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1. Introduction

It is well known that integral equations have wide application in engineering, mechanics,
physics, economics, optimization, vehicular traffic, biology, queuing theory and so on (see
[1–5]). The theory of integral equations is rapidly developing with the help of tools in functional
analysis, topology and fixed point theory. Therefore, many different methods are used to obtain
the solution of the nonlinear integral equation. Moreover, some methods can be found in
Refs. [6–13], to discuss and obtain a solution for the Hammerstein integral equation. In [11],
J.Appell and A.S. Kalitvin used fixed point methods and methods of nonlinear spectral theory
to obtain a solution for integral equations of the Hammerstein or Uryson type. The existence
of positive solutions of abstract integral equations of Hammerstein type is discussed in [9].
In [7], M.A. Abdou, M.M. El-Borai and M.M. El-Kojok discuss the existence and uniqueness
of a solution for the nonlinear integral equation of the Hammerstein type with a discontinuous
kernel.

In this present paper, we study the solvability of an homogeneous integral equation of
the Hammerstein type. An integral equation of the form:

1∫
0

K(t, u)Ψ (t, f(u)) du = f(t), (1.1)

is called the homogeneous Hammerstein integral equation, where K(t, u) is continuous real-
valued function defined on 0 ≤ t ≤ 0, 0 ≤ u ≤ 1, Ψ : [0, 1]× R → R is a continuous function
and f(t) is unknown function from C[0, 1].

Let Ψ(t, z),
∂

∂z
Ψ(t, z) be continuous and bounded for t ∈ [0, 1] and for all z. Then [14],

the Hammerstein integral equation (1.1) has a solution, assuming that Ψ(t, z) is a bounded con-
tinuous function for t ∈ [0, 1] and z ∈ R. In this case, the Hammerstein integral equation (1.1)
also has a solution [15]. For the necessary details of this theorem and for more results on the
Hammerstein integral equation, we refer to Petryshyn and Fitzpatrik [16], Browder [17], Brezis
and Browder [18].
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Recently, the case Ψ(t, z) = Ψ(z) was considered [19]. Let Ψ(z) be a monotonous

left-continuous function on [0,+∞) and lim
x→0

Ψ(z)

z
= +∞, lim

x→+∞

Ψ(z)

z
= 0. Then, the integral

equation of Hammerstein type (1.1) has a solution [19].
In this work, we will consider the following integral equation of Hammerstein type (i.e.

in (1.1) Ψ(t, z) = Ψ(z) = zϑ):

1∫
0

K(t, u)fϑ(u)du = f(t), ϑ > 1, (1.2)

on the C[0, 1], where K(t, u) is a strictly positive continuous function.
By Theorem 44.8 from [4], the existence of a nontrivial positive solution for the Ham-

merstein equation (1.2) follows. We study the problem of the existence of a finite number of
positive solutions for the integral equation of the Hammerstein type (1.2).

Consider the nonlinear operator Rα on the cone of positive continuous functions on [0, 1] :

(Rαf) (t) =

(∫ 1

0
K(t, u)f(u)du∫ 1

0
K(0, u)f(u)du

)α

, (1.3)

where K(t, u) is given in the integral equation of Hammerstein type (1.2) and α > 0. An
operator of the form (1.3) arises in the theory of Gibbs measures (see [20–22]). Positive fixed
points of the operator Rk, k ∈ N and their numbers are very important to study Gibbs measures
for models on a Cayley tree.

In [21], for the case α = 1, the uniqueness of positive fixed points of the nonlinear
operator Rα (1.3) was proved. In [20], in the case α = k ∈ N, k > 1, for the nonlinear
operator Rα, the existence of positive fixed point and the existence Gibbs measure for some
mathematical models on a Cayley tree were proved.

The aim of this work is to study the existence of a finite number of positive solutions
for the Hammerstein equation (1.2) on the space of continuous functions on [0, 1]. The plan of
this paper is as follows: in the second section, using properties of Hammerstein equation (1.2),
we reduce some statements on the positive fixed point of the operator Rα; in the third section,
we construct the strictly positive continuous kernel K(t, u), such that, for given n ∈ N, the
corresponding Hammerstein equation (1.2) has n number of positive Solutions; in the fourth
section, the obtained results for the operator Rα are applied to study Gibbs measures for models
on a Cayley tree.

2. Existence and uniqueness of positive fixed points for the operator Rα

In this section, we study the existence and the uniqueness of positive fixed points for
the nonlinear operator Rα (1.3). We set:

C+[0, 1] = {f ∈ C[0, 1] : f(x) ≥ 0}, C+
0 [0, 1] = C+[0, 1] \ {θ ≡ 0},

where the set C+[0, 1] is the cone of positive continuous functions on [0, 1].
We define the Hammerstein operator Hϑ on C[0, 1] by the equality:

Hϑf(t) =

1∫
0

K(t, u)fϑ(u)du = f(t), ϑ > 1.

Clearly, by Theorem 44.8 from [4], we obtain:



620 Yu. Kh. Eshkabilov, F. H. Haydarov

Theorem 1. Let ϑ > 1. The equation:

Hϑf = f (2.1)

has at least one solution in C+
0 [0, 1].

We set:
M0 =

{
f ∈ C+[0, 1] : f(0) = 1

}
.

Lemma 1. Let α > 1. The equation

Rαf = f, f ∈ C+
0 [0, 1] (2.2)

has a positive solution iff the Hammerstein operator has a positive eigenvalue, i.e. the
Hammerstein equation:

Hαg = λg, f ∈ C+[0, 1], (2.3)
has a positive solution in M0 for some λ > 0.

Proof. We define the linear operator W and the linear functional ω on the C[0, 1] by the
following equalities:

(Wf) (t) =

1∫
0

K(t, u)f(u)du, ω(f) =

1∫
0

K(0, u)f(u)du.

Necessariness. Let f0 ∈ C+
0 [0, 1] be a solution of the equation (2.2). We have:

(Wf0) (t) = ω(f0) α
√
f0(t).

From this equality, we get:
(Hαh) (t) = λ0h(t),

where h(t) = α
√
f0(t) and λ0 = ω(f0) > 0.

It is easy to see that h ∈ M0 and h(t) is an eigenfunction of the Hammerstein’s
operator Hα, corresponding the positive eigenvalue λ0.

Sufficiency. Let h ∈M0 be an eigenfunction of the Hammerstein’s operator Hα. Then,
there is a number λ0 > 0 such that Hαh = λ0h. From h(0) = 1, we get λ0 = (Hαh) (0) =
ω (hα). Then:

h(t) =
(Hαh) (t)

ω (hα)
.

From this equality, we get Rαf0 = f0 with f0 = hα ∈ C+
0 [0, 1]. This completes the proof. �

Theorem 2. The equation (2.2) has at least one solution in C+
0 [0, 1].

Let λ0 be a positive eigenvalue of the Hammerstein operator Hα, α > 1. Then, there
exists f0 ∈ M0 such that Hαf0 = λ0f0. We take λ ∈ (0,+∞), λ 6= λ0. We define function
h0(t) ∈ C+

0 [0, 1] by

h0(t) = α−1

√
λ

λ0

f0(t), t ∈ [0, 1].

Then:

Hαh0 = Hα

(
α−1

√
λ

λ0

f0

)
= λh0,

i.e. the number λ is an eigenvalue of Hammerstein operator Hα corresponding the eigenfunc-
tion h0(t). This can be easily verified: if the number λ0 > 0 is an eigenvalue of the operator
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Hα, α > 1, then an arbitrary positive number is an eigenvalue of the operator Hα. Therefore,
we have:

Lemma 2. a) Let α > 1.The equation Rαf = f has a nontrivial positive solution iff the
Hammerstein equation Hαg = g has a nontrivial positive solution.

Let α > 1. We denote by Nfix.p (Hα) and Nfix.p (Rα) numbers of nontrivial positive
solutions of the equations (2.1) and (2.2), respectively.

Theorem 3. Let α > 1. The equality Nfix.p (Hα) = Nfix.p (Rα) is held.

We denote:
m = min

t,u∈[0,1]
K(t, u), M0 = max

u∈[0,1]
K(0, u),

M = max
t,u∈[0,1]

K(t, u), m0 = min
u∈[0,1]

K(0, u).

Theorem 4. Let α > 1. If the following inequality holds:(
M

m

)α
−
(m
M

)α
<

1

α
,

then the homogenous Hammerstein equation (2.1) and the equation (2.2) have a unique non-
trivial positive solution.

An analogous theorem was proved for α = k ∈ N, k ≥ 2 in [20] and proof of Theorem 4
is analogously obtained.

3. The existence of a finite number of positive solutions for the homogeneous
Hammerstein equation

In this section, for a given n ∈ N, we’ll show the existence of n number of positive
solutions of homogeneous integral equation of Hammerstein type (1.2).

For all p, n ∈ N we define following matrices:

A(p)
n =

{
1

2(2p+ i+ j)− 3

(
1

2

)2(2p+i+j−2)
}
i,j=1,n

, n, p ∈ N. (3.1)

B [a1, ..., an; b1, ...bn] =

(
1

ai + bj

)
i,j=1,n

, ai, bj > 0. (3.2)

C(p)
n = B [4p, 4(p+ 1), ..., 2(p+ n− 1); 1, 5, ..., 4n− 3] . (3.3)

Lemma 3. [25] Let n ≥ 2. Then:

det B [a1, ..., an; b1, ..., bn] =

∏
1≤i<j≤n [(ai − aj)(bi − bj)]∏n

i,j=1 (ai + bj)
.

Corollary 1. det A
(p)
n =

(
1

2

)2n(2p+n−1)

det C
(p)
n .

Proof. Let i, j ∈ 1, 2, ..., n. We multiply by 22(p+j−1) the jth column of the matrix A
(p)
n , after

that, we multiply by 22(i−1) the i-th row of the matrix obtained. As a result, we get C
(p)
n . �
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Lemma 4. Let B−1 [a1, a2, ..., an; b1, b2, ..., bn] = {βij}i,j=1,n be an inverse matrix of
B [a1, a2, ..., an; b1, b2, ..., bn]. Then:

βji =

∏n
s=1(as + bj)

∏n
s=1,s 6=i(ai + bs)∏n

s=1,s 6=j(bj − bs)
∏n

s=1,s 6=i(ai − as)
.

Proof. Subtracting the jth column of B [a1, a2, ..., an; b1, b2, ..., bn] from every other column, we
get the following equality:

det B [a1, a2, ..., an; b1, b2, ..., bn] =

∏n
s=1,s 6=j(bj − bs)∏n
s=1(as + bj)



1

a1 + b1

...
1

a1 + bj−1

1
1

a1 + bj+1

...
1

a1 + bn
1

a2 + b1

...
1

a2 + bj−1

1
1

a2 + bj+1

...
1

a2 + bn
... ... ...

1

an + b1

...
1

an + bj−1

1
1

an + bj+1

...
1

an + bn


.

Next, we subtract from the j-th row the i-th row for every j ∈ {1, 2..., i− 1, i+ 1, ...n}. Then,

det B [a1, ..., an; b1, ..., bn] =

∏n
s=1,s 6=j(bj − bs)

∏n
s=1,s 6=i(ai − as)∏n

s=1(as + bj)
∏n

s=1,s 6=i(ai + bs)
× det B(i,j) [a1, ..., an; b1, ..., bn] ,

where B(j,i) [a1, ..., an; b1, ..., bn] is the cofactor of the element
1

ai + aj
in B [a1, ..., an; b1, ..., bn],

since:

βji =
det B(i,j) [a1, ..., an; b1, ..., bn]

det B [a1, ..., an; b1, ..., bn]
.

This completes the proof. �

We let: (
A(p)
n

)−1
= {αij}i,j∈1,n.

Remark 1. For each αji element of
(
A

(p)
n

)−1

, the following equality holds:

αji = 42p+i+j−n+1 ·
∏n

s=1(4p+ 2s+ 2j − 3)
∏n

s=1,s 6=j(4p+ 2s+ 2j − 3)∏n
s=1,s 6=j(j − s)

∏n
s=1,s 6=i(i− s)

.

Proof. By Corollary 1 and Lemma 4 we get:

αji = 42p+i+j · det B(i,j) [4p, 4p+ 2, ...4p+ 2(n− 1); 1, 3, ...2n− 1]

det B [4p, 4p+ 2, ...4p+ 2(n− 1); 1, 3, ...2n− 1]
=

42p+i+j ·
∏n

s=1(4p+ 2s+ 2j − 3)
∏n

s=1,s 6=i(4p+ 2s+ 2i− 3)∏n
s=1,s 6=j(2j − 2s)

∏n
s=1,s 6=i(2i− 2s)

.

�
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Here, we denote

ϕ(s,n,p)(u) = αs1u
2p−1 + ...+ αsnu

2(n+p)−3, s, n, p ∈ N, u ∈ [0, 1],

K(n,p)(t, u; k) = 1 +
n∑
s=1

(
k
√

1 + t2(p+s)−1 − 1
)
ϕ(s,n,p)(u), k ∈ N, k ≥ 2, t, u ∈ [0, 1].

Remark 2. For the given k ∈ N, k ≥ 2. the following inequality holds:

K(n,p)

(
t− 1

2
, u− 1

2
; k

)
≤ K(n,1)

(
t− 1

2
, u− 1

2
; k

)
, (t, u) ∈ [0, 1]2, n, p ∈ N.

We set:

ζ0(n) =
64

9
· 4n − 1

4n+ 1

(
(4n+ 1)!!

(n− 1)!(2n+ 1)!!

)2

.

Lemma 5. Let n ∈ N. If k ≥ ζ0(n), then the following inequality holds:

K(n,p)

(
t− 1

2
, u− 1

2
; k

)
> 0, (t, u) ∈ [0, 1]2, p ∈ N.

Proof. For p = 1 from Remark 1, we have:

αij = 4i+j−n+3

∏n
s=1(2i+ 2s+ 1)

∏n
s=1,s 6=j(2j + 2s+ 1)∏n

s=1,s 6=i(i− s)
∏n

s=1,s 6=j(j − s)
.

Then: ∣∣∣∣αi,j+1

αi,j

∣∣∣∣ =
4(4j + 1)(2j + 2n+ 3)

(2j + 3)(4j + 5)
, i = 1, n, j = 1, n− 1

and ∣∣∣∣αi+1,j

αi,j

∣∣∣∣ =
4(n− i)(2i+ 2n+ 3)

i(2i+ 3)
, i = 1, n, j = 1, n− 1.

From the above, one has: maxi,j=1,n |αij| = |αnn|. By Remark 1, we can take:

K(n,p)

(
t− 1

2
, u− 1

2
; k

)
≥ 1− 2

3
max
i,j=1,n

|αij|
n∑
s=1

 k

√
1 +

(
1

2

)2s+1

− 1

 ≥
1− 2|ann|

3k

n∑
s=1

(
1

2

)2s+1

≥ 1− (4n − 1) · 64(2n+ 3)2(2n+ 5)2...(4n− 1)2(4n+ 1)

9k ((n− 1)!)2 .

Since k ≥ ζ0(n), one gets K(n,p)

(
t− 1

2
, u− 1

2
; k

)
> 0. This completes the proof.

�
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Proposition 1. Let n ∈ N. If k ≥ ζ0(n), then the Hammerstein’s nonlinear operator Hk with

kernel K(n,p)

(
t− 1

2
, u− 1

2
; k

)
(p ∈ N) has at least n number of positive fixed points.

Proof. Let fj(u) =
k
√

1 + u2(p+j)−1, j = 1, n and u1 = u − 1

2
, t1 = t − 1

2
. Put gj(t) =

fj

(
t− 1

2

)
. We will show functions gj(t) are fixed points of the Hammerstein operator Hk

with the kernel K(n,p)

(
t− 1

2
, u− 1

2
; k

)
:

1∫
0

K(n,p)

(
t− 1

2
, u− 1

2
; k

)
gkj (u)du =

1∫
0

K(n,p)

(
t− 1

2
, u− 1

2
; k

)
fkj

(
u− 1

2

)
du =

1
2∫

− 1
2

K(n,p) (t1, u1; k) fkj (u1)du1 =

− 1
2∫

1
2

[
1 +

n∑
s=1

(
k

√
1 + t

2(p+s)−1
1 − 1

)
ϕ(s,n,p)(u1)

](
1 + u

2(p+j)−1
1

)
du1 =

1 +
n∑
s=1

(
k

√
1 + t

2(p+s)−1
1 − 1

) 1
2∫

1
2

(
αs1u

4(p−1)+2s+2j
1 + ...+ αsnu

4p+2(s+j+n)−6
1

)
du1 =

1 +
n∑
s=1

(
k

√
1 + t

2(p+s)−1
1 − 1

)
(αsjβs1 + ...+ αnjβsn) =

k

√
1 + t

2(p+j)−1
1 .

Hence:
1∫

0

K(n,p)

(
t− 1

2
, u− 1

2
; k

)
gkj (u)du = gj(t), j ∈ {1, 2, ..., n}.

�

Theorem 5. For each n ∈ N, there exists ϑ > 1 and a positive continuous kernel K(t, u) such
that, the number of positive solutions for the Hammerstein integral equation (1.2) is equal to
at least n.

4. Gibbs measures for models on Cayley tree Γk

In this section we study Gibbs measures for models on Cayley tree. You may be familiar
with the definitions and properties of Gibbs measures in books [22–24]. A Cayley tree (Bethe
lattice) Γk of order k ∈ N is an infinite homogeneous tree, i.e., a graph without cycles, such
that exactly k + 1 edges originate from each vertex. Let Γk = (V, L) where V is the set of
vertices and L that of edges (arcs). Two vertices x and y are called nearest neighbors if there
exists an edge l ∈ L connecting them. We will use the notation l = 〈x, y〉. A collection of
nearest neighbor pairs 〈x, x1〉, 〈x1, x2〉, ...〈xd−1, y〉 is called a path from x to y. The distance
d(x, y) on the Cayley tree is the number of edges of the shortest path from x to y.
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For a fixed x0 ∈ V , called the root, we set:

Wn = {x ∈ V |d(x, x0) = n}, Vn =
n⋃

m=0

Wm

and denote:
S(x) = {y ∈ Wn+1 : d(x, y) = 1}, x ∈ Wn,

the set of direct successors of x.
Consider models where the spin takes values in the set [0, 1], and is assigned to the

vertices of the tree. For A ⊂ V a configuration σA on A is an arbitrary function σA : A→ [0, 1].
We denote ΩA = [0, 1]A the set of all configurations on A and Ω = [0, 1]V . The Hamiltonian on
Γk of the model is:

H(σ) = −J
∑
〈x,y〉∈L

ξ (σ(x), σ(y)) , σ ∈ Ω, (4.1)

where J ∈ R \ {0} and ξ : (u, v) ∈ [0, 1]2 → ξu,v ∈ R is a given bounded, measurable function.
Let λ be the Lebesgue measure on [0, 1]. On the set of all configurations on A the a priori

measure λA is introduced as the |A| fold product of the measure λ. Here and subsequently, |A|
denotes the cardinality of A. We consider a standard sigma-algebra B of subsets of Ω = [0, 1]V

generated by the measurable cylinder subsets.
Let σn : x ∈ Vn 7→ σn(x) be a configuration in Vn and h : x ∈ V 7→ hx = (ht,x, t ∈

[0, 1]) ∈ R[0,1] be mapping of x ∈ V \ {x0}. Given n = 1, 2, . . ., consider the probability
distribution µ(n) on ΩVn defined by:

µ(n)(σn) = Z−1
n exp

(
−βH(σn) +

∑
x∈Wn

hσ(x),x

)
. (4.2)

Here, as before, σn : x ∈ Vn 7→ σ(x) and Zn is the corresponding partition function:

Zn =

∫
ΩVn

exp

(
−βH(σ̃n) +

∑
x∈Wn

hσ̃(x),x

)
λVn(σ̃n), (4.3)

where β = T−1, T > 0 – temperature. The probability distributions µ(n) are compatible [21] if
for any n ≥ 1 and σn−1 ∈ ΩVn−1:∫

ΩWn

µ(n) (σn−1 ∨ ωn)λWn (d(ωn)) = µ(n−1) (σn−1) . (4.4)

Here, σn−1 ∨ ωn ∈ ΩVn is the concatenation of σn−1 and ωn. In this case, there exists [21] a

unique measure µ on ΩV such that, for any n and σn ∈ ΩVn , µ

({
σ
∣∣∣
Vn

= σn

})
= µ(n)(σn).

The measure µ is called the splitting Gibbs measure, corresponding to Hamiltonian (4.1) and
function x 7→ hx, x 6= x0.

The following statement describes conditions on hx guaranteeing compatibility of the
corresponding distributions µ(n)(σn).

Proposition 2. [21] The probability distributions µ(n)(σn), n = 1, 2, . . ., in (4.2) are compatible
iff for any x ∈ V \ {x0} the following equation holds:
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f(t, x) =
∏

y∈S(x)

∫ 1

0
exp(Jβξt,u)f(u, y)du∫ 1

0
exp(Jβξ0,u)f(u, y)du

. (4.5)

Here and below, f(t, x) = exp(ht,x− h0,x), t ∈ [0, 1] and du = λ(du) is the Lebesgue measure.

We consider ξtu as a continuous function and we are going to solve equation (4.5) in the
class of translation − invariant functions f(t, x) (i.e. f(t, x) = f(t) for all x ∈ Γk \ {x0}).
We’ll show that there exists a finite number of translation − invariant Gibbs measures for
model (4.1).

For translation− invariant functions, equation (4.5) can be written as:

(Rkf) (t) = f(t), k ∈ N, (4.6)

where K(t, u) = Q(t, u) = exp(Jβξtu), f(t) ∈ C+
0 [0, 1], t, u ∈ [0, 1] (see [20, 21]).

Consequently, for each k ∈ N, k ≥ 2, the Hammerstein integral equation corresponding
to the equation (4.6) has the following form:

1∫
0

Q(t, u)fk(u)du = f(t). (4.7)

By Theorem 3 and Propositions 1and 2 we’ll obtain the following Theorem:

Theorem 6. Let n ∈ N. If k ≥ ζ0(n), then number of translation-invariant Gibbs measures for
the model:

H(σ) = − 1

β

∑
<x,y>

ln

(
K(n,p)

(
σ(x)− 1

2
, σ(y)− 1

2
; k

))
, σ ∈ Ω(p ∈ N),

on the Cayley tree Γk is equal to at least n.
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