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A system of parallel chain-type macromolecules (linear polymers) is considered. The spectrum of an electron

in such a system is described. Waveguide bands are shown to be present, ensuring conductivity. Considera-

tion is undertaken within the framework of a zero-range potentials model based on the theory of self-adjoint

extensions of symmetric operators. Possible applications also discussed.
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1. Introduction

This paper deals with the theoretical investigation of a nanosystem which can be
used for the creation of optically controlled magnetoresistance. The possibilities for this
type of control were outlined in [1]. Layered structures having magnetic layers and a spacer
filled with conducting polymer (linear molecules) with inserted banana-shaped photosen-
sitive molecules were suggested to be used for this purpose. Linear polymeric molecules
should ensure electronic conductivity between the magnetic layers. In the present paper, we
investigate the electronic band structure for a system of linear molecules.

Consider an infinite periodic chain of impurity atoms placed along some line (let it be
the axis OX) between two nanolayers (magnetic). We use the effective mass approximation,
i.e. we take into account the influence of the nanolayers by changing the effective mass
of the electron in the spacer (see, e.g., [2]). In chosen coordinate system, the position of
n−th atom of the chain (n = 0,±1,±2, . . .) is given by a vector na = (na, 0, 0) , where
a is the chain period. A simple but less accurate quantum graph model of such systems
(see, e.g., [3, 4]) is used more often. To compute the energy spectrum of the chain, we
use the zero-range potentials model. We mention that the spectrum for chain structures
in R3 can be rather unusual (see, e.g., [5]), but in our periodic case it has a defined band
structure. As for zero-range potentials, the background for the model is formed by the theory
of self-adjoint extensions of symmetric operators (see, e.g., [6, 7]). Namely, one starts from
a self-adjoint operator – the Laplacian in L2(R3) with the domain W 2

2 (R3). Here W 2
2 is the

Sobolev space. Let us restrict the operator to the set of smooth functions which vanish at
points pn = |r− na| ; n = 0,±1, . . .. The closure of this restricted operator is a symmetric
operator with infinite deficiency indices. To construct a self-adjoint extension, it is more
convenient to deal with the corresponding restriction of the adjoint operator. There are
several ways to describe extensions, e.g., boundary triplets method ( [8, 9], von Neumann
formulas ( [10]), Krein resolvent formula ( [11,12]). We will use here a variant of the second
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approach which allows one, in the case of semi-boundedness of the Hamiltonian, to present
an element from the domain of the adjoint operator in the following form:

ψ(r) = ψ0(x) +
∞∑

m=−∞

Cm ·
e−ik0|r−ma|

4π |r−ma|
, (1)

where ψ0 belongs to the domain of the Friedrichs extension of the initial symmetric operator,
Cm is some constant, k0 =

√
λ0, λ0 is a regular value of the spectral parameter (particularly,

one can choose real negative value of λ0, =k0 > 0). To explain the choice of extension, it is
convenient to consider the simplest case of a single point-like potential (at r = 0). In this
case, one has the symmetric operator with the deficiency indices (1, 1). The domain of the
adjoint operator (A∗) consists of the following elements (compare with (1)):

ψ(r) = ψ0(x) + C0
e−ik0|r|

4π |r|
.

To construct a self-adjoint extension, one calculates the boundary form for elements ψ, φ
from the domain of the adjoint operator:

(A∗ψ, φ)− (ψ,A∗φ) = ψ0(0)Cφ
0 − φ0(0)Cψ

0 .

Evidently, one gets a self-adjoint extension (annihilation of this form) if there is the following

relation between ψ0(0) and Cφ
0 :

ψ0(0) = b Cψ
0 ,=b = 0. (2)

Formally, the condition (2) takes the form of a ”boundary condition” at the point:

lim
|r|→0

[
∂

∂ |r|
− b
]
|r|Ψ = 0. (3)

One often rewrites condition (3) as a condition for the logarithmic derivative:

lim
|r|→0

1

|r|Ψ
∂

∂ |r|
(|r|Ψ) = b. (4)

For the case of the periodic chain, one has:

lim
pn→0

[
∂

∂pn
− b
]
pnΨ = 0, (5)

pn = |r− na| ; n = 0,±1, . . .

Below we will use this form of the condition.

2. Two chains

Consider the spectral problem for two parallel chains of zero-range potentials in R3.
We assume that centers of the chains are shifted by vector g = (g1, g2, 0). The first chain
has centers at points na = nae1, the second chain - at points na + g = (na+ g1) e1 + g2e2;
n = 0,±1,±2, . . . ; e1, e2 are unit vectors of axis X and axis Y , correspondingly. The Green
function for the operator with point-like potentials has the form:

G (r, r′, E) =
1

4π

exp [is |r− r′|]
|r− r′|

+

+∞∑
n=−∞

{
C(1)
n

exp [is |r− na|]
|r− na|

+ C(2)
n

exp [is |r− na− g|]
|r− na− g|

}
.
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Coefficients C
(1)
n , C

(2)
n are determined for the system given by conditions (5), which gives

one the following system after the Fourier transform:

D (k, s) ξ
(1)
k +Q (k, s) ξ

(2)
k = ϕk (r′)

Q (k, s)ξ
(1)
k +D (k, s) ξ

(2)
k = ϕk (r′)

where
ξ

(j)
k =

∑
n

C(j)
n eikna; j = 1, 2,

ϕk (r) = − 1

4π

∑
n

exp [is |r− na|+ ikna]

|r− na|

D (k, s) =
∑
n 6=0

exp[is|n|a+ikna]
|n|a + is− b

Q (k, s) =
∑
n

exp[is|n−→a −g|+ikna]
|na−g|

Hence,

ξ
(1)
k = 1

2

{
ϕk(r′)+χϕk(r′−g)
D(k,s)+|Q(k,s)| + ϕk(r′)−χϕk(r′−g)

D(k,s)−|Q(k,s)|

}
ξ

(2)
k = χ

2

{
ϕk(r′)+χϕk(r′−g)
D(k,s)+|Q(k,s)| −

ϕk(r′)−χϕk(r′−g)
D(k,s)−|Q(k,s)|

}
where

χ = χ (k, s) =
Q (k, s)

|Q (k, s)|
Returning from ξ

(i)
k to coefficients C

(i)
n using formulas:

C(i)
n =

a

2π

+π/a∫
−π/a

ξ
(i)
k e
−iknadk,

one obtains the following expression for the Green function:

G (r, r′, E) = G0 (r− r′, E)− a
+π/a∫
−π/a

dk
∑
n,n′

exp [−ik (n− n′) a]

D (k, s) + |Q (k, s)|
×

× [G0 (r− na, E) + χG0 (r− na− g, E)] [G0 (na− r′, E) + χG0 (na + g − r′, E)]

−a
+π/a∫
−π/a

dk
∑
n,n′

exp [−ik (n− n′) a]

D (k, s)− |Q (k, s)|
×

× [G0 (r− na, E)− χG0 (r− na− g, E)] [G0 (na− r′, E)− χG0 (na + g − r′, E)] (6)

where

G0 (r, E) =
eisr

4πr
Expression (6) shows that two localized waveguide bands can appear near the chains. The
dispersion law for one band is determined by roots of D (k, s) + |Q (k, s)| of the second band
- by D (k, s)− |Q (k, s)|. The corresponding wave functions have the forms:

ϕ± (k, r) =[
d

dE
(D (k, s)± |Q (k, s)|)

]−1/2

E=ε±(k)
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n

exp (−ikna) [G0 (r− na, E)± χG0 (r− na− g, E)]E=ε±(k)

where ε± (k) is determined from the equations:

D

(
k,

√
2µE±
h2

)
±

∣∣∣∣∣Q
(
k,

√
2µE±
h2

)∣∣∣∣∣ = 0 (7)

Consider the particular case for which the distance between the chains g2 is greater than the
distance between neighboring centers of one chain. Let us find the approximate expression
for function Q (k, s) if s = iχ, χ is real. Using the formula:

e−χ∆

∆
=

1

π

+∞∫
−∞

eip∆dp

p2 + ∆2
,

one transforms the expression for Q (k, iχ) to the following form:

Q (k, iχ) =
1

π

+∞∑
n=−∞

eikna
+∞∫
−∞

eiξχdξ

ξ2 + (na− g1)2 + g2
2

=

1

π

+∞∫
−∞

eiξχ

(
+∞∑

n=−∞

eikna

ξ2 + (na− g1)2 + g2
2

)
dξ

If 0 6 ka < π then:
+∞∑

n=−∞

eikna

α2 + (na− β)2 =

− π

2aα

{[
cth
[π
a

(β − iα)
]
− i
]

exp [ik (β + iα)]−
[
cth
[π
a

(β − iα)
]
− i
]

exp [ik (β − iα)]
}

for α > 0. However, for α→ 0:
+∞∑

n=−∞

eikna

α2 + (na− β)2 '

π exp (ikβ)

aα

[
exp (−kα)− exp (kα) exp

[
−2π

a
(α + β)

]]
.

for α→ 0.
Hence,

Q (k, iχ) ≈ eikg1

a

+∞∫
−∞

eiξχ√
ξ2 + g2

2

[
e−k
√
ξ2+g22 − e−2πg1/ae(k−2π/a)

√
ξ2+g21

]
dξ =

=
eikg1

a

+∞∫
−∞

eiηχg2√
1 + η2

[
e−kg2

√
1+η2 − e−2πg1/ae(k−2π/a)g2

√
1+η2

]
dη (8)

The last integral in (8) can be transformed to the integral over the curve which
comprises the half-axis (i, i∞) in upper half-plane. Thus,

Q (k, iχ) ≈ 2eikg1

a

∞∫
1

e−θχg2√
θ2 − 1

[
cos (kg2)

√
θ2 − 1− e−2πg1/a cos

((
2π

a
− k
)
g2

√
θ2 − 1

)
≈
]
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≈
√

2π

g2

eikg1−kg2

a


√
χ+

√
χ2 + 2k2√

χ2 + 2k2
− ei2πg1/a

√
χ+

√
χ2 + 2 (2π/a− k)2√

χ2 + 2 (2π/a− k)2

 (9)

Substituting (9) into (7) one determines the value of the waveguide band splitting
caused by the existence of the second chain. Taking into account the smallness of |Q (, iχ)|
for sufficiently remote chains, one finds that the level ε0 (k) of single chain is split in the
following manner:

ε± (k) = ε0 (k)±
hd
√

2 |ε0 (k)|
√
µ
√

(d+ cos (ka))2 − 1

∣∣∣∣Q(k, ih√2µ |ε0 (k)|
)∣∣∣∣

A gap in the waveguide band can appear if the top of the band ε− (k), i.e. ε− (π/a) is greater
than the bottom ε+ (0) of the band ε+ (k), i.e. if ε− (π/a) < ε+ (0) .

3. The case of many chains

We now consider the system of M − 1 (M = 2, 3, ...) parallel identical chains. Let
the position of centers be given by vectors na1 + ma2, n,m− integer. In the framework of
the zero-range potential approach, the wave function of the electron is Ψ (r):

lim
pnm→0

[
∂

∂pnm
− b
]
pnmΨ = 0, (10)

where pnm = |r− na1 −ma2|. We will seek the perturbed Green function G (r, r′, E) for
=E > 0 in the following form:

G (r, r′, E) = G0 (r− r′, E) + 4π
∑
n,m

CnmG0 (r− na1 −ma2, E) ,

where G0(r, E) is the Green function for free space. Conditions (10) gives one a system for
coefficients Cnm:

(is− b)Cnm +
∑

n′ 6=n,m′ 6=m

Cn′m′
exp [is |(n− n′) a1 + (m−m′)−→a2 |]
|(n− n′) a1 + (m−m′) a2|

= ϕnm (r′) ,

where

ϕnm (r′) = − 1

4π

exp [is |r′ − na1 −ma2|]
|r′ − na1 −ma2|

.

The prime sign near the sum means that it is sufficient to satisfy only one from the conditions
n′ 6= n or m 6= m′. ,,To simplify formulas for Cnm, we assume that |Cn,m±p| � |Cn,m±1| for
p > 1. Then, after the Fourier transform along the chain, one obtains:

D (k, s) ξm (k) +D1 (k, s) [ξm+1 (k) + ξm−1 (k)] = ηm (k, r′) , (11)

where
ξm (k) =

∑
n

Cnm exp (ikna) ,

D (k, s) =
1

a
ln

d

cos (a1s)− cos (a2k)
,

D1 (k, s) =
+∞∑

n=−∞

exp [is |na1 + a2|+ ikna1]

|na1 + a2|
, (12)
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ηm (k, r′) = − 1

4π

∑
n

ϕnm (r′) exp (ikna) .

The dispersion equation is obtained from the solvability condition for the following
homogeneous difference equation:

Dξm +D1 (ξm+1 + ξm−1) = 0. (13)

The solution of (13) has the form:

ξm (k) = Ξ1 (k) cos (k2ma2) + Ξ2 (k) sin (k2ma2) .

The range for k2 and value of Ξ1 (for M − 1 chains) are determined from the boundary
conditions Cn0 = CnM = 0. Consequently, ξ0 (k) = ξM (k) = 0, Ξ1 (k) = 0 and

k2 = πl/ (Ma2) ; l = 1, 2, . . . ,M − 1.

If one inserts the solution:

ξm (k) = Ξ (k) sin (πml/M) ,

into (11), the dispersion equation is obtained:

D (k, s) + 2D1 (k, s) cos (πl/M) = 0. (14)

Waveguide bands are given by the solution s = iχ, χ > 0, of (14). Taking into account (12),
one reduces (14) to the following form:

cosh (a1χ) = cos (a1k) + d1 (χ, l) , (15)

where d1 (χ, l) = d exp [2a1D1 cos (πl) /M ], or, correspondingly, to the form:

E1 (k) = − h2

2µa1

{
ln

[
d1 (χ, l) + cos (a1k) +

√
[d1 (χ, l) + cos (a1k)]2 − 1

]}2

,

where E1 (k) = −h2χ2

2µ
. Note that for small k, χ, one can replace the sum for D1 from (12)

by the integral:

D1 ≈
+∞∫
−∞

exp [−χ |νa1 + a2|+ ikνa1]

|νa1 + a2|
dν =

2

a1

K0

(√
(χa1)2 + (ka2)2

)
,

where K0 (z) is the Macdonald function of zero order. Due to the integer parameter l,
equation (15) determines, generally speaking, M − 1 waveguide bands. The conductivity is
determined by such bands which are empty or partially filled, i.e. contain the Fermi level
EF . If each atom of the chain has one “free” electron, then the Fermi level EF is determined
from the equation:

π (M − 1)

2a1

=
M−1∑
l=1

EF∫
E0

dk

dE
dE. (16)

Taking into account (15), one rewrites (16) in the form:

π

2a1

=
1

M − 1

M−1∑
l=1

χF∫
χ0

sh (χa1)− d′1 (χ, l)√
1− [ch (χa1)− d1]2

dχ, (17)
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where d′1 (χ, l) = ∂d1(χ,l)
∂(χa1)

. If one ignores the difference between d1 (χ, l) and d, then equation

(17) gives one the following value of the Fermi level:

E0
F = − h2

2µa2
1

ln2
[
d+
√
d2 − 1

]
,

which corresponds to the case of single chain.
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