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In this article, the exact solutions of equations of motion for a charged particle in a frequency-modulated wave are

presented. We performed an analysis of the results for the motion of a charged particle in the field of frequency-

modulated electromagnetic waves. A point of interest was a solution for the equations of the motion for a charged

particle in the field of a plane electromagnetic wave. We investigated the interaction of high intensity laser pulses

with solid targets in relation to the practical development of multi-frequency lasers and laser modulation technology.

This study was undertaken because of the wide practical application of high-temperature plasma formed on the

surface of the target and the search for new modes of laser plasma interaction
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1. Introduction

The creation of petawatt level laser systems in recent years, has allowed the study of
a new unique physical object – relativistic laser plasma, produced when gas, clusters or solid
targets are exposed to intense laser radiation [1]. Developments in different fields of physics and
engineering; e.g. plasma physics, astrophysics, powerful relativistic high-frequency electronics
and appliances. have increased the interest in studying the interaction between charged particles
and electromagnetic waves. A special role in such interactions is assigned to relativistic charged
particles in strong electromagnetic waves. The energy characteristics of a charged particle in the
field of a frequency-modulated electromagnetic wave are of interest as a result of the practical
development of multifrequency lasers and laser modulation techniques [2–4]. In this paper,
we consider the dynamics of an electron in an intense frequency-modulated electromagnetic
field of linear and circular polarization. The interaction of charged particles with ultrashort
femtosecond laser pulses with radiation intensities of up to 1022 W/cm2 is one of the main areas
of laser physics at the moment. Previous literature [5] discussed the consistent derivation of a
particle’s average kinetic energy in an intense electromagnetic field by a frequency-modulated
electromagnetic wave, but was not found by averaging coordinate, momentum, and energy
values for the particle over the period of the particle’s oscillation in the field plane of a
monochromatic frequency-modulated electromagnetic wave.

The problem of the motion of a charged particle in the field of a plane monochromatic
frequency-modulated electromagnetic wave was formulated and solved for linear and circular
polarization of the wave [6], but the interest in this topic has appeared presently in connection
with the development of high-power lasers. The peculiarity of this work lies in the fact that
there are considered highly-fields for review before the end of the simple modes of interaction
of charged particles with a frequency-modulated electromagnetic wave.
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The aim of this work is to analyze the motion of a particle in the external field of
frequency-modulated electromagnetic wave of high intensity and to derive the average kinetic
energy of a particle over the oscillation period of the field.

2. Problem Statement

The equation of motion of a particle of mass m and charge q placed in an external field
of a plane monochromatic wave has a known form (see, for example [7], paragraph 17). The
equation of motion for a charged particle being acted upon by a high-Lorentz force is given by:

dp

dt
= qE +

q

c
[V ×H ] , (1)

where p – momentum of charged particle; E and H – electric and magnetic intensity of the
laser field; q > 0 the absolute value of the electron charge. Equation (1) is supplemented by the
initial conditions for the velocity and position of the electron:

V (0) = V 0, r (0) = r0.

The particle momentum p and velocity V are related by equality ( [7], paragraph 9):

p =
mV√
1− V 2

c2

. (2)

The change in the particle energy:

ε =
mc2√
1− V 2

c2

=
√
m2c4 + p2c2, (3)

is determined by the equation:

dε

dt
= qEV . (4)

It follows from (2) and (3) that the energy ε, momentum p, and velocity V of the
particle are related by equations:

p =
εV

c2
, V =

c2p

ε
. (5)

In this paper, it is assumed that the frequency of the electromagnetic wave is modulated
harmonically φ = µ sin (ω′ξ + ψ), where µ = ∆ωm/ω

′ – modulation index equal to the ratio
of frequency deviation to the frequency of the modulating wave; ω′ – frequency modulation;
ξ = t− z/c; ψ – constant phase. We assign the plane wave as propagating along the axisz, then
the vector components of electric and magnetic fields of plane monochromatic wave are given
by: 

Ex = Hy = bx exp
(
− i (ωξ + α + µ sin (ω′ξ + ψ))

)
;

Ey = −Hx = fby exp
(
− i (ωξ + α + µ sin (ω′ξ + ψ))

)
;

Ez = Hz = 0,

(6)

where ω is carrier frequency of the wave; α – constant phase; the x and y axes coincide with
the bx and by axes of the polarization ellipse of the wave and bx ≥ by ≥ 0; f = ±1 is a
polarization parameter (the upper and lower signs in the expression for Ey correspond to right
and left polarization [5]).
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We take the real part form (6) and apply the Jacobi-Anger expansion then obtain:



Ex = Hy = bx

+∞∑
n=−∞

Jn (µ) cos Φn,

Ey = −Hx = fby

+∞∑
n=−∞

Jn (µ) cos Φn,

Ez = Hz = 0,

(7)

where Jn (µ) is the n-th Bessel function; Φn = (ω + nω′) ξ + α + nψ.
As can be seen from (7), the frequency spectrum of the modulated wave is symmetrical

and is not theoretically limited, but when n � µ Bessel function becomes negligible and the
width of the spectrum can be limited. Practical spectral width is determined by the expression
∆ω = 2 (µ+ 1)ω′. In (7), index n can vary from −N to N , where the number N ≈ µ + 1.
Thus, if µ � 1 and N = 1, then spectrum width ∆ω = 2ω′ coincides with the width of the
spectrum of a harmonic amplitude-modulated wave [5]. When µ � 1 and N = µ, spectral
width is equal to twice the frequency deviation ∆ω = 2∆ωm.

3. Solution of the equation of the charge motion

The solution of equations (1) and (4) with E and H from (7) has the form:

px =
qbx
ω

N∑
n=−N

Jn (µ) sin Φn

(1 + nη)
+ χx,

py =
fqby
ω

N∑
n=−N

Jn (µ) sin Φn

(1 + nη)
+ χy,

pz = γg;

ε = cγ (1 + g) ,

(8)

where χx, χy and γ are constants (γ ≥ 0 because ε ≥ mc2):

g = h+
q

γ2ω
(bxχx + fbyχy)

N∑
n=−N

Jn (µ) sin Φn

(1 + nη)
+

q2
(
b2
x + b2

y

)
2γ2ω2

N∑
n,k=−N

n6=k

Jn (µ) Jk (µ) sin Φn sin Φk

(1 + nη) (1 + kη)
−
q2
(
b2
x + b2

y

)
4γ2ω2

N∑
n=−N

J2
n (µ) cos (2Φn)

(1 + nη)2 ;
(9)

h =
1

2

{
m2c2 + χ2

x + χ2
y

γ2
− 1 +

q2
(
b2
x + b2

y

)
2γ2ω2

N∑
n=−N

J2
n (µ)

(1 + nη)2

}
. (10)

Φk = (ω + kω′) ξ + α + kψ, k is index of the Bessel function.
From (8) and (5), we obtain the parametric representation (the parameter ξ) of the

particle velocity:
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Vx =
dx

dt
=
c

γ

(
1− Vz

c

)(
qbx
ω

N∑
n=−N

Jn (µ) sin Φn

(1 + nη)
+ χx

)
=

c

(1 + g)γ

(
qbx
ω

N∑
n=−N

Jn (µ) sin Φn

(1 + nη)
+ χx

)
,

Vy =
dy

dt
=
c

γ

(
1− Vz

c

)(
fqby
ω

N∑
n=−N

Jn (µ) sin Φn

(1 + nη)
+ χy

)
=

c

(1 + g)γ

(
fqby
ω

N∑
n=−N

Jn (µ) sin Φn

(1 + nη)
+ χy

)
,

Vz =
dz

dt
=

cg

1 + g
.

(11)

Through the constants χx, χy and γ, determined by the initial phase of the wave:

Φn0 = − (ω + nω′)
z

c
+ α + nψ, (12)

and the initial velocity of the particle V0; from (3), (8) and (11) we find:

χx =
mVx0√

1− V 2
0 /c

2
− qbx

ω

N∑
n=−N

Jn (µ) sin Φn0

(1 + nη)
;

χy =
mVy0√

1− V 2
0 /c

2
− fqby

ω

N∑
n=−N

Jn (µ) sin Φn0

(1 + nη)
;

γ =
mc (1− vz0/c)√

1− v2
0/c

2
.

(13)

From (11), we obtain the following solutions for coordinates of the particles as functions
of the parameter ξ:

x = x0 +
N∑

n=−N

χx (Φn − Φn0)

γk (1 + nη)
− qbx
γωk

N∑
n=−N

Jn (µ)

(1 + nη)2 (cos Φn − cos Φn0) ,

y = y0 +
N∑

n=−N

χy (Φn − Φn0)

γk (1 + nη)
− fqby
γωk

N∑
n=−N

Jn (µ)

(1 + nη)2 (cos Φn − cos Φn0) ,

z = z0 +
N∑

n=−N

h (Φn − Φn0)

k (1 + nη)
− 2q

γ2kω
(bxχx + fbyχy)

N∑
n=−N

Jn (µ) (cos Φn − cos Φn0)

(1 + nη)2 −

q2
(
b2
x + b2

y

)
2γ2kω

N∑
n=−N

J2
n (µ) (sin (2Φn)− sin (2Φn0))

(1 + nη)3 +

q2
(
b2
x + b2

y

)
2γ2ωk

N∑
n,k=−N

n6=k

Jn (µ) Jk (µ)

(1 + nη) (1 + kη)
×

(
sin Φ(n−k)

n− k
−

sin Φ(n−k)0

n− k
−

sin Φ(n+k)

n+ k
+

sin Φ(n+k)0

n+ k

)
,

(14)
where Φ(n−k) = Φn − Φk, Φ(n+k) = Φn + Φk; Φ(n−k)0 = Φn0 − Φk0, Φ(n+k)0 = Φn0 + Φk0.
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From (11) and (14), we determine that the motion of a particle in the external field of
the plane monochromatic electromagnetic wave is the imposition of movement with the constant
velocity V and vibrational motion with the frequency ω̃ = 2π/T̃ different from the frequency
of the field ω and the frequency modulation ω′:

x(t) = x̃+ Ṽxt+ ξ (t) , y(t) = ỹ + Ṽyt+ η (t) , z(t) = z̃ + Ṽzt+ ζ (t) , (15)

where x̃, ỹ, z̃ are constants and

ξ
(
t+ T̃

)
= ξ (t) , η

(
t+ T̃

)
= η (t) , ζ

(
t+ T̃

)
= ζ (t) (16)

are periodic function with same period.
We seek the solution of the equation for the coordinate z in (14) from (15). By

substituting z(t) from (15) into (14) and selecting constants z̃ and Ṽz in the form:

z̃ = z0 +

[
2q

γ2kω
(bxχx + fbyχy)

N∑
n=−N

Jn (µ) cos Φn0

(1 + nη)2 −
q2
(
b2
x + b2

y

)
2γ2kω

N∑
n=−N

J2
n (µ) sin (2Φn0)

(1 + nη)3 −

q2
(
b2
x + b2

y

)
2γ2ωk

N∑
n,k=−N

n6=k

Jn (µ) Jk (µ)

(1 + nη) (1 + kη)

(
sin Φ(n−k)0

n− k
−

sin Φ(n+k)0

n+ k

)]
1

1 + h
;

(17)

Ṽz =
ch

1 + h
, (18)

we obtain the equation for ζ (t):

(1 + h) ζ (t) =

− q

γ2ω

[
2

k
(bxχx + fbyχy)

N∑
n=−N

Jn (µ) cos Φn

(1 + nη)2 +
q
(
b2
x + b2

y

)
2k

N∑
n=−N

J2
n (µ) sin (2Φn)

(1 + nη)3 +

q
(
b2
x + b2

y

)
2k

N∑
n,k=−N

n6=k

Jn (µ) Jk (µ)

(1 + nη) (1 + kη)

(
sin Φ(n−k)

n− k
−

sin Φ(n+k)

n+ k

)]
.

(19)

It follows from (19) that ζ (t) is a periodic function defined by the period T̃ . Let
us find its period. The period T̃ of particle oscillation in the field of a frequency-modulated

electromagnetic wave is determined from the formulae Φ
(
t+ T̃

)
= Φ(t) + 2π, from which,

taking into account (7), (15) and (16), it follows that:

T̃n =
2π

ω

(1 + h)

(1 + nη)
= T

(1 + h)

(1 + nη)
. (20)

One can see that the oscillation period of the particle differs from that of the field of the
frequency-modulated electromagnetic wave.

We will seek the solution of the first equation in (14) in the form x(t) from (14). By
representing constants x̃ and Ṽx in the form:
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x̃ = x0 +
N∑

n=−N

χx (z0 − z̃)

γk (1 + nη)
+

qbx
γωk

N∑
n=−N

Jn (µ)

(1 + nη)2 cos Φn0,

Ṽx = χx
c

γ

(
1− Ṽz

c

)
=
χx

γ

c

(1 + h)
,

(21)

we find that:

ξ(t) = −
N∑

n=−N

χx

γ (1 + nη)
ζ(t)− qbx

γωk

N∑
n=−N

Jn (µ)

(1 + nη)2 cos Φn. (22)

Similarly, we obtain for y(t) in (15):

ỹ = y0 +
N∑

n=−N

χy (z0 − z̃)

γk (1 + nη)
+
fqby
γωk

N∑
n=−N

Jn (µ)

(1 + nη)2 cos Φn0,

Vy = χy
c

γ

(
1− Vz

c

)
=
χy

γ

c

(1 + h)γ
,

η(t) = −
N∑

n=−N

χy

γk (1 + nη)
ζ(t)− fqby

γωk

N∑
n=−N

Jn (µ)

(1 + nη)2 cos Φn.

(23)

4. The motion of a particle averaged over an oscillation period

In this section, we will perform the averaging of the coordinate r(t), velocity V (t),
momentum p(t), and energy ε(t) of the particles over its oscillation period (20) with (8), (11)
and (14) in the field of a frequency-modulated electromagnetic wave.

Consider a new variable of the integration ξ′ = ξ (t′), then:

Φ′n = Φn (t′) ;

dt′ =
dΦ′n

ω (1 + nη)

1

1− Vz/c
=

1 + g

ω (1 + nη)
dΦ′n.

(24)

Since the motion of particle is a superposition of two kinds of periodic motion with
frequencies ω and ω′, averaging will be carried out according to the formula:

f̄(t) =
1

T̃n

Φ(t̃)∫
Φ(t)

f(t′)
1 + g

ω (1 + nη)
dΦ′n, (25)

where f (t′) is an arbitrary function taking into account (7), (15) and (20).
For the coordinate x in (14), we have:

x̄ (t) =
1

T̃

t̃∫
t

x (t′) dt′ =

(
x0 −

N∑
n=−N

χxΦn0

γk (1 + nη)
+

qbx
γωk

N∑
n=−N

Jn (µ)

(1 + nη)2 cos Φn0

)
+

χx

γk

N∑
n=−N

1

T̃n

t̃∫
t

Φn (t′)

(1 + nη)
dt′ − qbx

γωk

N∑
n=−N

1

T̃n

t̃∫
t

Jn (µ)

(1 + nη)2 cos Φn (t′) dt′,

(26)

where
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t̃ = t+ T̃n (27)

see (7), (15) and (28).

Φn (t) = (1 + nη)
[
ωt− k

(
z̃ + Ṽzt+ ζ (t)

)]
+ α + nψ =

(1 + nη) [ω̃t− kz̃ − kζ (t)] + α + nψ.
(28)

By using (27) and (28), we obtain the expression:

t̃∫
t

Φn (t′) dt′ = (α + nψ + (1 + nη) [ω̃t− kz̃]) T̃ − (1 + nη) k

t̃∫
t

ζ (t) dt′ (29)

for the first integral in the right-hand side of (26). The integral in the right-hand side of (29) is
independent of t, because ζ (t) is periodic function with a period T̃n. This integral is zero. The
Fourier component of the function ζ (t) multiplied by T̃n.

Expression (29) can then be transformed to:

t̃∫
t

Φn (t′) dt′ =
(
α + nψ − (1 + nη) k

(
z̃ + ζ̄

))
T̃ + 2πt, (30)

where ζ̄ is the average value of the function ζ (t) in the time interval equal the period T̃n.
By substituting into (26) the values of integrals from (30) with ζ̄ = 0, we finally obtain:

x̄(t) = x̃+ Ṽx

(
t+ T̃n/2

)
, (31)

where x̃ and Ṽx are defined by expressions (21).
In the same way, we find:

ȳ(t) = ỹ + Ṽy

(
t+ T̃ /2

)
, (32)

from (32) ỹ and Ṽy are defined by expressions in (23).
Finally, taking into account that ζ̄ = 0, the expression for:

z̄(t) = z̃ + Ṽz

(
t+ T̃ /2

)
, (33)

where z̃ and Ṽz are defined by expressions (17) and (18).
Averaging the components (11) of the particle velocity, we obtain:

V̄x = Ṽx, V̄y = Ṽy, V̄z = Ṽz. (34)

As might be expected, the speed of the particle V̄ in (26) corresponds Ṽ with (18), (21)
and (23).

From the average value of the longitudinal component of the particle momentum, we
obtain the expression:
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p̄x = χx +
q2bx (bxχx + fbyχy)

γ2ω2 (1 + h)

N∑
n=−N

J2
n (µ)

(1 + nη)2 ;

p̄y = χy +
q2by (bxχx + fbyχy)

γ2ω2 (1 + h)

N∑
n=−N

J2
n (µ)

(1 + nη)2 ;

p̄z =
γ

1 + h

{
h+ h2 +

q2

2γ4ω2
(bxχx + fbyχy)

2
N∑

n=−N

J2
n (µ)

(1 + nη)2 +

q4
(
b2
x + b2

y

)2

16γ4ω4

N∑
n,k=−N

n6=k

J2
n (µ) J2

k (µ)

(1 + nη)2 (1 + kη)2 +
q4
(
b2
x + b2

y

)2

32γ4ω4

N∑
n=−N

J4
n (µ)

(1 + nη)4

}
.

(35)

The average energy ε̄ of the particles is determined by formula:

ε̄ =
cγ

1 + h

{
(1 + h)2 +

q2

2γ4ω2
(bxχx + fbyχy)

2
N∑

n=−N

J2
n (µ)

(1 + nη)2 +

q4
(
b2
x + b2

y

)2

16γ4ω4

N∑
n,k=−N

n6=k

J2
n (µ) J2

k (µ)

(1 + nη)2 (1 + kη)2 +
q4
(
b2
x + b2

y

)2

32γ4ω4

N∑
n=−N

J4
n (µ)

(1 + nη)4

}
.

(36)

5. The case of an arbitrary polarization for a particle being initially at rest

Consider the case when the particle is initially at rest (V0 = 0) and the Bessel functions
indices are equal to each other (k = n). Formula (13) expresses χx, χy, γ and taking into
account that:

Φn (0) = Φn0 = (ω + nω′) ξ0 + α + nψ; ξ0 = −z0/c,

we obtain:

χx = −qbx
ω

N∑
n=−N

Jn (µ) sin Φn0

(1 + nη)
;

χy = −fqby
ω

N∑
n=−N

Jn (µ) sin Φn0

(1 + nη)
;

γ = mc.

(37)

For a wave with an arbitrary polarization [8]:

b2
x ± b2

y = ρ2b2, (38)

where ρ is the ellipticity parameter (ρ = ±1 corresponds to the linear polarization and
ρ = ±1/

√
2 does to the circular one).

In other cases, the value ρ corresponds to an elliptical polarization (0 ≤ ρ ≤ 1), in
which:

χ2
x + χ2

y =
q2ρ2b2

ω2

N∑
n=−N

J2
n (µ) sin2 Φn0

(1 + nη)2 , (39)
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(bxχx + fbyχy)
2 =

q2ρ4b4

ω2

N∑
n=−N

J2
n (µ) sin2 Φn0

(1 + nη)2 . (40)

From (10), we obtain the value of h at the initial time:

h =
1

4

{
σ

(
N∑

n=−N

J2
n (µ)

(
1 + 2 sin2 Φn0

)
(1 + nη)2

)}
, (41)

and according to (41):

σ =
q2ρ2b2

m2c2ω2
=

2q2

πm2c5
Iλ2, (42)

where I = cρ2b2/4π is the intensity of the elliptically polarized electromagnetic wave, and
λ = 2πc/ω is the wavelength.

The oscillation period of a particle is:

T̃n = T

(
1

(1 + nη)
+
σ

4

(
N∑

n=−N

J2
n (µ)

(
1 + 2 sin2 Φn0

)
(1 + nη)3

))
. (43)

By substituting (37) – (41) in (36), we obtain the average energy of a particle at rest in
the initial wave of arbitrary polarization:

ε̄−mc2 =
mc2σ

4

{
N∑

n=−N

J2
n (µ)

(
1 + 2 sin2 Φn0

)
(1 + nη)2 +

N∑
n=−N

J4
n (µ)

(1 + nη)4

σ
(
2 sin2 Φn0 + 1/8

)(
1 +

(
σJ2

n (µ)
(
1 + 2 sin2 Φn0

))
/
(
4 (1 + nη)2))

}
.

(44)

The maximum average energy is obtained for the phase Φn0 = π/2 or 3π/2, when the
field at the point where a particle in located initially zero. In this case, we have:

ε̄−mc2 =
3mc2σ

4

{
N∑

n=−N

J2
n (µ)

(1 + nη)2 +
N∑

n=−N

J4
n (µ)

(1 + nη)4

17σ(
24 + 18σJ2

n (µ) /
(
(1 + nη)2))

}
.

(45)
The minimum average energy corresponds to the phase Φn0 = 0 or π and is determined

by the expression:

ε̄−mc2 =
mc2σ

4

{
N∑

n=−N

J2
n (µ)

(1 + nη)2 +
N∑

n=−N

J4
n (µ)

(1 + nη)4

σ(
8 + 2σJ2

n (µ) / (1 + nη)2)
}
. (46)

The energy 〈ε̄〉 of the charged particle, being further averaged over the initial phase Φn0,
in the plane monochromatic arbitrarily polarized wave is given by:

〈ε̄〉 −mc2 =
mc2σ

4

{
N∑

n=−N

6J2
n (µ)

(1 + nη)2−

N∑
n=−N

7σJ4
n (µ) + 32J2

n (µ) (1 + nη)2

2 (1 + nη)2
√

3J4
n (µ)σ2 + 16σJ2

n (µ) (1 + nη)2 + 16 (1 + nη)4

 .

(47)
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For the private case of wave circular polarization when the difference between Ex and
Ey corresponds to π/2 or 3π/2 (see (6) and (7)). This means that waves are located in opposite
phases and cancel each other out. We obtain the average energy ε̄ of the particle:

ε̄−mc2 =
σmc2

2


N∑

n=−N

J2
n (µ)

(1 + nη)2 + σ

N∑
n=−N

J4
n (µ)

(1 + nη)4

(
4 + 2σ

N∑
n=−N

J2
n (µ)

(1 + nη)2

)

. (48)

The resulting formulas (44), (45), (46) (47) and (48) for the average kinetic energy
of the particles comprise an explicit dependence on the initial particle velocity, amplitude
of the electromagnetic wave, a frequency modulation index, the frequency of the carrier wave,
frequency modulation, intensity and polarization, which allow one to make practical calculations.
When µ � 1, N = 1, the formulas (44), (45), (46) (47) and (48) become the special case of
linear and circular polarization form [6].

6. Conclusions

This article offers the exact solution for the equations of a charged particle’s motion in
the external field of a frequency-modulated electromagnetic wave. This solution indicates the
dependence of the electron velocity on the intensity of the monochromatic frequency-modulated
electromagnetic wave for the cases of elliptical polarization which are, therefore, the cases of
different initial conditions of the charged particle motion and wave polarization. In the electro-
magnetic wave (7) of the field E and H is periodic with average electric and magnetic field
values of zero. One would assume that such fields will have an alternating effect on charged par-
ticles and the average deviation caused by this influence is also zero. However, this assumption
is incorrect. In particular, in the field of a plane frequency-modulated electromagnetic wave, the
particle performs a systematic drift in the direction of the electromagnetic field, as well as the
drift direction of wave propagation. The values of the momentum and energy of the particle,
averaged over the period of vibration, were calculated. The oscillation period of the particle
differs from that of the field. As the field intensity is increased, the frequency of the oscillatory
motion of the particle tends to zero according to (20). The motion of the particle was shown to
be the superposition of motion at a constant velocity and vibrational motion with the frequency
of the electromagnetic field and the frequency modulation different from the field frequency.
In the absence of the frequency modulation, all the formulae go to the appropriate formulae
given in [6]. The solutions obtained are presented in the explicit dependence on the initial data,
the amplitude of the electromagnetic wave, the wave intensity and its polarization parameter
that allows practical application of the solutions. We have obtained the exact criterion for the
applicability of relativistic equations of motion for a charged particle in a frequency-modulated
electromagnetic field, depending on the intensity and duration of the pulse. This implies that
the accuracy of the analytical calculation increases with its time duration and decreases with
the intensity of the electromagnetic pulse. The practical significance of the research is that the
results can be used to develop relativistic electronic devices. In addition, the results may be
of interest for astrophysical research or studies involving plasma in an external electromagnetic
field.
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