shorter chain motions. The dependences
of − log τmax on the inverse temperature are linear for all nanocomposites and neat B32 in
the regions of γ and β processes (Fig. 5). As a result, the temperature dependence of these
relaxations can be modeled by an Arrhenius type expression (Eq. 3) [27]:

τ(T )max = τ0 exp

(
Ea
RT

)
. (3)

Here, τ0 = τmax at T → ∞, Ea is the activation energy. Values of τ0 and Ea are given in
Table 3.
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FIG. 5. Dependences of − log τmax on repciprocal temperature for neat PA6 (1)
and nanocomposites with 0.01 wt.% of fullerene C60 (2); with 1 wt.% and of
fullerene C60 and 0.05 wt.% of ARMOSIL E (3); with 1 wt.% of fullerene soot
(4); a: α-relaxation process; b: β-relaxation process; c: γ-relaxation process
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TABLE 3. Tg and parameters of γ, β and α (from VFT fit) relaxation processes
of neat PA6 and nanocomposites

Loading,
wt.%

Ea,
kcal/mol

τ0, s
EVFT,

kcal/mol
D T0, K Tg, K

B32
γ-mode 6.43 1× 10−11 2.58
β-mode 15.65 1× 10−17

α-mode 1.9× 10−7 1.18 260 360

Fullerene 0.01% C60

γ-mode 8.79 1× 10−13

β-mode 16.59 1× 10−18

α-mode 5.9× 10−6 2.59 1.14 260 360

1%a

γ-mode 7.39 1× 10−13

β-mode 13.25 1× 10−15

α-mode 4.5× 10−5 3.42 1.55 261 335

Fullerene Soot 1%
γ-mode 9.19 1× 10−14

β-mode 15.63 1× 10−17

α-mode 7.6× 10−9 2.65 5.02 260 360
a 0.05 wt.% of ARMOSIL E (AKZO NOBEL)

The β-relaxation is phenomenologically linked to the mechanical properties of polymeric
materials [28,29]. From Table 3, one can see that symbatic changes of Ea and Young’s modulus
for the composites shows that the presence of fullerene hampers the molecular motions in the
composites, leading to hardening of the polymer chains and impeding secondary relaxation
processes. This explains the increase in Young’s modulus for the nanocomposites. Assignment
of molecular motions associated with the β-relaxation is complicated and a number of varying
opinions exist in the literature [21–24]. However, these motions should be connected with the
motion of amide groups together with neighboring methylene groups, and size of this moving
unit is comparable to the size of the fullerene C60 molecule. This can explain the hampering of
β-relaxation upon introduction of such fillers.

The low temperature γ-relaxation involves the motion of short sequences of CH2 groups
connected with an amide group which provides the dielectric activity. As a result, the depen-
dence of Ea of the γ-relaxation on the amount of nanofiller is quite. The tightly bound fullerene
molecules create inter-chain bonds between the neighboring carbonyl groups, thus increasing
the energy necessary to reorient the dipolar entities whose motion causes the γ process. The
introduction of the plasticizer slightly blurs this dependence.

It is well known that the β process is related to the toughness of the polymer [25]. The
nanocomposite with 1 wt.% of fullerene soot was found to be both rigid and tough (Table 2).
There was a demonstrated decrease in the activation energy of the β process compared to that of
the nanocomposite with 0.01 wt.% of fullerene C60. This indicated that carbon nanoparticles can
significantly improve the energy dissipation process in the polyamide matrix. This process can
lead to domination of the plastic deformation mechanism in the composite that effectively blunts
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the crack trip. Hence, the suggested mechanism could be a major reason for the higher values of
the resistance to plastic deformation. This mechanism is applicable to both semicrystalline and
amorphous systems and is typically absent in conventional polymer composites. The decrease in
the activation energy of the β relaxation process indicates that the mobility of polymer matrix is
a pre-condition for this mechanism to be effective. In other words, the increase in toughness is
proportional to the increase in the local mobility of the polymer chains, which in turn determines
the nanoparticle mobility.

The α-relaxation (the highest temperature relaxation in Fig. 3) is connected with onset
of large-scale motions of chain segments in the vicinity of Tg. At higher temperatures near
the α relaxation process, heating is accompanied by creation of carriers due to ionization of
impurities and the breaking of chemical bonds (e.g., the N-H bonds, etc.). Hence, it is necessary
to add an additional term connected with conductivity in Eq. (2):

ε∗(ω) = ε∞ +
∆ε

(1 + (iωτNH)1−α)β
− i
(
σ0
ωε0

)
. (4)

In this equation, σ0 is dc conductivity and ε0 is the permittivity of free space (8.854 pF/m).
Fig. 4b displays the fits obtained when two such N-H terms are used to fit relaxation spectrum
obtained for the nanocomposite with 0.01 wt.% of fullerene C60 at 330 K. The fitting procedure
is complicated because of the presence of very often incomplete peaks, in spite of the frequency
window extending over more than 8 decades. As the temperature increases, the relaxation peaks
shift to higher frequencies and sweep the frequency window with different speeds characteristic
of the relaxation energy of each mode. The fit is quite good and the characteristic relaxation time
for the α-relaxation process can be extracted. The temperature dependence of the characteristic
relaxation times can then be described using the Vogel-Fulcher-Tammann equation [30]:

τ = τ0exp

(
DT0
T − T0

)
, (5)

where τ0 is the relaxation time at infinite high temperature, T0 is so-called Vogel temperature
at which the relaxation time goes to infinity, and D is the parameter related to the fragility of
material [31]. A smaller value of D implies steeper temperature dependence of the relaxation
time or a more ‘fragile’ behavior. The changes in the D values for the nanocomposites show that
additives such as fullerene C60 enhance the fragility of glass formation related to the molecular
packing efficiency of polymer materials, which is indicated physically by softening of the
material in the glass state. EVTF is the characteristic energy for the Vogel-Tammann-Fulcher
(VTF) relaxation times and can be found as EVTF = DT0. The relaxation diagrams − log τmax

vs. 1/T are curved for the VTF dependences (Fig. 5).
The VFT energies increase with the addition of fullerene C60, but the glass transition

temperature does not change. This effect is opposite to the typical result for nanofiller addition,
well documented as the ‘antiplasticization’ phenomenon. In a typical antiplasticization effect,
the additives will cause a decrease in the second relaxation time and an increase in the α
relaxation time [32]. The addition of fullerene C60, as reported in literature, can either increase
or decrease the glass transition temperature of the polymer matrix [33]. In our opinion, this
effect is related to the way in which fullerene C60 is incorporated in the polymer matrix (for
example, with formation of inclusion complexes in which the C60 molecules are encapsulated
within the polymer chain cavity [34]), and the quality of the filler dispersion. In the case of poor
dispersion, the aggregates have act as macrofillers, leading to a decrease in the glass transition
temperature of the polymer matrix.
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Finally, it is clear that the complex character of the nanoparticle-polymer matrix inter-
actions and better understanding of how nanoparticles can modify the basic polymer properties
are of obvious practical, as well as scientific interest. Although the immobilization is a rea-
sonable reinforcing mechanism and its molecular origin is well documented [27–29], a precise
prediction or simulation of its extent for various composite systems still represents an intriguing
unresolved problem.

4. Conclusions

The following conclusions can be drawn from the present study. Fullerene C60, as a
filler, improves the mechanical performance of PA6 based composite at low loading. Dielectric
spectroscopy was used to investigate the influence of nanoparticles on relaxation processes in
polymer matrix. The segmental relaxation processes become faster with the fullerene C60 addi-
tion. In contrast, the secondary processes in PA6/ fullerene C60 nanocomposites were observed
to slow down with fullerene C60 addition. This indicates an increase in the local ‘molecular
stiffness’. Therefore, the local ‘molecular stiffness’ is increased, and the second relaxation times
are phenomenologically linked to the mechanical properties, which may explain the increased
Young’s moduli of nanocomposites with fullerene C60 additives. These observations suggest that
nanoparticles can have a qualitatively different effect on matrix polymer dynamics at different
length scales, and caution must be taken when comparing changes in the dynamics associated
with different relaxation processes.
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Despite having simple stoichiometry, NH4V3O7 still remains an odd compound with poorly resolved structure

among the series of known ammonium vanadates. Here, a new hydrothermal synthesis of the product with

explicit NH4V3O7 stoichiometry is evaluated. Intricate microstructure of the product is revealed as an aggregate

of spherical microparticles consisting of microplatelets via scanning electron microscopy. To further guide the

characterization of the NH4V3O7 phase, X-ray diffraction analysis and first-principle calculations were carried out

to refine the structure at an atomistic level and to predict electronic properties. The results suggest a complex

structural hierarchy with consequent nanodomain organization of prepared NH4V3O7 microplatelets.
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1. Introduction

Mixed-valence Vanadium oxides and several of their derivatives form a wide class of
functional materials for catalysts, Li-ion batteries, chemosensors, electronic and optical de-
vices [1–3]. A rich variation of V4+ and V5+ content, the types of coordination polyhedra and
their possible arrangements permit a very large variety of possible V–O frameworks and serve
as great opportunity to design new advanced crystalline structures. The chemical nature of V–O
frameworks enables hydrothermal (i.e. solvothermal) synthesis as the most outstanding and
cost-effective method with widely varying experimental conditions for their fabrication [4,5].

The electroneutrality of a charged V–O framework can be compensated using appropriate
amount of intercalated metal or complex cations, such as ammonium [6–9]. Particularly, to date,
a few compounds in the family of ammonium polyvanadates are known – NH4V4O10 [9–12],
NH4V4O14 [13], (NH4)2V3O8 [14], NH4V3O7 [15]. Large NH+

4 -ions stabilize the internal pillar-
like cavities within the vanadate frameworks, leading to enhanced diffusion rate of lithium ions.
The latter is a necessary attribute of the cathode material for high capacity rechargeable Li-ion
batteries.

Diammonium trivanadate (NH4)2V3O8 crystallizes as a fresnoite structure and attracts
much attention due to its magnetic properties [16,17]. Ammonium vanadium bronze, NH4V4O10

(or (NH4)0.5V2O5) has a monoclinic structure. It was suggested as a potential electrode material
for high capacity Li-ion batteries because of its good cyclic stability [11]. NH4V4O10 showed
a discharge capacity of 197.5 mAh/g remaining after 11 cycles and excellent cycling stability
with the capacity retention of 81.9% after 100 cycles at 150 mAh/g [10]. Bicationic vanadium
bronzes, (NH4)0.83Na0.43V4O10·0.26H2O [18] and (NH4)0.25Na0.14V2O5 [19], exhibit advanced



584 G. S. Zakharova, Y. Liu, I. S. Popov, A. N. Enyashin

electrochemical properties, which might presumably be attributed to the modulation of the lattice
parameters due to the co-intercalation of different cations.

Despite its simple stoichiometry, NH4V3O7 still remains an odd compound with a poorly
resolved structure among the known ammonium vanadates. This compound has been synthesized
hydrothermally using NH4VO3, CuCO3·Cu(OH)2 and NH4F as precursors [15]. Yet, under the
reaction conditions chosen, NH4V3O7 was prepared in a mixture with (NH4)2V4O9 phase, which
challenges some credibility of subsequent crystallographic and conductivity measurements.

In recent work, we evaluate a new hydrothermal synthesis of NH4V3O7 compound,
which allowed the isolation of a product with explicit NH4V3O7 stoichiometry and with a
morphology consisting of microplatelets which were assembled into spherical particles. Such a
high texture does not enable us to refine the unit cell parameters. Yet, as a guide for further
interpretation of the NH4V3O7 phase, first-principle calculations were carried out to confirm the
structure at an atomistic level and to predict its electronic properties. Our calculations reveal
that, fabricated NH4V3O7 microplatelets should have a nanodomain structure.

2. Experimental part

2.1. Chimie douce synthesis

All chemical reagents were purchased from Sigma Aldrich and used without further
purification. Ammonium metavanadate NH4VO3 was used as precursor and citric acid C6H8O7

was used as a mild reductant. The synthesis procedure was as follows: NH4VO3 powder was
dissolved with stirring in deionized water. Then, an appropriate amount of saturated aqueous
citric acid was added drop-wise until 4≤pH≤5.5 is achieved. The homogenous solution was
placed into a teflon-lined stainless steel autoclave and maintained at 180 ◦C for 48 hours. After
cooling to room temperature, the obtained black sediment was filtered, washed with deionized
water and air-dried at 50 ◦C.

2.2. Characterization techniques

The morphology of the powder and elemental analysis were studied by scanning electron
microscope Nano-SEM (FEI) with integrated energy-dispersive X-ray microspectrometer for
analysis (EDX). The product was characterized by powder X-ray diffraction (XRD) by means
of Shimadzu diffractometer XRD-7000 S using Cu Kα radiation. Thermogravimetry (DSC-TG)
was carried out using analyzer DTA 409 PC/PG (Netzsch). The samples were heated at a rate
of 10 K/min up to 800 ◦C under N2.

2.3. Computational details

The spin-polarized calculations of NH4V3O7 compound were performed within the
framework of the density-functional theory (DFT) [20] using the SIESTA 2.0 implementa-
tion [21,22]. The exchange-correlation potential within the Generalized Gradient Approxima-
tion (GGA) with the Perdew-Burke-Ernzerhof parametrization was used [23]. The core electrons
were treated within the frozen core approximation, applying norm-conserving Troullier–Martins
pseudopotentials [24]. The valence electrons were taken as 3d34s24p0 for V, 2s22p4 for O,
2s22p3 for N and 1s1 for H. The pseudopotential core radii were chosen as 2.34 aB for V3d and
V4s, 2.50 aB for V4p states, 1.45 aB for all O states, 1.04 aB for all N states, and 0.15 aB for
H1s states. In all calculations, a double-ζ polarized basis set was used. The k-point mesh was
generated by the method of Monkhorst and Pack [25]. The real-space grid used for the numeric
integrations was set to correspond to the energy cutoff of 300 Ry. For k-point sampling, a
cutoff of 10 Å was used [26]. All calculations were performed using variable-cell and atomic
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position relaxations, with convergence criteria corresponding to the maximum residual stress of
0.1 GPa for each component of the stress tensor, and the maximum residual force component
of 0.05 eV/Å.

The optimized geometry was used to calculate the XRD spectra for the radiation wave-
length λ = 1.5406 Å (nickel-filtered CuKα radiation). XRD spectra of nanosized NH4V3O7

were calculated in Debye approximation as for ensemble of monodisperse nanoparticles. The
smearing of reflection profiles was approximated with correction for the isotropic atomic tem-
perature factor and with regard to the instrumental line broadening [27].

3. Results and Discussion

3.1. Scanning microscopy

The microstructure of synthesized ammonium trivanadate (NH4V3O7) was characterized
using SEM method. The SEM data reveal an insignificant dependence of the compound’s
morphology on the variation of pH value in the primary reaction mixture. The samples fabricated
at pH 4 consist mainly of the spherical-like particles with 3 – 8 µm diameters (Fig. 1a). In
turn, these microparticles are assembled of stochastically oriented microplatelets with thickness
of 50 – 200 nm and with the characteristic edge lengths up to 3 µm (Fig. 1b).

FIG. 1. SEM images of NH4V3O7 powder fabricated from the precursor solution
with pH = 4

The morphology of NH4V3O7 samples isolated from the less acidic precursor solutions
(pH < 4) is enriched by the separate single microplatelets. A pH value of 5.5 leads to the
formation of square-like microplatelets stochastically aggregated into the particles with the
diameters of 20 – 30 µm. These platelets have the larger thickness and lengths up to 250 –
950 nm and 5 – 15 µm, respectively.

3.2. Thermogravimetric analysis

In order to determine the stoichiometry and the thermal stability of NH4V3O7 samples,
DSC study was performed. The data of the mass loss measurements under an inert atmosphere
allowed us to adjust the explicit NH4V3O7 stoichiometry for the prepared samples. Upon the
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heating of NH4V3O7 powder in a stream of nitrogen, the mass loss is observed as a single
stage process, which is finalized at 422 ◦C (Fig. 2). The decomposition of the samples is an
endothermic process with the minimum corresponding to the temperature at 369 ◦C. In general,
the decomposition of NH4V3O7 can be described according to the reaction

6NH4V3O7 → 18VO2 + 4NH3 ↑ +N2 ↑ +6H2O.

FIG. 2. TG and DSC thermogravimetric curves of NH4V3O7 powder decompo-
sition under a stream of nitrogen

3.3. X-ray diffraction

The structure and the lattice type of experimentally observed NH4V3O7 phase have not
been validated, yet. The former study after Trombe et al did not describe the texture of the
samples in detail and no X-ray diffractogram was quoted [15]. Despite the presence of an
admixture of an (NH4)2V4O9 phase, the lattice parameters of NH4V3O7 were ascribed there to
the crystal structure with its own monoclinic type and with lattice parameters of a = 12.198 Å,
b = 3.7530 Å, c = 13.178 Å, β = 100.532◦, Z = 4 (ICSD 417589). This lattice was represented
as a stack of V3O7 layers, consisting of sextuple ribbons of distorted VO6 octahedra and
intercalated by ammonium cations (Fig. 3a).

XRD measurements of our samples prepared at a pH level of 4.0 – 5.5 give evidence that
the crystal structure may also be described as a monoclinic phase. Yet, noticeably different lattice
parameters are found: a = 12.247(5) Å, b = 3.4233(1) Å, c = 13.899(4) Å, β = 89.72(3)◦,
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FIG. 3. Polyhedral models for DFT optimized supercells (Z = 16) of two poly-
typic NH4V3O7 forms: (a) the most stable polytype I; (b) hypothetical and
less stable polytype II (the views along b-axes are shown). Ball-and-stick
model (c)demonstrates a single needle-like nanoparticle of polytype I with char-
acteristic size 6 nm × 2 nm × 100 nm in a, b, c directions, respectively.

TABLE 1. Lattice parameters of NH4V3O7 compound concerning to experimental
X-ray diffraction data in the recent work and in the work [15] versus the data for
two polytypes from DFT calculations.

NH4V3O7 Z a, Å b, Å c, Å β, ◦ V, Å3

exp. [15] 4 12.198 3.753 13.178 100.5 593.1

exp. here 4 12.247 3.423 13.899 89.72 582.3

calc. here polytype I 4 12.211 3.832 12.886 97.8 597.5

calc. here polytype II 4 16.652 3.841 10.204 88.8 652.5

V = 582.3(4) Å3 (Table 1). At pH values > 5.5, the product possesses an admixture of
NH4V4O10 compound (JCPDS 031-0075) and was not considered henceforth.

Our data suggest that the NH4V3O7 compound, as prepared in a recent work, should
have a layered structure composed of (V3O7)-layers with an orientation within (101̄) planes.
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Regretably, further XRD structure refinement of our highly textured NH4V3O7 microparticles
did allow a detailed view of the internal structure of the lattice. The discrepancy between our
data and the previously-obtained data [15] may be attributed either to the poor characterization
of highly textured samples or to the formation of a new polymorph. Hence, the first-principle
calculations were employed to explore both options and to judge the crystal motif of NH4V3O7.

3.4. Possible polytypism of NH4V3O7

Many layered compounds are inclined to a rich polytypism due to unrestrained combina-
tion of layers’ stacking. To explain the discrepancy between the recent data and earlier data [15],
we surmised that another possible crystalline structure, based on the same type of V3O7, layers
may exist. Like the crystal motif suggested by Trombe et al. [15] (hereafter polytype I, Fig.
3a), the hypothetical NH4V3O7 polymorphic modification can be based on the same type of
V3O7 layers, yet, with every second layer shifted on b/2 along [010] direction (polytype II, Fig.
3b). To validate the structure of both polytypes, optimization of their geometry has been carried
out and their relative stability has been analyzed using DFT calculations.

Our DFT results are encouraging, showing that the crystal structure of polytype I has
the lowest total energy and is the most stable. However, the energy of polytype II is only on
0.14 eV/NH4V3O7 higher than that of polytype I. Such a minor energy difference suggests the
existence of at least these two polytypes or even a number of intermediate NH4V3O7 polytypes.
The presence of numerous random dislocations along [010] direction may be not excluded, too.

The accurate first-principle calculations permit crystallographic parameter determination
for both NH4V3O7 polytypes and comparison of them with experimental data (Table 1). Both
experimental datasets do not reproduce the crystallographic properties found for hypothetical
polytype II. Yet, the lattice parameters of the most stable NH4V3O7 polytype I may be reliably
attributed to and can be found in fair agreement with former experimental values of Trombe
et al. [15]. The largest deviation between calculated and these experimental lattice parameters
does not exceed 2%. Thus, our experimental data cannot be seemingly assigned to the most
stable crystalline phase of NH4V3O7.

A more detailed insight into the structure of our highly textured samples can be per-
formed by the comparison of experimental X-ray diffractograms with those simulated using
the geometries resulted from DFT calculations. Again, theoretical diffractogram of polytype II
does not reveal any similarity with the experimental data (Fig. 4). Nonetheless, theoretical
diffractogram of polytype I also showed a remarkable difference. Particularly, it contains very
strong reflexes missing on our experimental diffractogram at angles 2θ = 24◦, 46◦ and, in
general, it has a more fine profile. Such a mismatch is a clear indication of poor crystallinity
for our NH4V3O7 product. We may surmise that the microplatelets, assembling the spherical
particles of our product, should have their own internal organization at the nanoscale; e.g., every
microplatelet could be an aggregate of nanoparticles or could have a nanodomain structure.

In addition, X-ray diffraction spectra of NH4V3O7 samples have been simulated as for
the sets of monodisperse free-standing nanoparticles or nanodomains of polytype I. Routine
fitting has been performed for a wide range of sizes and for several possible morphologies
(compact 0D particles, 2D films, 1D needles). Despite the simplicity of all of these models,
neglecting the lattice strain and possible surface reconstructions, an evident coincidence with our
experimental data has been found for the case of needle-like nanoparticles with characteristic
size 6 nm × 2 nm × ∼100–500 nm along a, b, c directions, respectively (Fig. 3c). Some of the
peaks on the profile of simulated XRD spectrum may be found as slightly shifted to the lower
angles 2θ, since our DFT calculations may overestimate interlayer distances.
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FIG. 4. Comparison between X-ray diffractograms for NH4V3O7 compound as
observed for the samples fabricated in this work and as theoretically predicted
for the monocrystals of two NH4V3O7 polytypic forms (I and II) and for a single
needle-like nanodomain of polytype I with characteristic size of 6 nm × 2 nm ×
∼100 nm along a, b, c directions, respectively.

Thus, DFT calculations suggest that experimental XRD data, as obtained from our
highly textured samples, should be not treated as for the monocrystal. The structural hier-
archy of NH4V3O7 compound can be drastically enriched at the nanolevel. The NH4V3O7

microplatelets may have interim nanodomain structure, as the grains of polytype I and numer-
ous low-energy dislocations, as the grain boundaries. As well, they might be assembled of
free-standing NH4V3O7 nanoneedles. Further investigation by means of high-resolution electron
microscopy could resolve the structural hierarchy of our samples in greater detail.
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3.5. Electronic properties of NH4V3O7

DFT calculations enable us to give prior information about the electronic properties of
NH4V3O7 compound. The electronic density of states calculated for the most stable polytype I
is visualized in Fig. 5. The studied compound, NH4V3O7, should be a magnetic semiconductor
with a band gap of ∼0.83 eV. The bottom of splitted conduction band has a dominant V3d-
character. The top of valence band is also formed by V3d-states with an admixture of O2p-states,
while the remaining wide part of the band at −2 . . .−6 eV is composed predominantly of O2p-
states. The deep and separated valence band at −7 . . .−9 eV is formed by the mixture of N2p
and H1s states.

FIG. 5. Total and partial densities-of-states (DOS) for two polytypic NH4V3O7

phases. DFT calculations.

Analysis of the Mulliken charge distribution indicates that two groups of V atoms can
be distinguished, with the charges +1.11 and +1.14 respectively. These groups differ in the
environment of their second coordination shell. The first group of four V atoms is placed within
the middle of a V3O7 sextuple ribbon as VO6 octahedra with shared edges. The second group
of two V atoms is placed at the edges of this ribbon as VO6 octahedra sharing their vertices
with equivalent VO6 octahedra of the neighboring ribbon. The coordination polyhedra of the
latter group have a heavily distorted geometry, with one of V–O distances at 2.44 Å, the largest
of the group. The spin-polarization calculations indicate a magnetization of the compound
with the spin density redistribution at the V atoms. The estimated magnetic moments within
aforementioned groups of V atoms were found to be 2.40 and 1.73 µB.
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The charge distribution among the O atoms is wider, yet, a few groups of atoms can
be distinguished, depending mainly on the coordination number: −0.42, −0.49 . . .−0.60 and
−0.54 . . .−0.66 for O atoms within vanadyl groups, for bridging double and for triple coordi-
nated O atoms, respectively. The charges on every N and every H atom are equal to −0.68 and
+0.28, respectively, which amounts to the total formal charge of NH+

4 cation as equal to +0.44.
The results of DFT calculations for polytype II show that the overall qualitative picture

of the density of states is preserved (Fig. 5). Both considered NH4V3O7 polytypes should
be magnetic semiconductors. In general, the charge distribution and the DOS picture of both
polytypes explicitly correspond to the formation of covalent V–O and N–H bonding within
anionic V3O7 framework and ammonium NH4 cations. The relative position of dominating
V3d–O2p and N2p–H1s overlaps in the valence band gives evidence for a highly versatile
V3O7 network for redox reactions as well as a low ability of NH4 cations for reduction, e.g.
using alkali metal atoms.

4. Summary

In summary, a facile chimie douce route was evaluated to produce highly textured prod-
uct of pure ammonium trivanadate NH4V3O7 from the corresponding metavanadate NH4VO3

as precursor and citric acid C6H8O7 as a mild reductant. The intricate structure of the prod-
uct was characterized by the combination of experimental SEM, XRD and computational DFT
techniques, which uncover a complex structural hierarchy of synthesized NH4V3O7.

SEM data has revealed the microstructure as an aggregation of spherical-like particles
with the diameters of ∼30 µm, assembled of stochastically oriented nanoplatelets with thick-
nesses of 50 – 200 nm and edge lengths up to 2 µm. Yet, the values of the lattice parameters
derived using recent XRD data and upon assumption of crystalline NH4V3O7 were found to
be quite different from previous experimental and recent DFT data. Assuming a domain-like
organization of synthesized NH4V3O7, X-ray diffractograms have been routinely simulated for
a wide range of the size and for several possible domain morphologies. Indeed, it suggests even
a more deep organization of NH4V3O7 microparticles at the nanoscopic level. Most likely, the
lattice of NH4V3O7 studied in this work tends towards the formation of low-energy dislocations
or twinning along [010] direction, which is a prerequisite for the emergence of needle-like
nanodomains or a very rich polytypism.

A further study of NH4V3O7 by means of high-resolution electron microscopy could
prove the structural hierarchy in more detail. Though, relying on DFT calculations, we predict
that the electronic and chemical properties of layered NH4V3O7 would be not altered, even
by possible domain-like organization. Two most prominent NH4V3O7 polytypes should be
magnetic semiconductors with band gaps of ∼0.8 eV. Irrespective of their lattice arrangement,
the anionic V3O7 framework should be highly versatile in redox reactions, while NH+

4 cations
should demonstrate a low ability for reduction, e.g. with alkali metal atoms.
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1. Introduction

The oxidation of iron(II) salt solutions and (or) iron(II) hydroxide suspensions leads
to the formation of poorly soluble nanodisperse iron(III) compounds exhibiting peculiar and
in some cases unique ion-exchange, sorption, magnetic, catalytic and other properties [1–5],
attracting much interest of specialists in many different fields. It is established [2, 3, 5–12]
that the phase and disperse compositions of these compounds depend on numerous synthetic
parameters: the temperature and pH of the reaction medium, concentration of iron(II) ions in
solution and of Fe(OH)2 in suspension, the nature of salt anion and alkaline agent cation, the
presence of uncontrolled or specially introduced impurities in the solution, as well as the feed
rate and activity of oxidizing agent. Until now, the question as to which parameters have a
determining influence on the phase and disperse compositions of the formed iron(III) compounds
remains a point for debate, which restrains the introduction of advanced technologies for the
reproducible preparation of products with optimal functional properties.

The aim of this work is to obtain more accurate information about the regularities
of phase formation during the oxidation of aqueous solutions of FeSO4 and (or) suspensions
of Fe(OH)2 at quasi-constant values of temperature, total iron(II) concentration in solution
(suspension), of reaction medium and average oxidation rate in case the solid solutions K and
H2O2 are used as alkaline and oxidizing agents, respectively (hereafter the system FeSO4 –
H2O – KOH – H2O2).
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2. Experimental

The following reagents were used for synthesis: 1.1 M solution of FeSO4 in distilled
water, which was preliminarily reduced by iron powder; 3.8 M KOH and 0.9 M H2O2 solutions
in distilled water. All the reagents were chemically pure. Oxidation was carried out in a 0.5 dm3

cylindrical reactor furnished with a mixer, electric heating, thermostating, continuous KOH and
H2O2 solutions dosing and measuring systems.

In all the experiments, the average oxidation rate of iron(II) ions, 15 ± 1 mmol/(dm3·min),
and the total concentration of Fe(II) and Fe(III) in oxidized suspension, 0.51 ± 0.02 mol/dm3,
were maintained constant, while the temperature t and pH were varied. The experiments were
performed in the following sequence: the calculated amount of FeSO4 solution was poured into
the reactor and heated to preset temperature t (20, 40, 60 or 85 ◦C); the required pH value
of the reaction medium1 (4.0; 5.5; 6.5; 8.5; 10.5 or 13.0) was achieved by feeding the KOH
solution. After that, the H2O2 solution was added at a constant rate into the reactor, and in the
interval 4.0 ≤ < 9.0 the KOH solution was also added to maintain a quasi-constant pH value
(± 0.25). Note that over time, the temperature of the reaction medium gradually increased by
∆t ≈ 5 ◦C2 in all the experiments. At the conclusion of oxidation, the precipitate was separated
from the mother solution on a Buchner funnel and washed with water until the filtrate contained
no sulfate ions; then, it was dried until constant mass at ∼ 50 ◦C and ground.

The obtained samples were examined by X-ray phase analysis (XPA; DRON-3 X-ray unit
with digital data recording attachment; filtered CKα radiation; the powder diffraction electronic
database ICSD was used). The average size of the precipitate crystals, d, was calculated by
the Debye formula from the physical broadening of reflections3. The samples obtained at fixed
values of t = 40 ◦C (4.0 ≤ pH ≤ 13.0) and pH = 6.5 (20 ◦C ≤ t ≤ 85 ◦C) were also studied
on a scanning electron microscope JEOL JSM-7001F with an energy-dispersion spectrometer
Oxford INCA X-max 80 to determine their elemental (X-ray fluorescence spectral analysis –
XSA; random error below 5 %) and disperse compositions (scanning electron microscopy –
SEM), as well as by thermogravimetric and thermal analysis methods (synchronous analyzer
Netzsch STA 449C Jupiter combined with a mass spectrometer Netzsch QMS 403C Aeolos;
the thermograms were recorded over 20 – 900 ◦C at a heating rate of 10 K/min in air flow
of 20 ml/min) and IR spectroscopy (Fourier IR spectrometer Bruker Tensor-27; transmission
survey in the 400 – 4000 cm−1 range in a KBr matrix).

3. Results and discussion

When H2O2 is fed into the reactor, a yellow precipitate is formed (experiments at
pH = 4.0) or the Fe(OH)2 suspension changes its color (pH ≥ 5.5). We note a typical dark-
green color of the intermediate samples for suspensions produced at pH 5.5 – 8.5, which
changes to yellow, orange or brown at the end of oxidation, depending on the temperature and
pH. According to [2, 8], in this pH interval corresponding to partial precipitation of iron(II)
ions from the solution, an intermediate compound is formed during oxidation, which is known
in the literature as “green rust II”. It is this compound which determines the suspension’s color.

The XPA data show that the following nanodisperse phases can be formed in the exam-
ined system depending on temperature and pH: iron(III) oxyhydroxides of α, γ and δ modifi-
cations and iron(III) oxide γ-Fe2O3. The phase and disperse compositions of the precipitates,

1The time required to attain a preset pH value was less than 3 min.
2Hereafter the value of initial temperature t is indicated.
3Non-overlapping reflections of phases with crystallographic indices (hkl): α -FeOOH – (110); γ -FeOOH –

(120); δ -FeOOH – (101); γ-Fe2O3 – (220) were chosen as analytical reflections.
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TABLE 1. Phase composition and grain dimension of precipitates as a function
of temperature and pH in the system FeSO4 – H2O – KOH – H2O2

pH Temperature t, ◦C
20 40 60 85

4.0
α(100)

9
α(100)

12
α(100)

19
α(100)

40

5.5
α(40) + γ(60)

8 7
α(80) + γ(20)

12 9
α(95) + γ(5)
18 12

α(5) + γ*(95)
– 23

6.5
α(50) + γ(50)

8 7
α(100)

10
α(40) + γ*(60)

12 20
γ*(100)

27

8.5
α(80) + γ(20)

9 10
γ*(100)

20
γ*(100)

23
γ*(100)

30

10.5
α(10) + γ*(90)

10 20
γ*(100)

23
γ*(100)

25
γ*(100)

40

13.0
δ(100)

8
α(40) + δ(60)

10 10
α(40) +δ(60)
15 16

α(45) +γ*(45) + δ(10)
15 50 –

1. α – phase α-FeOOH; γ – phaseγ-FeOOH; δ – phase δ-FeOOH;
γ* – phase γ-Fe2O3.

2. In the parentheses are depicted mass % of the phase, the numbers
under the parentheses mean crystal size, calculated from the X-ray
diffraction data, nm.

as functions of oxidation parameters, are presented in Table 1 and Fig. 1, in which the regions
of formation of these phases are demonstrated in temperature – coordinates. From Fig. 1, it
follows that α-FeOOH is formed over the whole considered pH interval; γ-FeOOH – at 5.5 ≤
pH < 9.0; δ-FeOOH – at pH ≥ 10.5; and γ-Fe2O3 – at 5.5 – 13.0. When the temperature is
raised, the pH range in which these phases are formed expand for γ-Fe2O3 and α-FeOOH and
narrow for γ- and δ-FeOOH. With increased temperature, the reflection half-width ∆2Θ of the
corresponding phases decreases, which is indicative of an increase in the average size d of their
crystals (Fig. 2).

It follows from the SEM results that each of the synthesized phases has a characteristic
crystal morphology, the average size of which depends on the oxidation parameters. In partic-
ular, the γ-Fe2O3 and δ-FeOOH phases have an isometric (nearly-spherical) crystal shape. The
α- and γ-FeOOH crystals are characterized respectively by needle- and plate-like growth forms.
Note that the average crystal size determined from the SEM data agrees reasonably well with
X-ray analysis data.

The XSA data show that all the synthesized samples consist mainly of iron and oxygen4,
however, they also contain much smaller amounts of potassium and sulfur atoms. The relative
contents of Fe/O and S/O in the most typical samples are given in Table 1.

The data for the phase and chemical compositions of the samples are confirmed by the
results of IR spectroscopic and thermogravimetric studies. In particular, the IR spectrum of
sample 1 (α-FeOOH), which is monophase according to XPA data, contains (Fig. 3, curve a):
narrow absorption bands of Fe–O bonds with wave numbers ν 407, 462 and 631 cm−1; vibra-
tions of groups (797 and 893 1787 cm−1); deformation vibrations of H2O (1645 cm−1), as well

4The employed XSA method allows determining the elements with atomic number z ≥ 5. Therefore it should
be assumed that along with the above mentioned elements, the examined samples contain also hydrogen.
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FIG. 1. The phase composition of the precipitate obtained in the system FeSO4 –
H2O – KOH – H2O2 as a function of temperature and pH. Designations of phases
contained in the precipitate: 1 – α-FeOOH; 2 – γ-FeOOH; 3 – γ-Fe2O3; 4 – δ-
FeOOH. Phase formation regions: I – α-FeOOH; II – γ-FeOOH; III – γ-Fe2O3;
IV – δ-FeOOH.

FIG. 2. The average crystal size d (nm) of phases formed in the system FeSO4 –
KOH – H2O – H2O2 at a fixed pH value as a function of temperature (t, ◦C):
α-FeOOH (pH – 4.0); γ-FeOOH (pH – 5.5); δ-FeOOH (pH – 13.0); γ-Fe2O3 (pH
– 10.5).

as a wide absorption band with a maximum at 3158 stretching vibrations of H–O bonds [13].
Additionally, the spectrum of this sample contains weaker absorption bands with ν 1053, 1137
and 1160 cm−1, which can be attributed to the stretching vibrations of (SO4)2− ions [14].

The IR spectra of the binary mixture samples α- + γ-FeOOH and α- + δ-FeOOH
(samples 2 and 4, respectively), along with the absorption bands typical of α-FeOOH, also
contain additional absorption bands (Fig. 3, curves b and c) with wave numbers 1022 cm−1

(sample 2) and 1050, 1530 cm−1 (sample 4). These bands should be attributed to vibrations of
groups in γ- and δ-FeOOH, respectively [15].
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FIG. 3. The IR spectra of samples: – α-FeOOH; b – α- +γ-FeOOH; c – α-
+δ-FeOOH; d – γ-Fe2O3.

The IR spectra of monophase samples of γ-Fe2O3 (Fig. 3, curve d) contain absorption
bands of Fe–O bonds with wave numbers 447, 581, 626 cm−1, typical of Fe2O3 [16], deforma-
tion vibrations of H2O (1625 cm−1), a broad absorption band with a maximum at 3441 stretching
vibrations of H–O bonds and weak absorption bands of stretching vibrations of (SO4)2− ions.

The thermograms for FeOOH samples are similar in many ways, therefore it is con-
venient to consider them on the example of thermal transformations of monophase α-FeOOH
(sample 1). According to the TG data (Fig. 4), the relative mass variation in the interval 20 –
900 ◦C, ∆m20−900/m0, for this sample is 16.49 %. On the differential thermal analysis (DTA)
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curves, there are three endothermic effects with maxima at 80, 270 and 750 ◦C which are ac-
companied by reduction in mass. Mass-spectrometry studies of the gaseous phase composition
revealed (Fig. 4) that the first and the second endothermic effects are due to dehydration and
the third effect is caused by the decomposition of sulfate ions. According to the XPA data,
at temperatures above 300 ◦C the α-FeOOH sample undergoes a transformation into α-Fe2O3.
From comparison of the obtained findings with the literature data [3, 17], it can be concluded
that physically adsorbed water and water of hydration (OH groups) are removed from the sam-
ple during the first and second endothermic effects, respectively. Then, the empirical structural
formula FeOOH can be represented as FeOOH(H2O)n(SO3)y and the thermal transformation of
α-FeOOH during heatingt occurs as follows:

α-FeOOH(H2O)n(SO3)y
20−180 ◦C−−−−−−→ α-FeOOH(SO3)y

180−320◦C−−−−−−→
180−320◦C−−−−−−→ α-Fe2O3(SO3)y

>620◦−−−→ α-Fe2O3, (1)
where n and y is the content of adsorbed water and (SO4)2− ions in the sample expressed in
terms of FeO.

FIG. 4. The data of thermal (TG curve – heavy line, DTA curve – thin line) and
mass spectrometric (H2O, SO2 curves – dash lines) analysis of α-FeOOH sample

From the TG data on mass variation for FeOOH samples (No. 1–4) at each stage of
thermal transformation (Table 2), we calculated the values of n and y and, with allowance
for the structural formula, the ratios Fe/O and S/O in the initial samples (Table 2). From
Table 2, it follows that the data on the chemical composition of FeOOH samples obtained by
two independent methods (XSA and TG) coincide within experiment error.
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TABLE 2. Phase and chemical composition of the samples

Conditions
of synthesis

Chemical composition

No. pH
t,
◦C

Phase
composition

Method PCA Method TG

Fe/O,
r.u.

S/O,
r.u.

∆m1/m0
a,

r.u.
∆m2/m0

b,
r.u.

∆m3/m0
c,

r.u.
n,
r.u.

m,
r.u.

y,
r.u.

Fe/O d,
r.u.

S/O,
r.u.

1 6.5 40 α-FeOOHe 0.47 0.008 0.0474 0.1011 0.0164 0.25 – 0.020 0.49 0.009
2 5.5 40 α- + γ-FeOOH 0.47 0.010 0.0444 0.1012 0.0204 0.26 – 0.024 0.48 0.010
3 6.5 20 α- + γ-FeOOH 0.46 0.014 0.0738 0.1011 0.0297 0.24 – 0.038 0.47 0.015
4 13.0 40 α- + δ-FeOOH 0.52 0.001 0.0407 0.1011 – 0.21 – < 0.001 0.50 –
5 6.5 85 γ-Fe2O3

f 0.57 0.004 0.021 0.0168 0.0042 0.195 0.156 0.009 0.63 0.003
6 10.5 40 γ-Fe2O3 0.50 0.002 0.0194 0.0155 0.0021 0.179 0.143 0.0044 0.63 0.0015

a) ∆m1/m0 – relative mass loss of the sample at the temperature(20 – 180 ◦C, 1st end of thermic effect);
b) ∆m2/m0 – relative mass loss of the sample at the temperature (200 – 500 ◦C, 2nd end of thermic effect);
c) ∆m3/m0 – relative mass loss of the sample at the temperature 500 – 900◦C;
d) we didn’t tack into consideration amount of oxygen, participated in the samples in the form of

adsorbed water due to total desorption of this form of water molecules in the high vacuum chamber
of the PCA analytical installation used.

e) empirical formula of the α-, γ-, δ-FeOOH contained samples is FeOOH·nH2O·SO3.
f) empirical formula of the Fe2O3 contained samples is Fe2O3·(n + m)H2O·ySO.
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The DTA curves of monophase samples of γ-Fe2O3 (Fig. 5) have two endothermic
effects with maxima at 80 and 260 ◦C which are due to removal of physically adsorbed water
and water of hydration and are accompanied by mass loss. Also present is a pronounced
exothermic effect at 560 ◦C, occurring without any noticeable variation in the sample mass (the
mass reduction from 500 – 900 ◦C is ∼ 0.2 %). The XPA data show that the exothermic effect
is brought about by the phase transition of γ-Fe2O3 into α-Fe2O3. Assuming that the variation
of the mass for the Fe2O3 samples at temperatures above 500 ◦C, as in the case of FeOOH,
is caused by the process of desulfation, the structural formula of Fe2O3 can be represented
as Fe2O3(H2O)n(SO3)y and its thermal transformation during heating occurs in the following
manner:

γ-Fe2O3(H2O)(n + m)(SO3)y
20−180◦C−−−−−−→ γ-Fe2O3(H2O)m(SO3)y

180−500◦C−−−−−−→
180−500◦C−−−−−−→ γ-Fe2O3(SO3)y

500−900◦C−−−−−−→ α-Fe2O3,
(2)

where n, m and y are the contents of adsorbed water and water of hydration and (SO4)2− ions
in the sample expressed in terms of Fe2O3.

FIG. 5. The data of thermal (TG curve – heavy line, DTA curve – thin line) and
mass spectrometric (H2O curve – dash line) analysis of γ-Fe2O3 sample

As in the case of thermal transformations of FeOOH, values for m, n and y were
calculated from the TG data, and the ratios Fe/O and S/O in the initial samples were determined
taking into account the structural formula (Table 2). From Table 2, it follows that the XSA
method gives a slightly underestimated Fe/O ratio in the γ-Fe2O3 samples as compared to TG
analysis.



Nanodisperse oxide compounds of iron . . . 601

The established dependence of the phase and disperse compositions of the precipitates
formed in the FeSO4 – H2O – KOH – H2O2 system on the oxidation parameters agrees on the
whole with the results obtained from the examination of analogous systems [2, 3, 6–12] and
provides evidence that crystal growth during the oxidation of aqueous solutions of iron(II) salts
and (or) suspensions of iron(II) hydroxide, especially at low temperatures, takes place under
conditions of high supersaturation. As a result, the average size of crystals decreases, their
imperfections increase, and phases with disordered crystal structure are formed, in particular,
δ-FeOOH. At the same time, it should be noted that our data for γ-Fe2O3 phase formation
do not agree with previous results [7, 18] for the formation of the Fe3O4 phase during the
oxidation of Fe(OH)2 suspensions by atmospheric air under analogous conditions (pH ≈ 9).
This contradiction is eliminated if we assume that in our experiments the application of a more
active oxidizer (H2O2) originally leads to the formation of the Fe3O4 phase in a nanodisperse
state, which is subsequently oxidized by hydrogen peroxide to γ-Fe2O3 by a topotactical solid-
state reaction mechanism. The possibility of Fe3O4 → γ-Fe2O3 transformation occurring in
oxygen-containing aqueous media has been reported previously [3, 19].

The synthetic conditions for oxyhydroxide phases in the examined system are character-
ized by high supersaturaion and lead to the formation of nanodisperse primary particles, which,
owing to developed specific surface area, are apt to form compact aggregates, whose average
size (D) increases as d decreases [3]. In this connection, it is interesting to consider the em-
pirical dependence between the size of primary crystals of new phases and the temperature of
synthesis in the framework of the familiar nucleation model [20]. From this dependence, it
follows that the relation between the average size of primary crystals d (nm) of phases formed
in the FeSO4 – KOH – H2O – H2O2 system at a fixed value and temperature (Fig. 2 and
Table 1) obeys the Kelvin equation:

RT ln(a/a0) = 4γV /d, (3)
in which the average size of primary crystals (d) correlates with their relative solubility; a, a0
is the solubility of crystals of size d under synthetic conditions and of crystals with infinitely
large size under equilibrium conditions; γ, V is the interfacial tension determining the solubility
and molar volume of crystal; R is the universal gaseous constant; and T is the temperature
of formation for crystals of a given size [20]. Then, we transform equation (3) to a form
convenient for the analysis of experimental dependences (4) by the least square method:

1/d = b[0] + b[1]T, (4)

where b[0] is the empirical constant and b[1] = R ln(a/a0)/4γV . It is seen that all the empirical
data on the sizes of primary crystals and the synthesis temperature for the FeSO4 – KOH – H2O –
H2O2 system obey equation (4). In Fig. 6, these experimental dependences are represented in
the coordinates of equation (4) and are characterized by the correlation coefficient in the range
(0.94 – 0.99) and by the Fisher F-criterion parameter for the nucleation model (50 – 120).
A peculiar feature of Fig. 6 is a negative value for the parameter b[1] in eq. (4). This
may imply that ln(a/a0) < 0 or the relative solubility of primary crystals during synthesis is
(a/a0) < 1. This dependence contradicts the model of critical nucleus formation both during
the condensation of liquid drops from vapor and during primary particle crystallization from
aqueous solutions of electrolytes [20] and can be explained by the fact that the majority of
primary particles inside the compact aggregates are isolated from the mother solution and do
not affect the value of a0, while the contribution to the solubility of new phase is made mainly
by the small crystals located on the surface of aggregates. Indeed, from Fig. 7, it is seen that the
growth of primary crystal sizes and consequently the reduction of the average aggregate size D
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results in the disappearance of anomalous relative solubility when the particle size approaches
25 – 35 nm, whereas further increase in the primary particle sizes with the growth of d may
lead to a traditional character of temperature dependence for therelative solubility, (a/a0) > 1.

FIG. 6. The average crystal size d (nm) of phases formed in the system FeSO4 –
KOH – H2O – H2O2 at a fixed pH value as a function of temperature represented
in the coordinates of equation (4). Inset: the synthesis pH values are designated
by figures.

In conclusion, let us consider the nature of the water of hdration in γ-Fe2O3. According
to [9, 19, 21], the nanodisperse samples of γ-Fe2O3, as distinct from coarse crystalline ones,
have a spinel-type defect structure and regular defects in the cationic sublattice. The structural
formula of nanodisperse γ-Fe2O3 is Fe8�2.67Fe13.33O32, where � is a vacancy in the octahedral
cationic positions. In the topochemical oxidation reaction, water molecules of the solution can
occupy the vacant positions, forming hydrogen bonds with oxygen anions and thereby stabilize
the γ-Fe2O3 lattice. This explains the higher temperatures for removing the water of hydration
on the thermograms of γ-Fe2O3 (above 200 ◦C) as compared to adsorbed water.

4. Conclusion

For wide temperature (20 – 85 ◦C) and (4.0 – 13.0) intervals of the reaction medium,
we have established the regularities for the formation of nanodisperse iron(III) oxide compounds
during the oxidation of aqueous FeSO4 solutions and (or) Fe(OH)2 suspensions by hydrogen
peroxide under quasi-stationary conditions with the use of KOH as an alkaline agent. The
dependences of the phase, chemical and disperse compositions of the resulting products upon
the synthetic conditions have been determined.
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FIG. 7. The variation of the inclination angle b[1] in the empirical equation (4)
as a function of the minimal size of primary crystals registered in each series of
experiments at constant pH in the system FeSO4 – KOH – H2O – H2O2. The
line in the Figure exhibits a tendency towards b[1] variation with the growth of
the size of primary particles.
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