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A system of parallel chain-type macromolecules (linear polymers) is considered. The spectrum of an electron

in such a system is described. Waveguide bands are shown to be present, ensuring conductivity. Considera-

tion is undertaken within the framework of a zero-range potentials model based on the theory of self-adjoint

extensions of symmetric operators. Possible applications also discussed.
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1. Introduction

This paper deals with the theoretical investigation of a nanosystem which can be
used for the creation of optically controlled magnetoresistance. The possibilities for this
type of control were outlined in [1]. Layered structures having magnetic layers and a spacer
filled with conducting polymer (linear molecules) with inserted banana-shaped photosen-
sitive molecules were suggested to be used for this purpose. Linear polymeric molecules
should ensure electronic conductivity between the magnetic layers. In the present paper, we
investigate the electronic band structure for a system of linear molecules.

Consider an infinite periodic chain of impurity atoms placed along some line (let it be
the axis OX) between two nanolayers (magnetic). We use the effective mass approximation,
i.e. we take into account the influence of the nanolayers by changing the effective mass
of the electron in the spacer (see, e.g., [2]). In chosen coordinate system, the position of
n−th atom of the chain (n = 0,±1,±2, . . .) is given by a vector na = (na, 0, 0) , where
a is the chain period. A simple but less accurate quantum graph model of such systems
(see, e.g., [3, 4]) is used more often. To compute the energy spectrum of the chain, we
use the zero-range potentials model. We mention that the spectrum for chain structures
in R3 can be rather unusual (see, e.g., [5]), but in our periodic case it has a defined band
structure. As for zero-range potentials, the background for the model is formed by the theory
of self-adjoint extensions of symmetric operators (see, e.g., [6, 7]). Namely, one starts from
a self-adjoint operator – the Laplacian in L2(R3) with the domain W 2

2 (R3). Here W 2
2 is the

Sobolev space. Let us restrict the operator to the set of smooth functions which vanish at
points pn = |r− na| ; n = 0,±1, . . .. The closure of this restricted operator is a symmetric
operator with infinite deficiency indices. To construct a self-adjoint extension, it is more
convenient to deal with the corresponding restriction of the adjoint operator. There are
several ways to describe extensions, e.g., boundary triplets method ( [8, 9], von Neumann
formulas ( [10]), Krein resolvent formula ( [11,12]). We will use here a variant of the second
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approach which allows one, in the case of semi-boundedness of the Hamiltonian, to present
an element from the domain of the adjoint operator in the following form:

ψ(r) = ψ0(x) +
∞∑

m=−∞

Cm ·
e−ik0|r−ma|

4π |r−ma|
, (1)

where ψ0 belongs to the domain of the Friedrichs extension of the initial symmetric operator,
Cm is some constant, k0 =

√
λ0, λ0 is a regular value of the spectral parameter (particularly,

one can choose real negative value of λ0, =k0 > 0). To explain the choice of extension, it is
convenient to consider the simplest case of a single point-like potential (at r = 0). In this
case, one has the symmetric operator with the deficiency indices (1, 1). The domain of the
adjoint operator (A∗) consists of the following elements (compare with (1)):

ψ(r) = ψ0(x) + C0
e−ik0|r|

4π |r|
.

To construct a self-adjoint extension, one calculates the boundary form for elements ψ, φ
from the domain of the adjoint operator:

(A∗ψ, φ)− (ψ,A∗φ) = ψ0(0)Cφ
0 − φ0(0)Cψ

0 .

Evidently, one gets a self-adjoint extension (annihilation of this form) if there is the following

relation between ψ0(0) and Cφ
0 :

ψ0(0) = b Cψ
0 ,=b = 0. (2)

Formally, the condition (2) takes the form of a ”boundary condition” at the point:

lim
|r|→0

[
∂

∂ |r|
− b
]
|r|Ψ = 0. (3)

One often rewrites condition (3) as a condition for the logarithmic derivative:

lim
|r|→0

1

|r|Ψ
∂

∂ |r|
(|r|Ψ) = b. (4)

For the case of the periodic chain, one has:

lim
pn→0

[
∂

∂pn
− b
]
pnΨ = 0, (5)

pn = |r− na| ; n = 0,±1, . . .

Below we will use this form of the condition.

2. Two chains

Consider the spectral problem for two parallel chains of zero-range potentials in R3.
We assume that centers of the chains are shifted by vector g = (g1, g2, 0). The first chain
has centers at points na = nae1, the second chain - at points na + g = (na+ g1) e1 + g2e2;
n = 0,±1,±2, . . . ; e1, e2 are unit vectors of axis X and axis Y , correspondingly. The Green
function for the operator with point-like potentials has the form:

G (r, r′, E) =
1

4π

exp [is |r− r′|]
|r− r′|

+

+∞∑
n=−∞

{
C(1)
n

exp [is |r− na|]
|r− na|

+ C(2)
n

exp [is |r− na− g|]
|r− na− g|

}
.
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Coefficients C
(1)
n , C

(2)
n are determined for the system given by conditions (5), which gives

one the following system after the Fourier transform:

D (k, s) ξ
(1)
k +Q (k, s) ξ

(2)
k = ϕk (r′)

Q (k, s)ξ
(1)
k +D (k, s) ξ

(2)
k = ϕk (r′)

where
ξ

(j)
k =

∑
n

C(j)
n eikna; j = 1, 2,

ϕk (r) = − 1

4π

∑
n

exp [is |r− na|+ ikna]

|r− na|

D (k, s) =
∑
n6=0

exp[is|n|a+ikna]
|n|a + is− b

Q (k, s) =
∑
n

exp[is|n−→a −g|+ikna]
|na−g|

Hence,

ξ
(1)
k = 1

2

{
ϕk(r′)+χϕk(r′−g)
D(k,s)+|Q(k,s)| + ϕk(r′)−χϕk(r′−g)

D(k,s)−|Q(k,s)|

}
ξ

(2)
k = χ

2

{
ϕk(r′)+χϕk(r′−g)
D(k,s)+|Q(k,s)| −

ϕk(r′)−χϕk(r′−g)
D(k,s)−|Q(k,s)|

}
where

χ = χ (k, s) =
Q (k, s)

|Q (k, s)|
Returning from ξ

(i)
k to coefficients C

(i)
n using formulas:

C(i)
n =

a

2π

+π/a∫
−π/a

ξ
(i)
k e
−iknadk,

one obtains the following expression for the Green function:

G (r, r′, E) = G0 (r− r′, E)− a
+π/a∫
−π/a

dk
∑
n,n′

exp [−ik (n− n′) a]

D (k, s) + |Q (k, s)|
×

× [G0 (r− na, E) + χG0 (r− na− g, E)] [G0 (na− r′, E) + χG0 (na + g − r′, E)]

−a
+π/a∫
−π/a

dk
∑
n,n′

exp [−ik (n− n′) a]

D (k, s)− |Q (k, s)|
×

× [G0 (r− na, E)− χG0 (r− na− g, E)] [G0 (na− r′, E)− χG0 (na + g − r′, E)] (6)

where

G0 (r, E) =
eisr

4πr
Expression (6) shows that two localized waveguide bands can appear near the chains. The
dispersion law for one band is determined by roots of D (k, s) + |Q (k, s)| of the second band
- by D (k, s)− |Q (k, s)|. The corresponding wave functions have the forms:

ϕ± (k, r) =[
d

dE
(D (k, s)± |Q (k, s)|)

]−1/2

E=ε±(k)
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exp (−ikna) [G0 (r− na, E)± χG0 (r− na− g, E)]E=ε±(k)

where ε± (k) is determined from the equations:

D

(
k,

√
2µE±
h2

)
±

∣∣∣∣∣Q
(
k,

√
2µE±
h2

)∣∣∣∣∣ = 0 (7)

Consider the particular case for which the distance between the chains g2 is greater than the
distance between neighboring centers of one chain. Let us find the approximate expression
for function Q (k, s) if s = iχ, χ is real. Using the formula:

e−χ∆

∆
=

1

π

+∞∫
−∞

eip∆dp

p2 + ∆2
,

one transforms the expression for Q (k, iχ) to the following form:

Q (k, iχ) =
1

π

+∞∑
n=−∞

eikna
+∞∫
−∞

eiξχdξ

ξ2 + (na− g1)2 + g2
2

=

1

π

+∞∫
−∞

eiξχ

(
+∞∑

n=−∞

eikna

ξ2 + (na− g1)2 + g2
2

)
dξ

If 0 6 ka < π then:
+∞∑

n=−∞

eikna

α2 + (na− β)2 =

− π

2aα

{[
cth
[π
a

(β − iα)
]
− i
]

exp [ik (β + iα)]−
[
cth
[π
a

(β − iα)
]
− i
]

exp [ik (β − iα)]
}

for α > 0. However, for α→ 0:
+∞∑

n=−∞

eikna

α2 + (na− β)2 '

π exp (ikβ)

aα

[
exp (−kα)− exp (kα) exp

[
−2π

a
(α + β)

]]
.

for α→ 0.
Hence,

Q (k, iχ) ≈ eikg1

a

+∞∫
−∞

eiξχ√
ξ2 + g2

2

[
e−k
√
ξ2+g22 − e−2πg1/ae(k−2π/a)

√
ξ2+g21

]
dξ =

=
eikg1

a

+∞∫
−∞

eiηχg2√
1 + η2

[
e−kg2

√
1+η2 − e−2πg1/ae(k−2π/a)g2

√
1+η2

]
dη (8)

The last integral in (8) can be transformed to the integral over the curve which
comprises the half-axis (i, i∞) in upper half-plane. Thus,

Q (k, iχ) ≈ 2eikg1

a

∞∫
1

e−θχg2√
θ2 − 1

[
cos (kg2)

√
θ2 − 1− e−2πg1/a cos

((
2π

a
− k
)
g2

√
θ2 − 1

)
≈
]
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≈
√

2π

g2

eikg1−kg2

a


√
χ+

√
χ2 + 2k2√

χ2 + 2k2
− ei2πg1/a

√
χ+

√
χ2 + 2 (2π/a− k)2√

χ2 + 2 (2π/a− k)2

 (9)

Substituting (9) into (7) one determines the value of the waveguide band splitting
caused by the existence of the second chain. Taking into account the smallness of |Q (, iχ)|
for sufficiently remote chains, one finds that the level ε0 (k) of single chain is split in the
following manner:

ε± (k) = ε0 (k)±
hd
√

2 |ε0 (k)|
√
µ
√

(d+ cos (ka))2 − 1

∣∣∣∣Q(k, ih√2µ |ε0 (k)|
)∣∣∣∣

A gap in the waveguide band can appear if the top of the band ε− (k), i.e. ε− (π/a) is greater
than the bottom ε+ (0) of the band ε+ (k), i.e. if ε− (π/a) < ε+ (0) .

3. The case of many chains

We now consider the system of M − 1 (M = 2, 3, ...) parallel identical chains. Let
the position of centers be given by vectors na1 + ma2, n,m− integer. In the framework of
the zero-range potential approach, the wave function of the electron is Ψ (r):

lim
pnm→0

[
∂

∂pnm
− b
]
pnmΨ = 0, (10)

where pnm = |r− na1 −ma2|. We will seek the perturbed Green function G (r, r′, E) for
=E > 0 in the following form:

G (r, r′, E) = G0 (r− r′, E) + 4π
∑
n,m

CnmG0 (r− na1 −ma2, E) ,

where G0(r, E) is the Green function for free space. Conditions (10) gives one a system for
coefficients Cnm:

(is− b)Cnm +
∑

n′ 6=n,m′ 6=m

Cn′m′
exp [is |(n− n′) a1 + (m−m′)−→a2 |]
|(n− n′) a1 + (m−m′) a2|

= ϕnm (r′) ,

where

ϕnm (r′) = − 1

4π

exp [is |r′ − na1 −ma2|]
|r′ − na1 −ma2|

.

The prime sign near the sum means that it is sufficient to satisfy only one from the conditions
n′ 6= n or m 6= m′. ,,To simplify formulas for Cnm, we assume that |Cn,m±p| � |Cn,m±1| for
p > 1. Then, after the Fourier transform along the chain, one obtains:

D (k, s) ξm (k) +D1 (k, s) [ξm+1 (k) + ξm−1 (k)] = ηm (k, r′) , (11)

where
ξm (k) =

∑
n

Cnm exp (ikna) ,

D (k, s) =
1

a
ln

d

cos (a1s)− cos (a2k)
,

D1 (k, s) =
+∞∑

n=−∞

exp [is |na1 + a2|+ ikna1]

|na1 + a2|
, (12)
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ηm (k, r′) = − 1

4π

∑
n

ϕnm (r′) exp (ikna) .

The dispersion equation is obtained from the solvability condition for the following
homogeneous difference equation:

Dξm +D1 (ξm+1 + ξm−1) = 0. (13)

The solution of (13) has the form:

ξm (k) = Ξ1 (k) cos (k2ma2) + Ξ2 (k) sin (k2ma2) .

The range for k2 and value of Ξ1 (for M − 1 chains) are determined from the boundary
conditions Cn0 = CnM = 0. Consequently, ξ0 (k) = ξM (k) = 0, Ξ1 (k) = 0 and

k2 = πl/ (Ma2) ; l = 1, 2, . . . ,M − 1.

If one inserts the solution:

ξm (k) = Ξ (k) sin (πml/M) ,

into (11), the dispersion equation is obtained:

D (k, s) + 2D1 (k, s) cos (πl/M) = 0. (14)

Waveguide bands are given by the solution s = iχ, χ > 0, of (14). Taking into account (12),
one reduces (14) to the following form:

cosh (a1χ) = cos (a1k) + d1 (χ, l) , (15)

where d1 (χ, l) = d exp [2a1D1 cos (πl) /M ], or, correspondingly, to the form:

E1 (k) = − h2

2µa1

{
ln

[
d1 (χ, l) + cos (a1k) +

√
[d1 (χ, l) + cos (a1k)]2 − 1

]}2

,

where E1 (k) = −h2χ2

2µ
. Note that for small k, χ, one can replace the sum for D1 from (12)

by the integral:

D1 ≈
+∞∫
−∞

exp [−χ |νa1 + a2|+ ikνa1]

|νa1 + a2|
dν =

2

a1

K0

(√
(χa1)2 + (ka2)2

)
,

where K0 (z) is the Macdonald function of zero order. Due to the integer parameter l,
equation (15) determines, generally speaking, M − 1 waveguide bands. The conductivity is
determined by such bands which are empty or partially filled, i.e. contain the Fermi level
EF . If each atom of the chain has one “free” electron, then the Fermi level EF is determined
from the equation:

π (M − 1)

2a1

=
M−1∑
l=1

EF∫
E0

dk

dE
dE. (16)

Taking into account (15), one rewrites (16) in the form:

π

2a1

=
1

M − 1

M−1∑
l=1

χF∫
χ0

sh (χa1)− d′1 (χ, l)√
1− [ch (χa1)− d1]2

dχ, (17)
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where d′1 (χ, l) = ∂d1(χ,l)
∂(χa1)

. If one ignores the difference between d1 (χ, l) and d, then equation

(17) gives one the following value of the Fermi level:

E0
F = − h2

2µa2
1

ln2
[
d+
√
d2 − 1

]
,

which corresponds to the case of single chain.
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1. Introduction

It is well known that integral equations have wide application in engineering, mechanics,
physics, economics, optimization, vehicular traffic, biology, queuing theory and so on (see
[1–5]). The theory of integral equations is rapidly developing with the help of tools in functional
analysis, topology and fixed point theory. Therefore, many different methods are used to obtain
the solution of the nonlinear integral equation. Moreover, some methods can be found in
Refs. [6–13], to discuss and obtain a solution for the Hammerstein integral equation. In [11],
J.Appell and A.S. Kalitvin used fixed point methods and methods of nonlinear spectral theory
to obtain a solution for integral equations of the Hammerstein or Uryson type. The existence
of positive solutions of abstract integral equations of Hammerstein type is discussed in [9].
In [7], M.A. Abdou, M.M. El-Borai and M.M. El-Kojok discuss the existence and uniqueness
of a solution for the nonlinear integral equation of the Hammerstein type with a discontinuous
kernel.

In this present paper, we study the solvability of an homogeneous integral equation of
the Hammerstein type. An integral equation of the form:

1∫
0

K(t, u)Ψ (t, f(u)) du = f(t), (1.1)

is called the homogeneous Hammerstein integral equation, where K(t, u) is continuous real-
valued function defined on 0 ≤ t ≤ 0, 0 ≤ u ≤ 1, Ψ : [0, 1]× R → R is a continuous function
and f(t) is unknown function from C[0, 1].

Let Ψ(t, z),
∂

∂z
Ψ(t, z) be continuous and bounded for t ∈ [0, 1] and for all z. Then [14],

the Hammerstein integral equation (1.1) has a solution, assuming that Ψ(t, z) is a bounded con-
tinuous function for t ∈ [0, 1] and z ∈ R. In this case, the Hammerstein integral equation (1.1)
also has a solution [15]. For the necessary details of this theorem and for more results on the
Hammerstein integral equation, we refer to Petryshyn and Fitzpatrik [16], Browder [17], Brezis
and Browder [18].
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Recently, the case Ψ(t, z) = Ψ(z) was considered [19]. Let Ψ(z) be a monotonous

left-continuous function on [0,+∞) and lim
x→0

Ψ(z)

z
= +∞, lim

x→+∞

Ψ(z)

z
= 0. Then, the integral

equation of Hammerstein type (1.1) has a solution [19].
In this work, we will consider the following integral equation of Hammerstein type (i.e.

in (1.1) Ψ(t, z) = Ψ(z) = zϑ):

1∫
0

K(t, u)fϑ(u)du = f(t), ϑ > 1, (1.2)

on the C[0, 1], where K(t, u) is a strictly positive continuous function.
By Theorem 44.8 from [4], the existence of a nontrivial positive solution for the Ham-

merstein equation (1.2) follows. We study the problem of the existence of a finite number of
positive solutions for the integral equation of the Hammerstein type (1.2).

Consider the nonlinear operator Rα on the cone of positive continuous functions on [0, 1] :

(Rαf) (t) =

(∫ 1

0
K(t, u)f(u)du∫ 1

0
K(0, u)f(u)du

)α

, (1.3)

where K(t, u) is given in the integral equation of Hammerstein type (1.2) and α > 0. An
operator of the form (1.3) arises in the theory of Gibbs measures (see [20–22]). Positive fixed
points of the operator Rk, k ∈ N and their numbers are very important to study Gibbs measures
for models on a Cayley tree.

In [21], for the case α = 1, the uniqueness of positive fixed points of the nonlinear
operator Rα (1.3) was proved. In [20], in the case α = k ∈ N, k > 1, for the nonlinear
operator Rα, the existence of positive fixed point and the existence Gibbs measure for some
mathematical models on a Cayley tree were proved.

The aim of this work is to study the existence of a finite number of positive solutions
for the Hammerstein equation (1.2) on the space of continuous functions on [0, 1]. The plan of
this paper is as follows: in the second section, using properties of Hammerstein equation (1.2),
we reduce some statements on the positive fixed point of the operator Rα; in the third section,
we construct the strictly positive continuous kernel K(t, u), such that, for given n ∈ N, the
corresponding Hammerstein equation (1.2) has n number of positive Solutions; in the fourth
section, the obtained results for the operator Rα are applied to study Gibbs measures for models
on a Cayley tree.

2. Existence and uniqueness of positive fixed points for the operator Rα

In this section, we study the existence and the uniqueness of positive fixed points for
the nonlinear operator Rα (1.3). We set:

C+[0, 1] = {f ∈ C[0, 1] : f(x) ≥ 0}, C+
0 [0, 1] = C+[0, 1] \ {θ ≡ 0},

where the set C+[0, 1] is the cone of positive continuous functions on [0, 1].
We define the Hammerstein operator Hϑ on C[0, 1] by the equality:

Hϑf(t) =

1∫
0

K(t, u)fϑ(u)du = f(t), ϑ > 1.

Clearly, by Theorem 44.8 from [4], we obtain:
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Theorem 1. Let ϑ > 1. The equation:

Hϑf = f (2.1)

has at least one solution in C+
0 [0, 1].

We set:
M0 =

{
f ∈ C+[0, 1] : f(0) = 1

}
.

Lemma 1. Let α > 1. The equation

Rαf = f, f ∈ C+
0 [0, 1] (2.2)

has a positive solution iff the Hammerstein operator has a positive eigenvalue, i.e. the
Hammerstein equation:

Hαg = λg, f ∈ C+[0, 1], (2.3)
has a positive solution in M0 for some λ > 0.

Proof. We define the linear operator W and the linear functional ω on the C[0, 1] by the
following equalities:

(Wf) (t) =

1∫
0

K(t, u)f(u)du, ω(f) =

1∫
0

K(0, u)f(u)du.

Necessariness. Let f0 ∈ C+
0 [0, 1] be a solution of the equation (2.2). We have:

(Wf0) (t) = ω(f0) α
√
f0(t).

From this equality, we get:
(Hαh) (t) = λ0h(t),

where h(t) = α
√
f0(t) and λ0 = ω(f0) > 0.

It is easy to see that h ∈ M0 and h(t) is an eigenfunction of the Hammerstein’s
operator Hα, corresponding the positive eigenvalue λ0.

Sufficiency. Let h ∈M0 be an eigenfunction of the Hammerstein’s operator Hα. Then,
there is a number λ0 > 0 such that Hαh = λ0h. From h(0) = 1, we get λ0 = (Hαh) (0) =
ω (hα). Then:

h(t) =
(Hαh) (t)

ω (hα)
.

From this equality, we get Rαf0 = f0 with f0 = hα ∈ C+
0 [0, 1]. This completes the proof. �

Theorem 2. The equation (2.2) has at least one solution in C+
0 [0, 1].

Let λ0 be a positive eigenvalue of the Hammerstein operator Hα, α > 1. Then, there
exists f0 ∈ M0 such that Hαf0 = λ0f0. We take λ ∈ (0,+∞), λ 6= λ0. We define function
h0(t) ∈ C+

0 [0, 1] by

h0(t) = α−1

√
λ

λ0

f0(t), t ∈ [0, 1].

Then:

Hαh0 = Hα

(
α−1

√
λ

λ0

f0

)
= λh0,

i.e. the number λ is an eigenvalue of Hammerstein operator Hα corresponding the eigenfunc-
tion h0(t). This can be easily verified: if the number λ0 > 0 is an eigenvalue of the operator
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Hα, α > 1, then an arbitrary positive number is an eigenvalue of the operator Hα. Therefore,
we have:

Lemma 2. a) Let α > 1.The equation Rαf = f has a nontrivial positive solution iff the
Hammerstein equation Hαg = g has a nontrivial positive solution.

Let α > 1. We denote by Nfix.p (Hα) and Nfix.p (Rα) numbers of nontrivial positive
solutions of the equations (2.1) and (2.2), respectively.

Theorem 3. Let α > 1. The equality Nfix.p (Hα) = Nfix.p (Rα) is held.

We denote:
m = min

t,u∈[0,1]
K(t, u), M0 = max

u∈[0,1]
K(0, u),

M = max
t,u∈[0,1]

K(t, u), m0 = min
u∈[0,1]

K(0, u).

Theorem 4. Let α > 1. If the following inequality holds:(
M

m

)α
−
(m
M

)α
<

1

α
,

then the homogenous Hammerstein equation (2.1) and the equation (2.2) have a unique non-
trivial positive solution.

An analogous theorem was proved for α = k ∈ N, k ≥ 2 in [20] and proof of Theorem 4
is analogously obtained.

3. The existence of a finite number of positive solutions for the homogeneous
Hammerstein equation

In this section, for a given n ∈ N, we’ll show the existence of n number of positive
solutions of homogeneous integral equation of Hammerstein type (1.2).

For all p, n ∈ N we define following matrices:

A(p)
n =

{
1

2(2p+ i+ j)− 3

(
1

2

)2(2p+i+j−2)
}
i,j=1,n

, n, p ∈ N. (3.1)

B [a1, ..., an; b1, ...bn] =

(
1

ai + bj

)
i,j=1,n

, ai, bj > 0. (3.2)

C(p)
n = B [4p, 4(p+ 1), ..., 2(p+ n− 1); 1, 5, ..., 4n− 3] . (3.3)

Lemma 3. [25] Let n ≥ 2. Then:

det B [a1, ..., an; b1, ..., bn] =

∏
1≤i<j≤n [(ai − aj)(bi − bj)]∏n

i,j=1 (ai + bj)
.

Corollary 1. det A
(p)
n =

(
1

2

)2n(2p+n−1)

det C
(p)
n .

Proof. Let i, j ∈ 1, 2, ..., n. We multiply by 22(p+j−1) the jth column of the matrix A
(p)
n , after

that, we multiply by 22(i−1) the i-th row of the matrix obtained. As a result, we get C
(p)
n . �
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Lemma 4. Let B−1 [a1, a2, ..., an; b1, b2, ..., bn] = {βij}i,j=1,n be an inverse matrix of
B [a1, a2, ..., an; b1, b2, ..., bn]. Then:

βji =

∏n
s=1(as + bj)

∏n
s=1,s 6=i(ai + bs)∏n

s=1,s6=j(bj − bs)
∏n

s=1,s6=i(ai − as)
.

Proof. Subtracting the jth column of B [a1, a2, ..., an; b1, b2, ..., bn] from every other column, we
get the following equality:

det B [a1, a2, ..., an; b1, b2, ..., bn] =

∏n
s=1,s6=j(bj − bs)∏n
s=1(as + bj)



1

a1 + b1

...
1

a1 + bj−1

1
1

a1 + bj+1

...
1

a1 + bn
1

a2 + b1

...
1

a2 + bj−1

1
1

a2 + bj+1

...
1

a2 + bn
... ... ...

1

an + b1

...
1

an + bj−1

1
1

an + bj+1

...
1

an + bn


.

Next, we subtract from the j-th row the i-th row for every j ∈ {1, 2..., i− 1, i+ 1, ...n}. Then,

det B [a1, ..., an; b1, ..., bn] =

∏n
s=1,s6=j(bj − bs)

∏n
s=1,s6=i(ai − as)∏n

s=1(as + bj)
∏n

s=1,s6=i(ai + bs)
× det B(i,j) [a1, ..., an; b1, ..., bn] ,

where B(j,i) [a1, ..., an; b1, ..., bn] is the cofactor of the element
1

ai + aj
in B [a1, ..., an; b1, ..., bn],

since:

βji =
det B(i,j) [a1, ..., an; b1, ..., bn]

det B [a1, ..., an; b1, ..., bn]
.

This completes the proof. �

We let: (
A(p)
n

)−1
= {αij}i,j∈1,n.

Remark 1. For each αji element of
(
A

(p)
n

)−1

, the following equality holds:

αji = 42p+i+j−n+1 ·
∏n

s=1(4p+ 2s+ 2j − 3)
∏n

s=1,s6=j(4p+ 2s+ 2j − 3)∏n
s=1,s6=j(j − s)

∏n
s=1,s6=i(i− s)

.

Proof. By Corollary 1 and Lemma 4 we get:

αji = 42p+i+j · det B(i,j) [4p, 4p+ 2, ...4p+ 2(n− 1); 1, 3, ...2n− 1]

det B [4p, 4p+ 2, ...4p+ 2(n− 1); 1, 3, ...2n− 1]
=

42p+i+j ·
∏n

s=1(4p+ 2s+ 2j − 3)
∏n

s=1,s6=i(4p+ 2s+ 2i− 3)∏n
s=1,s6=j(2j − 2s)

∏n
s=1,s6=i(2i− 2s)

.

�
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Here, we denote

ϕ(s,n,p)(u) = αs1u
2p−1 + ...+ αsnu

2(n+p)−3, s, n, p ∈ N, u ∈ [0, 1],

K(n,p)(t, u; k) = 1 +
n∑
s=1

(
k
√

1 + t2(p+s)−1 − 1
)
ϕ(s,n,p)(u), k ∈ N, k ≥ 2, t, u ∈ [0, 1].

Remark 2. For the given k ∈ N, k ≥ 2. the following inequality holds:

K(n,p)

(
t− 1

2
, u− 1

2
; k

)
≤ K(n,1)

(
t− 1

2
, u− 1

2
; k

)
, (t, u) ∈ [0, 1]2, n, p ∈ N.

We set:

ζ0(n) =
64

9
· 4n − 1

4n+ 1

(
(4n+ 1)!!

(n− 1)!(2n+ 1)!!

)2

.

Lemma 5. Let n ∈ N. If k ≥ ζ0(n), then the following inequality holds:

K(n,p)

(
t− 1

2
, u− 1

2
; k

)
> 0, (t, u) ∈ [0, 1]2, p ∈ N.

Proof. For p = 1 from Remark 1, we have:

αij = 4i+j−n+3

∏n
s=1(2i+ 2s+ 1)

∏n
s=1,s6=j(2j + 2s+ 1)∏n

s=1,s6=i(i− s)
∏n

s=1,s6=j(j − s)
.

Then: ∣∣∣∣αi,j+1

αi,j

∣∣∣∣ =
4(4j + 1)(2j + 2n+ 3)

(2j + 3)(4j + 5)
, i = 1, n, j = 1, n− 1

and ∣∣∣∣αi+1,j

αi,j

∣∣∣∣ =
4(n− i)(2i+ 2n+ 3)

i(2i+ 3)
, i = 1, n, j = 1, n− 1.

From the above, one has: maxi,j=1,n |αij| = |αnn|. By Remark 1, we can take:

K(n,p)

(
t− 1

2
, u− 1

2
; k

)
≥ 1− 2

3
max
i,j=1,n

|αij|
n∑
s=1

 k

√
1 +

(
1

2

)2s+1

− 1

 ≥
1− 2|ann|

3k

n∑
s=1

(
1

2

)2s+1

≥ 1− (4n − 1) · 64(2n+ 3)2(2n+ 5)2...(4n− 1)2(4n+ 1)

9k ((n− 1)!)2 .

Since k ≥ ζ0(n), one gets K(n,p)

(
t− 1

2
, u− 1

2
; k

)
> 0. This completes the proof.

�
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Proposition 1. Let n ∈ N. If k ≥ ζ0(n), then the Hammerstein’s nonlinear operator Hk with

kernel K(n,p)

(
t− 1

2
, u− 1

2
; k

)
(p ∈ N) has at least n number of positive fixed points.

Proof. Let fj(u) =
k
√

1 + u2(p+j)−1, j = 1, n and u1 = u − 1

2
, t1 = t − 1

2
. Put gj(t) =

fj

(
t− 1

2

)
. We will show functions gj(t) are fixed points of the Hammerstein operator Hk

with the kernel K(n,p)

(
t− 1

2
, u− 1

2
; k

)
:

1∫
0

K(n,p)

(
t− 1

2
, u− 1

2
; k

)
gkj (u)du =

1∫
0

K(n,p)

(
t− 1

2
, u− 1

2
; k

)
fkj

(
u− 1

2

)
du =

1
2∫

− 1
2

K(n,p) (t1, u1; k) fkj (u1)du1 =

− 1
2∫

1
2

[
1 +

n∑
s=1

(
k

√
1 + t

2(p+s)−1
1 − 1

)
ϕ(s,n,p)(u1)

](
1 + u

2(p+j)−1
1

)
du1 =

1 +
n∑
s=1

(
k

√
1 + t

2(p+s)−1
1 − 1

) 1
2∫

1
2

(
αs1u

4(p−1)+2s+2j
1 + ...+ αsnu

4p+2(s+j+n)−6
1

)
du1 =

1 +
n∑
s=1

(
k

√
1 + t

2(p+s)−1
1 − 1

)
(αsjβs1 + ...+ αnjβsn) =

k

√
1 + t

2(p+j)−1
1 .

Hence:
1∫

0

K(n,p)

(
t− 1

2
, u− 1

2
; k

)
gkj (u)du = gj(t), j ∈ {1, 2, ..., n}.

�

Theorem 5. For each n ∈ N, there exists ϑ > 1 and a positive continuous kernel K(t, u) such
that, the number of positive solutions for the Hammerstein integral equation (1.2) is equal to
at least n.

4. Gibbs measures for models on Cayley tree Γk

In this section we study Gibbs measures for models on Cayley tree. You may be familiar
with the definitions and properties of Gibbs measures in books [22–24]. A Cayley tree (Bethe
lattice) Γk of order k ∈ N is an infinite homogeneous tree, i.e., a graph without cycles, such
that exactly k + 1 edges originate from each vertex. Let Γk = (V, L) where V is the set of
vertices and L that of edges (arcs). Two vertices x and y are called nearest neighbors if there
exists an edge l ∈ L connecting them. We will use the notation l = 〈x, y〉. A collection of
nearest neighbor pairs 〈x, x1〉, 〈x1, x2〉, ...〈xd−1, y〉 is called a path from x to y. The distance
d(x, y) on the Cayley tree is the number of edges of the shortest path from x to y.
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For a fixed x0 ∈ V , called the root, we set:

Wn = {x ∈ V |d(x, x0) = n}, Vn =
n⋃

m=0

Wm

and denote:
S(x) = {y ∈ Wn+1 : d(x, y) = 1}, x ∈ Wn,

the set of direct successors of x.
Consider models where the spin takes values in the set [0, 1], and is assigned to the

vertices of the tree. For A ⊂ V a configuration σA on A is an arbitrary function σA : A→ [0, 1].
We denote ΩA = [0, 1]A the set of all configurations on A and Ω = [0, 1]V . The Hamiltonian on
Γk of the model is:

H(σ) = −J
∑
〈x,y〉∈L

ξ (σ(x), σ(y)) , σ ∈ Ω, (4.1)

where J ∈ R \ {0} and ξ : (u, v) ∈ [0, 1]2 → ξu,v ∈ R is a given bounded, measurable function.
Let λ be the Lebesgue measure on [0, 1]. On the set of all configurations on A the a priori

measure λA is introduced as the |A| fold product of the measure λ. Here and subsequently, |A|
denotes the cardinality of A. We consider a standard sigma-algebra B of subsets of Ω = [0, 1]V

generated by the measurable cylinder subsets.
Let σn : x ∈ Vn 7→ σn(x) be a configuration in Vn and h : x ∈ V 7→ hx = (ht,x, t ∈

[0, 1]) ∈ R[0,1] be mapping of x ∈ V \ {x0}. Given n = 1, 2, . . ., consider the probability
distribution µ(n) on ΩVn defined by:

µ(n)(σn) = Z−1
n exp

(
−βH(σn) +

∑
x∈Wn

hσ(x),x

)
. (4.2)

Here, as before, σn : x ∈ Vn 7→ σ(x) and Zn is the corresponding partition function:

Zn =

∫
ΩVn

exp

(
−βH(σ̃n) +

∑
x∈Wn

hσ̃(x),x

)
λVn(σ̃n), (4.3)

where β = T−1, T > 0 – temperature. The probability distributions µ(n) are compatible [21] if
for any n ≥ 1 and σn−1 ∈ ΩVn−1:∫

ΩWn

µ(n) (σn−1 ∨ ωn)λWn (d(ωn)) = µ(n−1) (σn−1) . (4.4)

Here, σn−1 ∨ ωn ∈ ΩVn is the concatenation of σn−1 and ωn. In this case, there exists [21] a

unique measure µ on ΩV such that, for any n and σn ∈ ΩVn , µ

({
σ
∣∣∣
Vn

= σn

})
= µ(n)(σn).

The measure µ is called the splitting Gibbs measure, corresponding to Hamiltonian (4.1) and
function x 7→ hx, x 6= x0.

The following statement describes conditions on hx guaranteeing compatibility of the
corresponding distributions µ(n)(σn).

Proposition 2. [21] The probability distributions µ(n)(σn), n = 1, 2, . . ., in (4.2) are compatible
iff for any x ∈ V \ {x0} the following equation holds:
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f(t, x) =
∏

y∈S(x)

∫ 1

0
exp(Jβξt,u)f(u, y)du∫ 1

0
exp(Jβξ0,u)f(u, y)du

. (4.5)

Here and below, f(t, x) = exp(ht,x− h0,x), t ∈ [0, 1] and du = λ(du) is the Lebesgue measure.

We consider ξtu as a continuous function and we are going to solve equation (4.5) in the
class of translation − invariant functions f(t, x) (i.e. f(t, x) = f(t) for all x ∈ Γk \ {x0}).
We’ll show that there exists a finite number of translation − invariant Gibbs measures for
model (4.1).

For translation− invariant functions, equation (4.5) can be written as:

(Rkf) (t) = f(t), k ∈ N, (4.6)

where K(t, u) = Q(t, u) = exp(Jβξtu), f(t) ∈ C+
0 [0, 1], t, u ∈ [0, 1] (see [20, 21]).

Consequently, for each k ∈ N, k ≥ 2, the Hammerstein integral equation corresponding
to the equation (4.6) has the following form:

1∫
0

Q(t, u)fk(u)du = f(t). (4.7)

By Theorem 3 and Propositions 1and 2 we’ll obtain the following Theorem:

Theorem 6. Let n ∈ N. If k ≥ ζ0(n), then number of translation-invariant Gibbs measures for
the model:

H(σ) = − 1

β

∑
<x,y>

ln

(
K(n,p)

(
σ(x)− 1

2
, σ(y)− 1

2
; k

))
, σ ∈ Ω(p ∈ N),

on the Cayley tree Γk is equal to at least n.
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The absorption and scattering efficiency factors for cobalt nanoparticles over wavelengths ranging from 400 –

1200 nm were calculated. The maximum values and corresponding radii of the absorption efficiency were shown

to be dependent upon the incident light wavelength. The highest scattering factor values in the studied spectral

range were between 2.2 and 2.4. If the absorptivity of the matrix increases, absorption of the light by cobalt

nanoparticles begins to dominate over scattering process. The obtained results allow us to predict the optical

properties for composite materials based on a transparent matrix with cobalt nanoparticles, which is essential for

the accurate modeling of such systems’ behavior under laser irradiation.
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1. Introduction

Nanoparticles have unique thermochemical, physical and optical properties. Their in-
clusion into condensed matrices significantly changes the properties of the obtained composite
materials. The composites, based on metal nanoparticles and transparent matrix, are of the
great interest for the optical physics and optoelectronics [1]. Both experimental and theoretical
investigations of such composites’ optical properties are presented in [2–4]. The problem is
important today because of the possible practical use of the absorption and scattering of light
by nanoparticles in timing devices of nonlinear optical equipment [5], application to the thermal
cancer therapy, and optical detonators [6, 7].

It is known that iron-group element nanoparticles may be used in the high-speed optical
devices [7,8]. Aluminium nanoparticles in pentaerythritol tetranitrate (PETN) reduce the explo-
sive decomposition threshold by more than 100-fold in case of initiation by the first and second
harmonics of the Nd:YAG laser [6, 9, 10]. The possibility of using cobalt nanoparticle-based
composites in secondary explosives as an optical detonator cup was mentioned in [3, 11, 12].
Methods for synthesizing cobalt nanoparticles with definite sizes have been previously de-
scribed [13]. In order to calculate the illumination intensity in the composite’s volume, it is
necessary to take into account multiple scattering of light by the metal nanoparticles [14, 15].
This point was verified experimentally for the pressed PETN-aluminium pellets [4]. In order
to find the optimal material for an optical detonator cup and compositions for the nonlinear
optical equipment, it is necessary to calculate the relationships of the absorption and scattering
efficiency factors by varying particle size and the wavelength of the incident light [16].



The optical properties of the cobalt nanoparticles 629

2. Calculation procedure and Results

The interaction of metal nanoparticles and electromagnetic radiation is traditionally de-
scribed by using the absorption efficiency (Qabs) and scattering efficiency factors (Qsca). These
dimensionless parameters are equal to the ratio of the particle’s cross-section and its geometrical
cross-section Q = σ/σg. The Qabs was calculated in terms of Mie theory as the difference of
the absorption efficiency (Qext) and scattering efficiency factors (Qsca) [16–18].

The main parameters of the theory are the complex refractive index (mi) of cobalt,
which depends on the wavelength of the incident light (λ), and the refractive index of the
medium (m0) [19]. These data over the range 400 – 1210 nm with increments of ∼ 100 nm
are presented in [20]. In order to calculate the absorption and scattering efficiency factors for
the wavelengths, which were not presented in [19], work we used the spline interpolation with
1 nm increments, obtaining a smooth dependence mi(λ) in this manner [18, 19]. The range
of nanoparticle radii studied is dictated by their potential use in optic initiation systems where
values of 20 < R < 200 nm are utilized.

Figures 1 and 2 show the dependences of the absorption efficiency (Qabs) and scattering
efficiency factors (Qsca) respectively on the cobalt particle’s radius in a transparent medium with
m0 equal to 1.54 calculated for the light wavelengths of 400, 600, 800, 1000, and 1200 nm.

FIG. 1. The dependence of the absorption efficiency factor of the cobalt nanopar-
ticles in the PETN matrix on their radius for the wavelengths in nm presented in
the legend.

This refractive index was chosen as a typical value for dielectric media and is equal to
the refractive index of pentaerythritol tetranitrate (PETN), which is one of the most important
compounds among secondary explosives. As seen, Qabs values increase for small particle
radii values and tend to steady-state value with oscillations in the R → ∞ limit [21, 22].
The dependence has a well-marked maximum which tends to shift to larger radii when the
wavelength increases. At the same time, the maximum’s amplitude decreases significantly. The
dependence Qsca vs. R increases for the small radii, then it achieves constant value and remains
close to that value with minor fluctuations. The curve Qsca(R) has several local maxima. One
can see the shift of the principal maximum position in Fig. 3. Enumerating the maxima from
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FIG. 2. The dependence of the scattering efficiency factor of the cobalt nanopar-
ticles in the PETN matrix on their radius for the wavelengths in nm presented in
the legend.

FIG. 3. The dependence of the scattering efficiency factor of the cobalt nanopar-
ticles for of the second harmonics of Nd:YAG laser irradiation. The refractive
indexes of the media are 1, 1.25, 1.5, 1.75, and 2

small to higher R values it is seen that for λ > 463 nm, the principal maximum is the first one,
while in the spectral range λ ≤ 463 nm the highest maximum is the second one.

Figures 3 and 4 show the dependences of the absorption and scattering efficiency factors
of the cobalt nanoparticles upon their radii for 532 nm light and for different refractive indices.
This value of λ coincides with the second harmonics wavelength for the Nd:YAG laser, which
is widely used in many applications [6–8]. The displays show that increasing the medium’s
refractive index results in an increase of the maximum amplitude for Qabs(R) and a shift to
smaller radii values. The increasing of the refraction index of the media results in the shift
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FIG. 4. The dependence of the cobalt nanoparticle absorption factor in case of
irradiation of the second harmonic of Nd:YAG laser, refractive indexes of the
media are 1, 1.25, 1.5, 1.75, and 2

of the initial ascending part of the Qsca(R) curve to the smaller radii values. Additionally,
the oscillations’ amplitude decreases for larger particle radius values and one can see a small
decrease for the Qsca stationary value when R→∞.

Based on the data presented above, the maximum values of absorption (Qabs max) and
scattering efficiency factors (Qsca max) were calculated for cobalt nanoparticles for different
wavelengths. These calculations for the positions of the maxima were done assuming a refractive
index 1.54 for the medium. The results are presented in Table 1. These data show that the
absorption exceeds the scattering for shorter wavelength values. The maximum values of
absorption and scattering efficiency factor coincide for cobalt nanoparticles at a wavelength of
482.5 nm. Increasing of wavelength from 400 up to 1200 nm results in monotonic Qabs max(λ)
decreasing in ∼ 2.2 fold, from 2.6589 to 1.2065. If the wavelength increases, the radius of the
particles with the largest absorption efficiency factor (Rabs max) increases linearly from 27.7 nm
for λ = 400 nm up to 111.5 nm for λ = 1200 nm. For Qsca max(λ), this dependence is dissimilar.
Qsca max is almost independent of the wavelength and shows small oscillations in the vicinity of
the stationary value. For all wavelengths, the values of Qsca max(λ) are 2.1992 – 2.3371, and
the minimum is observed at λ = 471 nm. The radius of the nanoparticles having the greatest
scattering efficiency factor for a given wavelength (Rsca max) increases from 73.3 nm to 105.3 nm
in the 400 < λ < 550 nm range and from 63.2 nm to 136.3 nm in the 575 < λ < 1200 nm
range. In the 550 – 575 nm wavelength range, a two fold decreasing of Rsca max values was
observed. This might be explained by the fact that in the 400 < λ < 550 nm range, the second
maximum dominates for the Qsca(R) dependence, and if the wavelength is longer than 550 nm,
the first one dominates.

The contributions of the harmonics to the scattering efficiency factor were calculated
for a wavelength of 532 nm and m0 = 1.54 in an attempt to explain the shift of the maximum
(Fig. 5). Letters c denotes the electric-type oscillations of the electron density on the surface
of the metal, letters b – magnetic-type oscillations. The figures show the harmonics index: 1 –
dipole, 2 – quadrupole, 3 – octopole, etc. One can readily see that when the radius of the cobalt
nanoparticles is less than 70 nm, the first electric oscillation predominates. When the radius
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TABLE 1. Spectral regularities for maximum absorption and scattering factor
values for cobalt nanoparticles

λ, nm mi Qabs max Rabs max, nm Qsca max Rsca max, nm

400 1.2000− 3.0000i 2.6589 27.7 2.3371 73.3

450 1.5070− 3.1721i 2.3400 33.5 2.2070 85.0

500 1.7000− 3.4000i 2.1355 38.9 2.2079 95.3

532 1.7932− 3.5609i 2.0249 42.2 2.2286 101.7

550 1.8430− 3.6529i 1.9662 44.1 2.2402 105.3

600 2.0000− 3.9000i 1.8172 49.4 2.2777 66.0

650 2.2148− 4.1164i 1.6973 54.9 2.2787 71.8

700 2.4500− 4.3000i 1.6086 60.3 2.2613 77.8

750 2.6628− 4.4567i 1.5434 65.6 2.2469 83.7

800 2.8700− 4.6000i 1.4907 70.9 2.2333 89.6

850 3.0914− 4.7444i 1.4432 76.2 2.2196 95.6

900 3.3000− 4.9000i 1.3978 81.4 2.2134 101.4

950 3.4667− 5.0719i 1.3528 86.5 2.2191 107.2

1000 3.6000− 5.2500i 1.3096 91.6 2.2304 112.9

1050 3.7178− 5.4203i 1.2708 96.5 2.2411 118.7

1064 3.7505− 5.4647i 1.2611 97.9 2.2433 120.3

1100 3.8381− 5.5688i 1.2391 101.5 2.2463 124.5

1150 3.9789− 5.6816i 1.2170 106.5 2.2421 130.4

1200 4.1580− 5.7446i 1.2065 111.5 2.2255 136.3

increases, the contribution of the second electric and the first magnetic oscillations become
noticeable, these oscillations become dominant when R > 100 nm. Competition between the
electric and magnetic oscillations results in two different effects:

i) the maximum on the dependence Qabs(R) shifts with increasing wavelength;
ii) local maxima for the dependence Qsca(R) have almost the same amplitude and for large

cobalt nanoparticle radii; there is almost no dependence on R. Since there are several
oscillations of comparable intensity, their sum changes only slightly.

Figures 6 and 7 present spectral dependencies of the absorption and scattering efficiency
factors for cobalt nanoparticles of different radii in a PETN matrix. The line descriptions and
radii values are represented on the legend. For 30 nm nanoparticles, Qabs decreases monoton-
ically. For the 50 nm nanoparticles, a maximum for Qabs occurs at 553 nm and that of the
scattering efficiency factor at 400 nm. Increasing the nanoparticle radius causes the appearance
of a second maximum. It is worth pointing out the difference between our results and those
obtained for gold nanoparticles [16]. Spectral regularities of the latter have a narrow band
(half-width ∼ tens nm) due to plasmon resonance. In the case of cobalt, there are wide bands in
the absorption spectra and scattering efficiency factor, as for other iron-group elements [7,8,15].

In the visible region of the spectrum and for larger cobalt nanoparticles, the standard
deviation of the absorption and scattering factors is about 10 – 20 %. The weak dependence
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FIG. 5. Dependences of electric (c) and magnetic (b) oscillations of the scattering
factor upon the cobalt nanoparticle radius at 532 nm

FIG. 6. Spectral dependencies of the absorption efficiency factors for cobalt
nanoparticles with 30, 50, 70, and 100 nm radii

of the mentioned parameters upon the wavelength proves that the composite materials, based
on the transparent media and cobalt nanoparticles with radius of ∼ 100 nm, are neutral-density
filters. So, this differs from the gold or silver colloidal solutions, which are colored and are
used as a band-pass filter. Thus, it appears that a light filter with cobalt nanoparticles decreases
the light’s intensity primarily by scattering but not because of the absorption.

Figure 8 displays the calculated spectral regularities for the absorptivity of 1.5 nm
cobalt nanoparticles and the experimental values of the molar absorptivity ε presented in [23].
The figure shows that the absorption predominates considerably over the scattering and the
comparison of the extinction and the absorption is incorrect. As it follows from Fig. 8, in
both cases, decreasing the wavelength results in increased absorptive properties. The region of
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FIG. 7. Spectral dependencies of the scattering efficiency factors for cobalt
nanoparticles with radii of 30, 50, 70, and 100 nm

FIG. 8. Experimental spectral regularities for the molar absorptivity of 2 – 4
nm radii cobalt nanoparticles (1) [23]; calculated spectral regularities of the
absorption factor for 1.5 nm radii cobalt nanoparticles (2)

the increase coincides, but the quantitative results do not coincide because of the three reasons.
First, cobalt is partially lost during the synthesis (yield is always less than 100 %), this makes the
calculated molar absorptivity larger than that which is observed. Second, cobalt nanoparticles
are covered by a mixed oxide-hydroxide film [13]. Third, the existing size distribution of
the particles can distort the spectrum. When these considerations are taken into account, the
calculated values and the experimental results are in good agreement.
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3. Conclusion

The absorption and scattering of light by cobalt nanoparticles with variation of wave-
length and radius values was studied in terms of Mie theory. The optimal nanoparticles’ radii
performing maximal absorption and scattering efficiency factors, which are of practical interest
in different applications including light filters and optic detonators, were determined for differ-
ent wavelengths. The spectral dependencies of cobalt nanoparticles’ scattering and absorption
efficiency factors show wide bands or continuum spectrum, thus exhibiting a vast difference
relative to gold or silver nanoparticles.
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An explicitly solvable model for periodic chain of coupled disks in orthogonal magnetic field is considered. The

spectrum for the Hamiltonian is compared with the spectrum for the corresponding chain of circles. These models
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1. Introduction

The difference between surface and bulk conductivities for materials and nanostructures
is a subject of numerous experimental and theoretical investigations due to intriguing prospects
(high-temperature superconductivity, topological insulator, etc.). In many cases, low-dimensional
nanostructures have unusual electronic properties, see, e.g., results of recent experiments with
highly ordered organometallic nanoribbons, whose intrinsic (defect-free) conductivity is found
to be three orders of magnitude higher than that of macroscopic crystals [1]. It should be
mentioned that in many cases there is no adequate mathematical model of the corresponding
nanosystem, and the theoretical description is complex. Our goal is to construct a mathematical
model for chain type periodic nanostructure and to describe its spectrum. Ideally, we would
like to have a band (preferably, the lowest band) for the surface (edge) states be in the gap (or
below the first band) for the bulk states. The corresponding system is described in the present
paper. This case is, in some sense, similar to a topological insulator (TI). TIs are electronic
materials that have a bulk band gap like an ordinary insulator, but have protected conducting
states on their edge or surface [2–5]. We have similar phenomenon for surface state protection
as in TI, although the physical nature is different.

We consider a periodic system of coupled disks as a basic geometry. As for the problem
of edge states, our consideration is in the framework of a model of quantum graphs (periodic
system of coupled circles). This model was used intensively in previous publications (starting
from works [6, 7]) due to its advantages: in one way, it is quasi-one-dimensional and rather
simple, however, despite this apparent simplicity, it preserves the properties of the corresponding
physical system, particularly, its spectral properties [8–13]. As for the problem of bulk states,
we deal with the model of quantum resonators coupled through point-like window. This model
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is based on the theory of self-adjoint extensions of symmetric operators (see, e.g., [21]). We
compare the spectra of the Landau operators for these two models and observe that for some
values of the magnetic field, one has an edge state band below the first bulk band. The structure
of the paper is rather natural. We describe, consequently, the models for chain of circles and
for chain of disks, and then compare the corresponding spectra.

2. Chain of circles

Consider an infinite chain of circles Cn, n = 1, 2, . . . of radii a. The state space is

H =
+∞⊕
n=1

L2(Cn). To construct the Hamiltonian of the charge particle for the chain of coupled

circles, we start from self-adjoint operator Hcc, Hcc =
+∞⊕
n=1

Hn
c . Here Hn

c is the Landau operator

for the circle Cn. Using the standard polar coordinates (r, ϕ) on the circle, one can represent
the Hamiltonian in the following form:

Hn
c =

h̄2

2ma2

(
−ı ∂
∂ϕ

+
Φ

Φ0

)2

.

Here, m is an electron mass, Φ = πa2B is a magnetic flux, Φ0 =
h̄

2c
is the quantum of

the magnetic flux. We use the unit system such that the factor
h̄2

2ma2
is equal to 1 (i.e.

h̄ = 1 ,m = 1/2, a = 1).
A rigorous mathematical model of our system of coupled circles is constructed by a

conventional way by use of the operator extensions theory (see, e.g., [14–19]). We assume that
the contacts are located at the opposite points (a, ϕ1) and (a, ϕ2), where ϕ1 = 0, ϕ2 = π (see

Fig. 1). We restrict the initial operator Hcc on the set D0 =
+∞⋃
n=1

{f ∈ D(Hcc) : f(qn) = 0},

where qn is the contact point. The model Hamiltonian is given by a self-adjoint extension of
this symmetric operator. We choose the extension corresponding to the following boundary
conditions:

ψn+1(ϕn+1
2 ) = eıqlψn(ϕn2 ),

ψ′n+1(ϕn+1
2 + 0)− ψ′n+1(ϕn+1

2 − 0) = eıql[ψ′n(ϕn2 + 0)− ψ′n(ϕn2 − 0)],
ψn+1(ϕn+1

2 ) = ψn(ϕn1 ) =
β[ψ′n+1(ϕn+1

2 + 0)− ψ′n+1(ϕn+1
2 − 0) + ψ′n(ϕn1 + 0)− ψ′n(ϕn1 − 0)],

(1)

where l = 2a = 2, q is the quasi-momentum, β is the coupling parameter for the contact points.
Taking into account the expression for the electron wave function ψ(ϕ):

ψ(ϕ) = α1G(ϕ, ϕ1, E) + α2G(ϕ, ϕ2, E),

and (1), we obtain the following dispersion equation:

4Q21 cos(ql) + β−1 detQ− 2 TrQ = 0, (2)
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FIG. 1. Chain of circles (disks)

where Q is the Krein Q-matrix:

Q11(E) = Q22(E) =
1

kr

[
sin πkr cos πkr

sin2 πη − sin2 πkr

]
,

Q12(E) = Q21(E) =
1

kr

[
sin πkr cos πη

sin2 πη − sin2 πkr

]
.

Solutions of (1) for various quasi-momenta give us the spectral bands.

3. Chain of disks

In this section, we consider a system with similar geometrical structure but circles in
the chain are replaced by disks of the same radius Dn = {(r, ϕ) : r ≤ a}. Here, r, ϕ are the

standard polar coordinates. The initial Hamiltonian for our procedure is Hcd =
+∞⊕
n=1

Hn
d , where

Hn
d is the Landau operator for the disk Dn with the Dirichlet boundary conditions:

Hd = − 1

2m

(
ıh̄∇− e

2c
B × r

)2
.

We introduce the following notations:

ω =
|eB|
cm

, µ =

(
h̄c

|eB|

)1/2

, x0 =
a

2µ2
.

An eigenfunction of the operator Hcd with the Dirichlet boundary condition is as follows:

ψ(r, ϕ) =

(
mω

2πh̄cln

)1/2
r|l|

(2µ2)|l|/2
exp

(
ılϕ− r2

4πµ2

)
Φ

(
εln, |l|+ 1,

r2

2µ2

)
.

We denote by Eln, l = 0,±1,±2, . . . the corresponding eigenvalue:

Eln = h̄ω

(
l + |l|+ 1

2
− εln

)
,

where εln is the n−th root of the equation Φ(ε, |l| + 1, x0) = 0, Φ is the Kummer function.
Here, cln is the normalization constant:

cln =

x0∫
0

exp(−x)x|l|Φ2(εln, |l|+ 1, x)dx.
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The Green function for a single disk has the following form [20]:

G(r, ϕ, r′, ϕ′;E) =
mω

2πh̄
exp

(
−r

2 + r′2

4µ2

) +∞∑
l=−∞

(rr′)|l|

(2µ2)|l|
exp(ıl(ϕ− ϕ′))×

+∞∑
n=1

Φ(εln, |l|+ 1, r2

2µ2
)Φ(εln, |l|+ 1, r

′2

2µ2
)

cln(Eln − E)
. (3)

To construct the model for coupled disks, we use the operator extensions theory model,
more precisely, the model of zero-width slit [21]. This model faces difficulties for the Dirichlet
boundary condition. In this case, one has to extend the initial Hilbert space to the Pontryagin
space with indefinite metrics. The mathematical structure of this model has been described
previously, e.g., in [22]. Here, we present the resulting formulas for our case.

The wave function for the j-th disk has the form:

ψj(r, ϕ) = αj1
∂G(r, ϕ; r′, ϕ′;E)

∂r′

∣∣∣∣
r′=1,ϕ′=0

+ αj2
∂G(r, ϕ; r′, ϕ′;E)

∂r′

∣∣∣∣
r′=1,ϕ′=π

.

The asymptotics of this function near the chosen (contact) points (r, ϕ) = (1, 0),
(r, ϕ) = (1, π) contain a singular term. To construct a self-adjoint extension in the Pontrya-
gin space (i.e. the model Hamiltonian), one should introduce a linear relation between the main
singular and regular terms of the asymptotics from the both sides of the contact points (i.e. in
neighbor disks).

We assume the existence of the δ-potentials at the contact points. This gives us a rule
for selection of the self-adjoint extension from the family of extensions.

As for the chain, we should take into account the periodicity. This can be made using
the Bloch’s theory (similarly to the case of circles) or by the transfer-matrix technique (see,
e.g. [14]). The transfer-matrix M is determined as follows:(

aj+1

bj+1

)
= M

(
aj
bj

)
, (4)

where: 
aj = αj2,

aj+1 = αj+1
2 ,

bj = q12α
j
2 + q11α

j
1,

bj+1 = q12α
j+1
2 + αj+1

1 q11.

(5)

In this formula, the following notation is used:

q11 =
∂

∂r

(
∂G(r, ϕ; r′, ϕ′;E)

∂r′

∣∣∣∣
r′=1,ϕ′=0

− ∂G(r, ϕ; r′, ϕ′;E0)

∂r′

∣∣∣∣
r′=1,ϕ′=0

)∣∣∣∣∣
r=1,ϕ=0

,

q12 =
∂

∂r

(
∂G(r, ϕ; r′, ϕ′;E)

∂r′

∣∣∣∣
r′=1,ϕ′=0

)∣∣∣∣∣
r=1,ϕ=π

.

The above mentioned selection rule for the extension leads to the following relations:{
αj+1
2 + αj1 = α(αj2q12 + αj1q11),

αj2q12 + αj1q11 = αj+1
1 q21 + αj+1

2 q22.
(6)

Here, α is the parameter describing the strength of the δ−potential at the contact point.
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Taking into account (5) and (6), we express aj+1, bj+1 in terms of aj, bj:

aj+1 =
q12
q11

aj −
1− αq11
q11

bj, (7)

bj+1 = aj

(
q11 +

αq11 − 1

1− αq11
− q211 − q222

q11

)
+ bj

(
1

q12
+

(1− αq11)(q211 − q222)
q11q12

)
. (8)

Using (4), one obtains from (7), (8) the formula for the transfer-matrix M :

M =


q12
q11

−1− αq11
q11

q11 − 1− detQ

q11

1

q12
+

(1− αq11) detQ

q11q12

 , (9)

where detQ = q211 − q212. One can check that detM = 1. In order for E to belong to
the continuous spectrum of the Hamiltonian, the modula of the eigenvalues of the matrix
M = M(E) must be equal to 1 (see, e.g. [14]). In our case, it reduces to the following
inequality:

|TrM(E)| ≤ 2.

4. Results and discussion

The spectral bands of the Hamiltonian for the periodic chain of circles are obtained by
solving equation (2) for various quasi-momenta q. The dependence of the dispersion equation
solution upon the quasi-momentum is shown in Fig. 2. The picture depends on the value of the

magnetic flux
Φ

Φ0

. For the semi-integer flux (Fig. 2a), one has only levels (so-called, flat bands,

i.e. infinitely degenerate eigenvalues). Fig. 2b shows the band structure for
Φ

Φ0

= 0.2.

FIG. 2. The band structure for the circles chain for different values of the mag-

netic flux: a – for
Φ

Φ0

= 0.5; b – for
Φ

Φ0

= 0.2.

The dependence of the bands on the magnetic field for the disks system for different α
parameter values is shown in Fig. 3.

The dependence of the magnetic field bands for both systems is shown in Fig. 4. Bands
correspond to the dark areas. One can see that for chosen range of the magnetic field, the
lowest band for the chain of circles lies below the lowest band for the chain of disks. Hence,



642 E. N. Grishanov, D. A. Eremin, D. A. Ivanov, I. Yu. Popov, P. I. Smirnov

FIG. 3. The dependence of the bands on the magnetic field for the disks system
for different α parameter values: a – for α = 0.5; b – for α = 1; for α = 2.

for these magnetic field values, one has something similar to the topological insulator effect;
the edge state lies below all bulk states.

FIG. 4. The dependence of the energy bands on the magnetic field B: a – for
the chain of disks; b – for the chain of circles.
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In this paper, we report the effect of deposition time on the properties of zinc sulfide thin films. The ZnS thin films

have been grown on amorphous glass substrates and at various deposition periods ranging from 30 to 120 min

by chemical bath deposition technique. Other parameters, such as reactant concentration, solution pH, and bath

temperature were kept constant for the all depositions. Morphological characterizations of the surface were studied

using the atomic force microscopy (AFM). The AFM images confirmed that the grain size of ZnS increased with

increased deposition time. Average diameter of nanoparticles was between 60 and 90 nm, while the roughness

ranged from 6 to 11 nm. Optical properties, which were determined from UV–VIS spectrophotometry, were

obtained by analyzing the measured absorbance and transmittance spectrum. The zinc sulfide thin films show high

transmittance in the visible region and the ZnS band gap value was estimated to be in range of 3.99 – 4.05 eV.
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1. Introduction

Zinc sulfide (ZnS) is an important II – VI semiconducting material with a wide direct
band gap of 3.65 eV in the bulk [1–5]. This new class of materials has not only provided
many unique opportunities but also exhibited novel optical and transport properties, which are
potentially useful for technological applications. These materials have potential application
in optoelectronic devices, such as blue light emitting diodes, electroluminescent devices and
photovoltaic cells [1–3] and more recently as n-type nonreflecting window materials in hetero-
junction solar cells. The efficiency of heterojunction solar cells depend largely on the interfacial
properties between absorber and buffer layers. The wider bandgap of ZnS enables high energy
incident photons to reach the window-absorber junction, enhancing the blue response of the
photovoltaic cells and thus contributes to a better cell performance [4]. Recently, efficiency
enhancement of solar cells has become more important due to the need for environmentally
benign renewable energy sources. To improve the light harvesting in solar cells, it is crucial to
minimize undesirable Fresnel surface reflection losses at the interface between air and the top
layer of solar cells over the entire range of the solar spectrum.

Zinc sulfide has found wide use as a thin film coating in the optical and microelectronic
industries, having a high refractive index (2×25 at 632 nm), high effective dielectric constant (9
at 1 MHz) and wide wavelength pass band (0×4 – 13 mm) [5]. There have been various studies
on the bulk and thin film characteristics of ZnS, including optical and electrical properties [6].
The optical properties of the prepared film depend strongly on the manufacturing technique.
Two of the most important optical properties; refractive index and the extinction coefficient are
generally called optical constants. The amount of light which is transmitted through thin film
material depends on the amount of the reflection and absorption that takes place along the light
path [7].
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Many growth techniques have been reported for the preparation of ZnS thin films, such
as sputtering, pulsed-laser deposition, metal organic chemical vapor deposition, electron beam
evaporation, photochemical deposition, thermal evaporation, sol-gel processing, co-precipitation
and chemical bath deposition [8]. These doped ZnS semiconductor materials have a wide range
of applications in electroluminescence devices, phosphors, light emitting displays, and optical
sensors. Doped nanoparticles with dimensions below that of the Bohr diameter exhibit inter-
esting optoelectronic properties due to quantum size effect and are potential candidates for a
variety of applications. The characteristics and concentrations of dopants are responsible for
particular luminescence emission and efficiency of semiconductor nanoparticles [9]. Hence,
investigation of the role that dopant concentration has on doped semiconductor nanoparticle
optical properties of is very important from the viewpoints of basic and applied physics [10].
Recently, 2D nanostructure P-N junctions have attracted a great deal of attention for their poten-
tial application in photovoltaic devices. Zinc sulfide (ZnS) was one of the first semiconductors
discovered and is also an important semiconductor material with direct wide band gaps for
cubic and hexagonal phases of 3.72 and 3.77 eV, respectively [9, 11]. It has a high absorption
coefficient in the visible range of the optical spectrum and reasonably good electrical properties.
This property makes ZnS a very attractive as an absorber in heterojunction thin-film solar cells.
Among various other methods, the chemical bath deposition – CBD that we use in present case
is a well known deposition process for some chalcogenides, it is well known as prevented low
temperature aqueous technique for deposition large area of semiconductor thin films and has
gained renewed interest due to the good quality and high purity of the deposited films. CBD
of ZnS is a highly reproducible and controllable technique, thus it is considered the simplest
and the most economical one. CBD results good deposits on suitable substrates by controlled
precipitation of the compound from the solution.

2. Experiment

The basic principle of the CBD technique consists in the controlled generation of the
metal and chalcogenide ions in an alkaline medium and their ion by ion deposition on the
substrate in order to form a film. In our CBD experiment, the deposition of ZnS film was based
on the reaction between zinc sulfate (ZnSO4) as a source of Zn2+, Thiourea (SC(NH2)2) as a
source of S2− and ammonia (NH4OH) that used as complexing agent to vary the pH of the
reaction bath and to control the Zn2+ concentration.

ZnS films were deposited on commercial glass substrates (75 mm × 25 mm × 1 mm)
by chemical bath deposition technique. Prior to deposition, the substrate was degreased in
ethanol for 10 min, followed by ultrasonic cleaning with doubly-distilled water for another
10 min, rinsed in de-ionized water and finally air dried in. In a typical deposition set up of
ZnS, the CBD was achieved by mixing 10 ml of 0.025 M ZnSO4 solution, 10 ml of 0.27 M
SC(NH2)2 solution, and 2.9 M NH4OH solution. Firstly, ammonia solution was added slowly
to the required quantity of zinc sulfate, after stirring for several minutes the solution becomes
colorless and homogeneous, thereafter, a thiourea solution was added under stirring. Lastly, the
reaction solution was placed in 50 ml beaker (sealed with a Teflon tape) into the water bath
pot. The glass substrates were then immersed vertically inside this beaker and supported against
the wall of the beaker without disturbing it. The deposited film was carried out water bath
temperature at Tb = 70 ◦C, for different durations, (30, 60, 90, 120 min) that were selected to
study the characteristics of ZnS thin films. After complete film deposition, each sample was
removed from the beaker and was cleaned with de-ionized water to remove the white, loosely,
adherent powders precipitate in the solution during the deposition. The structural properties
of ZnS films are studied by using X-ray diffractometer (XRD) using Cu-Kα radiation with
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wavelength 1.5418 Å. Surface morphology was examined by Scanning Electron Microscope
(SEM). The atomic force microscopy (AFM) was used to investigate the surface morphology and
surface roughness. AFM imaging is performed on the Nanosurf system (easyScan2) operating
in a tapping mode in air at room temperature. The optical transmission and absorption studies of
the deposited ZnS thin films were carried out with a UV–VIS spectrophotometer (Varian carry
5000). Absorption coefficient corrected for scattering contribution versus wavelength. The error
bars represent the standard deviation.

3. Results and discussion

AFM allows us to obtain microscopic information on the surface structure and to plot
topographies representing the surface relief. In this work, we have used this technique to
visualize the surface relief, specify the growth, and determine the contribution of the deposition
time (td) to the quality of the film. AFM images of the surface morphology recorded on samples
of the ZnS–NPs thin films deposited with different deposition times for (td = 10, 40 min) are
shown in Fig. 1. In all cases the prepared thin films have good quality, uniform morphology
and covered the entire substrate surface. We can expect this result due to the increase of the
film thickness with the deposition time.

FIG. 1. AFM images of the surface morphology recorded on samples of the
ZnS–NPs thin films deposited with different deposition time periods for (t, min:
10, 40)

The same relation between the mean height of ZnS–NPs and the deposition time has
been observed. This can be seen in the increasing roughness with increased deposition time
and that because new bigger domed grains are formed, the layer is more complete and has
fewer voids. It is important to note that these obtained values are averaged and there is a
statistical variation associated with them, which depends on the location of the measurement
that is performed on the samples. To minimize these errors, we performed many measurements
of each parameter at several different locations on the surface of samples.

The optical properties evolution for the prepared ZnS thin films was determined after
obtaining the absorbance and transmittance spectrum with a UV–VIS spectrophotometer. UV–
VIS transmittance spectra of ZnS–NPs formed at bath or reaction temperature of 70 ◦C with
different reaction times (30, 60 min) are given in Fig. 2. Transmittance was recorded from 300 –
800 nm. The transmission of the zinc sulfide thin films decreases with increased deposition
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times. The average transmittance of these films is calculated to be 99 %, 97.5 %, 96 %, and
95 %, respectively. These results are related to the increased deposition time; as a result of
the voids in the ZnS thin layer filling up with new ZnS grains, film thickness is increased,
thus reducing the transmittance. In general, the layers produced in this work exhibit high
transmittance, which depends on low film thickness. In addition, the decreased transmittance
can be linked with agglomeration and increased grain size, indicating its high surface roughness.
The ZnS thin films have a steep optical absorption feature, indicating good homogeneity in the
shape and size of the ZnS–NPs and low defect density.

FIG. 2. Transmittance spectra of ZnS thin film at different deposition times (10,
20, 30, 40 min)

Figure 3 shows the absorption coefficient a as a function of photon energy; at low photon
energies, a decreases the probability of electrical transfer between the valance and conduction
bands, making it very rare and conversely, will increase at the absorbance edge, towards high
energy photons.

Using the last data, the band gap energy of ZnS thin film was estimated by plotting, as
in Fig. 4. The linear nature of the plot indicates that ZnS is a direct band gap material. The
films’ optical band gaps can be evaluated by extrapolating the straight portion to the axis.

In this work, the band gap energy (Eg) was determined to be in the range of 4.05 –
3.6 eV for the ZnS films with different deposition times, from 10 to 40 min, respectively
which closely agree with the values reported for ZnS thin films obtained by CBD. The band
gap values of the as deposited ZnS films are somewhat larger than the typical band gap for
bulk ZnS (∼ 3.6 eV) at 300 K. In Fig. 4, we have reported the variation of band gap energy
and thickness of thin film ZnS–NPs as a function of deposition time. We note a reduction
in the gap with the deposition time this due to the quantum size effect as expected for the
nanoparticles nature of the films. In fact, it is observed that the band gap energy values of
ZnS thin layers decrease slightly from 4.05 to 3.99 eV with increased deposition time. There
was good agreement between the structural and optical properties and calculated band energy
gap. The thickness of ZnS thin film slightly increased from 65 to 90 nm when the deposition
time was increased from 10 to 40 min. This may be due to processes of heterogeneous and
homogenous precipitation, which increase with time, leading to higher ZnS thin film growth
rates.
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FIG. 3. Absorption coefficient versus photon energy for ZnS thin films deposited
at different times (10, 20, 30, 40 min)

FIG. 4. Variation of ZnS thin films thickness and band gap with deposition times
at fixed bath temperature Tb = 70 ◦C
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4. Conclusion

We have successfully used chemical bath deposition to obtain ZnS/glass thin films. AFM
showed that the films were of good quality and have uniform distribution of ZnS–NPs over the
glass substrate. Images revealed that the particle size increased with increasing of deposition
time, the average diameter was 180 nm. The high transparency of the films, over 90 %,
was investigated using a UV–VIS spectrophotometer. The optical direct band gap energy was
calculated to be between 3.99 – 4.05 eV for the ZnS films with different thicknesses. Structural
and optical properties were in agreement with each other. From these studies, we are able to
optimize the process in order to produce the antireflection layer of ZnS suitable for optical
window in solar cells.
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Binary CuxZr1−x (x = 0.46, 0.50, 0.58, 0.62) alloy systems were developed using a conventional melting route.

Molecular dynamics (MD) simulations have been carried out using the embedded atom method (EAM) potentials.

Radial distribution function (RDF) and Voronoi calculations have been conceded for amorphous structure verifi-

cation. The reduced glass transition temperature (Trg) has been determined in order to predict the glass forming

ability (GFA) of these alloys. Tl is found to be a better substitute for Tm and the simulated Trg values are seen to

be in good agreement with the experimental results in limits of 0.8 – 5.4 %.
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1. Introduction

The excellent properties of metallic glasses over their crystalline counterparts have at-
tracted the attention of the scientific and industrial communities [1–4]. The challenge lies in
predicting the glass forming compositions and thus, has been an active area of research [5–10].
Several empirical rules and criteria such as, an alloy must contain more than two elements,
negative heat of mixing between the constituent atoms, low liquid eutectic, have been proposed
to predict the glass forming ability (GFA) followed by rigorous experimentation [11–14]. Cer-
tainly, these rules have played an important role in providing enough information to synthesize
bulk metallic glasses (BMGs), but experiments have also suggested that a minor change in
composition can effectively change GFA [15].

Hence, it is essential to employ simulations and modeling methods for the prediction
of GFA in order to reduce the associated time, energy and costs associated with these studies.
Binary alloys are basically simple to model and as a result of the possibility of wide glass-
forming compositions in Cu–Zr binary systems, they may be considered to be perfect systems
for the prediction of GFA [16]. Additionally, Cu–Zr systems have experimental data availability
(Table 1) [13, 14] for the comparison, and accessibility of EAM potentials for Cu and Zr
elements for simulation.

One such simulation method which can be used to understand the behavior of metallic
glasses at the atomic level and to predict GFA is Molecular dynamics (MD). In the present
work, MD simulations have been applied to binary CuxZr1−x alloys in order to predict their
GFA. Reduced glass transition temperature criteria (Trg = Tg/Tl or Tg/Tm, where Tm is the
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TABLE 1. EAM potential parameters [13, 14]

Elements Structure a (Å) EC (eV) C11 (GPA) C12 (GPA) C44 (GPA)

Cu fcc 3.6149a −3.5400 168.062 123.754 78.84

3.61b 3.49 168.4 121.4 75.4

Zr hcp 3.230c −5.150 143.4 72.8 32

3.232d −6.32 153 67 36

a,c EAM, b,d Experiments

onset melting temperature Tg is the glass transition temperature, Tl is the liquidus temperature)
have been employed in the GFA prediction process [14]. Tg and Tl are calculated using Wendt-
Abraham (WA) parameter [17] and volume temperature (V −T ) curve. The relationship between
the melting temperature (obtained from the MD simulation) and experimental Tl values have
been correlated and compared with those reported previously [18, 19].

2. Simulation and experimental methods

2.1. Simulation

To obtain an atomic description of the crystallization process and glass formation dur-
ing rapid cooling of alloys, the MD simulation technique was adopted. The embedded atom
method [20] (EAM)-based potential was used to represent the pair-wise atomic interaction be-
tween Cu and Zr atoms in the liquid and amorphous states.

The molecular dynamics simulation (MD) of the copper-zirconium alloy was carried out
using constant number of particles-pressure-temperature (NPT) ensemble. To model the atomic
interactions, EAM potentials provided with in Large-scale atomic/molecular massively parallel
simulator software (LAMMPS) [21] was used to simulate the CuxZr1−x (x = 0.46, 0.50, 0.58,
0.62) alloy systems. The simulated system consisted of 5000 atoms in a cubic unit cell of B2
structure with in periodic boundary conditions. The number of Cu atoms was replaced with
number of Zr atoms according to the atomic percentage defined for the system under study.
First, the model system was heated at 300 K to relax the system, then temperature was raised
up to 3000 K and held there for 400 picoseconds (ps) in order to allow atoms to forget their
initial structure. After that, the system was rapidly cooled to 2100 K and then slowly cooled
from liquid state to 300 K at a cooling rate of 1× 1011 K/s. At each temperature, the quantities
of interest were obtained by taking averages over 80 ps. The MD time step selected for the
simulation was 2 fs (1 fs = 1×10−15 second). The Voronoi atomic clusters of each composition
were analyzed at 600K using OVITO [22].

In order to check the size effect, a system of 10000 atoms was also utilized for calcu-
lation. The simulation shows very small finite size effect on the on the structural properties.
A schematic approach has been displayed adopted in this work in Fig. 1.

2.2. Experiments

In order to validate the simulation results, experiments were also performed. To prepare
the alloy ingots of the system studied in present work, first Cu and Zr ingots (Sigma-Aldrich,
India) of purity percentage 99.99 % and 99.95 % respectively were ultrasonically cleaned;
then, each ingot was melted in vacuum arc plasma melting furnace on a water cooled copper
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FIG. 1. Simulation schedule for studied alloy systems

plate under Ti gettered with a high purity argon atmosphere (6 bar). Each ingot was flipped
over and remelted at least 4 – 5 times to obtain chemical homogeneity. The ingots were then
melted again under high vacuum in glass test tube and casted in the form of amorphous ribbons
using melt spinning. The prepared ribbons were then examined by a Panalytical 3040/60 X-ray
diffractometer (XRD) using Cu–Kα source to investigate the present phase of the system. A
differential scanning calorimeter (Hitachi DSC 6300) with heating rate of 20 ◦C/minute and
argon atmosphere was used to confirm the amorphous structure by studying the glass transition
temperature and crystallization temperature.

3. Results and discussion

3.1. Radial distribution function (RDF) and Voronoi tessellation

RDF is one of the most powerful techniques used for analyzing the inherent structure
of liquids and amorphous alloys. It describes the spatial distribution of all other atoms with
respect to the origin atom. For the bulk materials, it is given by:

G (r) =
V

N2

〈∑
i

∑
i6=j

δ(r − rij)

〉
, (1)

where N is the number of atoms, V is volume of the cell, r and rij are the position of reference
and other atoms, G(r) is the probability of finding the atoms in the simulation box. For a
random distribution, G(r) always tends to unity. For a binary alloy system i.e. alloy containing
at least atom 1 and atom 2, the radial distribution function (RDF) was calculated in the following
manner:

G12 (r) =
V

N1N2

〈∑
1

∑
16=2

δ(r − r12)

〉
. (2)

Figures 2a and 2b represent the characteristic RDF’s of pure copper and Zirconium at
room temperature, at liquid state and in super cooled state. The sharp maxima observed in the
RDF of pure copper and Zirconium at room temperature is found to correspond to the minimum
bond length and crystalline state can be identified by sharp maxima. With an increase in
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temperature, the height of first peak of G(r) is found to decrease. The broadening in the second
peak indicates that the model system is in a disordered or liquid state; though first nearest
neighbors were almost equivalent to their crystalline counterpart. The difference however was
observed in the lower and diffuse second peaks. Cooling of the melt rapidly down to 300 K,
shows a slight increase in bond length which is attributable to the rearrangement of atoms. Due
to this, the values of G(r)Cu–Cu and G(r)Zr–Zr are lower in super cooled state as compared to its
ordered structure.

a) b)

c)

FIG. 2. RDF of Copper at (a) the room temperature, liquid state and super cooled
state, Zirconium at (b) the room temperature, liquid state and super cooled state
(c) CuxZr1−x (x = 0.46, 0.50, 0.58, 0.62) in super cooled state

From Fig. 2c, it is clear that the addition of zirconium to copper shifts the first peak
towards the higher ‘r’ values. This is due to the lower atomic radius of Cu (1.27 Å) as compared
to that of Zr (1.60 Å). A splitting (marked) indicating characteristic of metallic glasses [23] is
seen to make its presence in the second peak of the Copper alloy RDF plot. Further analysis
of Fig. 2c showed that, upon super-cooling, there was no change in the height of the first
peak, while second peak showed very slight variation. This led us to the conclusion that the
super-cooled state is characterized by a local atomic arrangement to that of a liquid state.

To further analyze the local atomic arrangement, the Voronoi tessellation [24,25] method
was employed. The Voronoi index is represented by a vector notation 〈n3, n4, n5, n6〉 where ni
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denotes the number of shell atoms which are connected by other shell atoms defined by RDF.
A cut off distance of 5 Å [26] was selected for Voronoi polyhedra (VP) calculation. The total
fractions of various VP around Cu and Zr are shown in the Fig. 3 and Fig. 4.

FIG. 3. Voronoi Fractions of around Cu in simulated Cu–Zr MGs at 600 K

FIG. 4. Voronoi Fractions of around Zr in simulated Cu–Zr MGs at 600 K

From Fig. 3 it was observed, as concentration of Cu atoms increases from 46 at %
(atomic percent) to 62 at %, the population of Cu centered five edges icosahedra face i.e.,
〈0, 0, 12, 0〉 and icosadihedra 〈0, 1, 0, 12〉 increases, while the population of other polyhedra the
such as 〈0, 2, 8, 0〉, 〈0, 2, 8, 1〉, 〈0, 3, 6, 1〉 decreases, except to 〈0, 2, 8, 2〉 which increases only
to 50 at % and remains constant along with 〈0, 3, 6, 3〉 polyhedra. This population variation of
Cu center clusters was found to be consistent with the GFA of CuZr systems [27–29].

Some investigation of Zr centered VP clusters, shown in Fig. 4, suggested that the pop-
ulation of Zr polyhedra 〈0, 1, 10, 4〉, 〈0, 1, 10, 5〉, 〈0, 2, 8, 6〉 and 〈0, 0, 12, 4〉 gradually increased
maximum up to 8 % , while the population of 〈0, 2, 8, 4〉, 〈0, 3, 6, 4〉, 〈0, 3, 6, 5〉 lowered to 2 –
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4 % and 〈0, 2, 8, 5〉 remained fairly constant at 7 %. This supports the hypothesis of Peng [24],
which asserts that the population of these Zr centered clusters may fundamentally determine the
dynamics in the CuZr system. The analysis of both Cu- and Zr- centered VP clusters implies
that the Cu-centered 〈0, 0, 12, 0〉 VP enhances the stability of the system with Cu concentra-
tion, while other clusters slow the dynamics and both are responsible for amorphous structure
evolution in the CuZr system.

The amorphous nature of our model system was experimentally confirmed by the XRD
analysis of melt spin ribbons. Fig. 5 shows the XRD patterns of the melt spun ribbons of
CuxZr1−x (x = 0.46, 0.50, 0.58, 0.62). It can clearly be seen from the figure, that all exhibit
broad diffraction maxima with no sign of the crystalline peak, thus confirming the amorphous
nature.

FIG. 5. X-ray diffraction pattern of melt spun ribbons of CuxZr1−x (x = 0.46, 0.50, 0.58, 0.62)

3.2. Melting and Glass Transition temperatures

To further explain the melting and glass transition in amorphous Cu–Zr system, volume
temperature (V − T ) curves were calculated during heating and cooling (not shown in figure).
Fig. 6 displays the change in volume as a function of temperature for simulated alloy systems.
As the temperature of the model system is raised from 300 to 3000 K at a constant heating rate,
the volume is found to increase linearly. A sudden jump in the V − T curves occurs, indicating
a rapid increase in volume. This sudden jump is an indication of a phase transformation; i.e. it
corresponds to the melting (Tl) of the system.

A parameter known as the Wendt-Abraham (WA) parameter (RWA = Gmin/Gmax), often
used as a measure of glass transition, was used to determine Tg of the system under study.
Gmin represents the value of G(r) at the first minimum and Gmax the value of G(r) at the
first maximum in the RDF curve. Fig. 7 shows a plot between RWA against temperature.
The point of intersection was determined and adopted as Tg. The WA parameter provides
direct comparison to structures since it emphasizes the local character of G(r), leading to
better estimation of the glass transition temperature. It is well known, that the glass transition
temperature is not a true second order phase transition, since it is dependent on the cooling rates.
Faster cooling rate results the higher glass transition temperature due to less time available for
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FIG. 6. Variation in cell volume with temperature for CuxZr1−x

atoms to relax. Around Tg, a change in volume, enthalpy and entropy are continuous, but their
derivatives such as heat capacity and thermal expansion coefficient are discontinuous. With the
chosen cooling rates in present work, the calculated Tg was found to be close to the laboratory-
determined experimental values and the simulated Tg was believed be reliable for Cu–Zr system.
Furthermore, Duan et al. [30] have used tight binding potentials to simulate Tg for Cu0.46Zr0.54,
and Su-Wen Kao et. al. [17], using the same potentials, have also calculated Tg for CuxZr100−x
(x = 46, 50, 62) and found that these values are similar to those determined experimentally (i.e.
differs by 2 – 8 %).

The DSC curves of the synthesized alloy systems are depicted in Fig. 8. A strip
of sample amorphous ribbon was heated at a constant rate. The DSC curve shows a clear
endothermic peak, which is characteristic of a glass transition temperature (Tg) followed by an
exothermic crystallization peak. The other deep endothermic peak, of which starting point is
solidus melting temperature (Tm) and end point is liquidus temperature (Tl), were associated
with the simulated melting. The deviation in the Tg, and Tl obtained from MD and experimental
values are found to lie between 1.3 – 6.2 %, and 1 – 2.5 % respectively. Despite the very high
heating and cooling rate, the precision between the simulated and experimental value implies
that a viscosity change from solid to super cooled liquid is not a second order phase transition
and involves no latent heat of transition, thus further confirming the accuracy of simulation
against the experimentation.

3.3. Reduced glass transition temperature

When a liquid alloy is cooled from the molten state down to a temperature below Tg,
the viscosity of the melt increases to a high value and a glass is formed. Based on nucleation
kinetics viscosity calculation, Turnbull [15] have mentioned, an alloy with high value of Tg and
low value of Tl would easily form a glass. This ratio has been designated as reduced glass
transition temperature (Trg). The higher the Trg value, the higher the viscosity of melt is and it
is more easily solidified into a glassy state at a lower cooling rate.

Table 2 shows simulated and experimental Tg, Tm, Tl, and Trg for CuxZr1−x
(x = 0.46, 0.50, 0.58, 0.62) alloys. It was rather difficult to distinguish between Tm and Tl,
as the V − T plot (generated by MD simulation) indicated a single shift for the melting in
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a) b)

c) d)

FIG. 7. Wendt Abraham (RWA) parameter as a function of temperature for Cu0.46Zr0.54

Cu–Zr alloy system. Additionally, the simulated melting temperature values were found to lie
closer to experimental Tl values rather than Tm. Hence, the Trg values were calculated using
Tg/Tl as emphasized by Turnbull instead of the Tg/Tm ratio. Simulated Trg values are well
found to be in good agreement with experimental values with deviation lying between 0.8 –
5.4 %. These results further support our assumption that Tl is a better substitute for Tm. That
is, when calculating Trg from MD, for a Cu–Zr binary alloy, one should avoid the interchange
of Tm to Tl and melting temperature (obtained from MD) should be considered as the liquidus
temperature instead of solidus temperature. It is also clear from the Fig. 9 that Trg obtained
from the simulation and experiments follow the same trend against the copper content, which
confirms the consistency between the theoretical and experimental results.

4. Conclusion

The relationship between GFA and Trg for CuxZr1−x (x = 0.46, 0.50, 0.58, 0.62) alloys
has been studied by MD simulations. The amorphous structure of the alloy system was con-
firmed by RDF and Voronoi calculation. It was found that the population of Cu centered Voronoi
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FIG. 8. DSC scan of melt spin ribbons of CuxZr1−x

TABLE 2. The simulated and calculated Tl, Tg and Trg values for CuxZr1−x alloys

Compositions MD (K) Experiments (K)

Tl Tg Trg Tm Tl Tg Trg

Cu0.46Zr0.54 1247 702 0.562 1209 1232 663 0.538

Cu0.50Zr0.50 1205 717 0.595 1178 1193 672 0.563

Cu0.58Zr0.42 1230 733 0.596 1173 1199 706 0.588

Cu0.62Zr0.38 1220 729 0.597 1172 1194 719 0.602

FIG. 9. Experimental versus Simulated Trg of CuxZr1−x
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polyhedra 〈0, 0, 12, 0〉 increases the amorphous phase stability, with Cu content. Experiments
were carried out in order to validate the accuracy of the simulated quantities. The difference
between the experimental and simulated Tl, Tg and Trg values lies within the accuracy limit of
1.3 – 6.2 %, 1 – 2.5 % and 0.8 – 5.4 % respectively, better than those reported [6]. Nearly same
trend has been attained in simulated and experimental Trg values. Thus MD simulation offers a
reliable way to predict the GFA of alloys systems whose constituent elements have well defined
EAM potentials.
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In this article, the exact solutions of equations of motion for a charged particle in a frequency-modulated wave are

presented. We performed an analysis of the results for the motion of a charged particle in the field of frequency-
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1. Introduction

The creation of petawatt level laser systems in recent years, has allowed the study of
a new unique physical object – relativistic laser plasma, produced when gas, clusters or solid
targets are exposed to intense laser radiation [1]. Developments in different fields of physics and
engineering; e.g. plasma physics, astrophysics, powerful relativistic high-frequency electronics
and appliances. have increased the interest in studying the interaction between charged particles
and electromagnetic waves. A special role in such interactions is assigned to relativistic charged
particles in strong electromagnetic waves. The energy characteristics of a charged particle in the
field of a frequency-modulated electromagnetic wave are of interest as a result of the practical
development of multifrequency lasers and laser modulation techniques [2–4]. In this paper,
we consider the dynamics of an electron in an intense frequency-modulated electromagnetic
field of linear and circular polarization. The interaction of charged particles with ultrashort
femtosecond laser pulses with radiation intensities of up to 1022 W/cm2 is one of the main areas
of laser physics at the moment. Previous literature [5] discussed the consistent derivation of a
particle’s average kinetic energy in an intense electromagnetic field by a frequency-modulated
electromagnetic wave, but was not found by averaging coordinate, momentum, and energy
values for the particle over the period of the particle’s oscillation in the field plane of a
monochromatic frequency-modulated electromagnetic wave.

The problem of the motion of a charged particle in the field of a plane monochromatic
frequency-modulated electromagnetic wave was formulated and solved for linear and circular
polarization of the wave [6], but the interest in this topic has appeared presently in connection
with the development of high-power lasers. The peculiarity of this work lies in the fact that
there are considered highly-fields for review before the end of the simple modes of interaction
of charged particles with a frequency-modulated electromagnetic wave.
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The aim of this work is to analyze the motion of a particle in the external field of
frequency-modulated electromagnetic wave of high intensity and to derive the average kinetic
energy of a particle over the oscillation period of the field.

2. Problem Statement

The equation of motion of a particle of mass m and charge q placed in an external field
of a plane monochromatic wave has a known form (see, for example [7], paragraph 17). The
equation of motion for a charged particle being acted upon by a high-Lorentz force is given by:

dp

dt
= qE +

q

c
[V ×H ] , (1)

where p – momentum of charged particle; E and H – electric and magnetic intensity of the
laser field; q > 0 the absolute value of the electron charge. Equation (1) is supplemented by the
initial conditions for the velocity and position of the electron:

V (0) = V 0, r (0) = r0.

The particle momentum p and velocity V are related by equality ( [7], paragraph 9):

p =
mV√
1− V 2

c2

. (2)

The change in the particle energy:

ε =
mc2√
1− V 2

c2

=
√
m2c4 + p2c2, (3)

is determined by the equation:

dε

dt
= qEV . (4)

It follows from (2) and (3) that the energy ε, momentum p, and velocity V of the
particle are related by equations:

p =
εV

c2
, V =

c2p

ε
. (5)

In this paper, it is assumed that the frequency of the electromagnetic wave is modulated
harmonically φ = µ sin (ω′ξ + ψ), where µ = ∆ωm/ω

′ – modulation index equal to the ratio
of frequency deviation to the frequency of the modulating wave; ω′ – frequency modulation;
ξ = t− z/c; ψ – constant phase. We assign the plane wave as propagating along the axisz, then
the vector components of electric and magnetic fields of plane monochromatic wave are given
by: 

Ex = Hy = bx exp
(
− i (ωξ + α + µ sin (ω′ξ + ψ))

)
;

Ey = −Hx = fby exp
(
− i (ωξ + α + µ sin (ω′ξ + ψ))

)
;

Ez = Hz = 0,

(6)

where ω is carrier frequency of the wave; α – constant phase; the x and y axes coincide with
the bx and by axes of the polarization ellipse of the wave and bx ≥ by ≥ 0; f = ±1 is a
polarization parameter (the upper and lower signs in the expression for Ey correspond to right
and left polarization [5]).
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We take the real part form (6) and apply the Jacobi-Anger expansion then obtain:



Ex = Hy = bx

+∞∑
n=−∞

Jn (µ) cos Φn,

Ey = −Hx = fby

+∞∑
n=−∞

Jn (µ) cos Φn,

Ez = Hz = 0,

(7)

where Jn (µ) is the n-th Bessel function; Φn = (ω + nω′) ξ + α + nψ.
As can be seen from (7), the frequency spectrum of the modulated wave is symmetrical

and is not theoretically limited, but when n � µ Bessel function becomes negligible and the
width of the spectrum can be limited. Practical spectral width is determined by the expression
∆ω = 2 (µ+ 1)ω′. In (7), index n can vary from −N to N , where the number N ≈ µ + 1.
Thus, if µ � 1 and N = 1, then spectrum width ∆ω = 2ω′ coincides with the width of the
spectrum of a harmonic amplitude-modulated wave [5]. When µ � 1 and N = µ, spectral
width is equal to twice the frequency deviation ∆ω = 2∆ωm.

3. Solution of the equation of the charge motion

The solution of equations (1) and (4) with E and H from (7) has the form:

px =
qbx
ω

N∑
n=−N

Jn (µ) sin Φn

(1 + nη)
+ χx,

py =
fqby
ω

N∑
n=−N

Jn (µ) sin Φn

(1 + nη)
+ χy,

pz = γg;

ε = cγ (1 + g) ,

(8)

where χx, χy and γ are constants (γ ≥ 0 because ε ≥ mc2):

g = h+
q

γ2ω
(bxχx + fbyχy)

N∑
n=−N

Jn (µ) sin Φn

(1 + nη)
+

q2
(
b2
x + b2

y

)
2γ2ω2

N∑
n,k=−N

n6=k

Jn (µ) Jk (µ) sin Φn sin Φk

(1 + nη) (1 + kη)
−
q2
(
b2
x + b2

y

)
4γ2ω2

N∑
n=−N

J2
n (µ) cos (2Φn)

(1 + nη)2 ;
(9)

h =
1

2

{
m2c2 + χ2

x + χ2
y

γ2
− 1 +

q2
(
b2
x + b2

y

)
2γ2ω2

N∑
n=−N

J2
n (µ)

(1 + nη)2

}
. (10)

Φk = (ω + kω′) ξ + α + kψ, k is index of the Bessel function.
From (8) and (5), we obtain the parametric representation (the parameter ξ) of the

particle velocity:
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Vx =
dx

dt
=
c

γ

(
1− Vz

c

)(
qbx
ω

N∑
n=−N

Jn (µ) sin Φn

(1 + nη)
+ χx

)
=

c

(1 + g)γ

(
qbx
ω

N∑
n=−N

Jn (µ) sin Φn

(1 + nη)
+ χx

)
,

Vy =
dy

dt
=
c

γ

(
1− Vz

c

)(
fqby
ω

N∑
n=−N

Jn (µ) sin Φn

(1 + nη)
+ χy

)
=

c

(1 + g)γ

(
fqby
ω

N∑
n=−N

Jn (µ) sin Φn

(1 + nη)
+ χy

)
,

Vz =
dz

dt
=

cg

1 + g
.

(11)

Through the constants χx, χy and γ, determined by the initial phase of the wave:

Φn0 = − (ω + nω′)
z

c
+ α + nψ, (12)

and the initial velocity of the particle V0; from (3), (8) and (11) we find:

χx =
mVx0√

1− V 2
0 /c

2
− qbx

ω

N∑
n=−N

Jn (µ) sin Φn0

(1 + nη)
;

χy =
mVy0√

1− V 2
0 /c

2
− fqby

ω

N∑
n=−N

Jn (µ) sin Φn0

(1 + nη)
;

γ =
mc (1− vz0/c)√

1− v2
0/c

2
.

(13)

From (11), we obtain the following solutions for coordinates of the particles as functions
of the parameter ξ:

x = x0 +
N∑

n=−N

χx (Φn − Φn0)

γk (1 + nη)
− qbx
γωk

N∑
n=−N

Jn (µ)

(1 + nη)2 (cos Φn − cos Φn0) ,

y = y0 +
N∑

n=−N

χy (Φn − Φn0)

γk (1 + nη)
− fqby
γωk

N∑
n=−N

Jn (µ)

(1 + nη)2 (cos Φn − cos Φn0) ,

z = z0 +
N∑

n=−N

h (Φn − Φn0)

k (1 + nη)
− 2q

γ2kω
(bxχx + fbyχy)

N∑
n=−N

Jn (µ) (cos Φn − cos Φn0)

(1 + nη)2 −

q2
(
b2
x + b2

y

)
2γ2kω

N∑
n=−N

J2
n (µ) (sin (2Φn)− sin (2Φn0))

(1 + nη)3 +

q2
(
b2
x + b2

y

)
2γ2ωk

N∑
n,k=−N

n6=k

Jn (µ) Jk (µ)

(1 + nη) (1 + kη)
×

(
sin Φ(n−k)

n− k
−

sin Φ(n−k)0

n− k
−

sin Φ(n+k)

n+ k
+

sin Φ(n+k)0

n+ k

)
,

(14)
where Φ(n−k) = Φn − Φk, Φ(n+k) = Φn + Φk; Φ(n−k)0 = Φn0 − Φk0, Φ(n+k)0 = Φn0 + Φk0.
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From (11) and (14), we determine that the motion of a particle in the external field of
the plane monochromatic electromagnetic wave is the imposition of movement with the constant
velocity V and vibrational motion with the frequency ω̃ = 2π/T̃ different from the frequency
of the field ω and the frequency modulation ω′:

x(t) = x̃+ Ṽxt+ ξ (t) , y(t) = ỹ + Ṽyt+ η (t) , z(t) = z̃ + Ṽzt+ ζ (t) , (15)

where x̃, ỹ, z̃ are constants and

ξ
(
t+ T̃

)
= ξ (t) , η

(
t+ T̃

)
= η (t) , ζ

(
t+ T̃

)
= ζ (t) (16)

are periodic function with same period.
We seek the solution of the equation for the coordinate z in (14) from (15). By

substituting z(t) from (15) into (14) and selecting constants z̃ and Ṽz in the form:

z̃ = z0 +

[
2q

γ2kω
(bxχx + fbyχy)

N∑
n=−N

Jn (µ) cos Φn0

(1 + nη)2 −
q2
(
b2
x + b2

y

)
2γ2kω

N∑
n=−N

J2
n (µ) sin (2Φn0)

(1 + nη)3 −

q2
(
b2
x + b2

y

)
2γ2ωk

N∑
n,k=−N

n6=k

Jn (µ) Jk (µ)

(1 + nη) (1 + kη)

(
sin Φ(n−k)0

n− k
−

sin Φ(n+k)0

n+ k

)]
1

1 + h
;

(17)

Ṽz =
ch

1 + h
, (18)

we obtain the equation for ζ (t):

(1 + h) ζ (t) =

− q

γ2ω

[
2

k
(bxχx + fbyχy)

N∑
n=−N

Jn (µ) cos Φn

(1 + nη)2 +
q
(
b2
x + b2

y

)
2k

N∑
n=−N

J2
n (µ) sin (2Φn)

(1 + nη)3 +

q
(
b2
x + b2

y

)
2k

N∑
n,k=−N

n6=k

Jn (µ) Jk (µ)

(1 + nη) (1 + kη)

(
sin Φ(n−k)

n− k
−

sin Φ(n+k)

n+ k

)]
.

(19)

It follows from (19) that ζ (t) is a periodic function defined by the period T̃ . Let
us find its period. The period T̃ of particle oscillation in the field of a frequency-modulated

electromagnetic wave is determined from the formulae Φ
(
t+ T̃

)
= Φ(t) + 2π, from which,

taking into account (7), (15) and (16), it follows that:

T̃n =
2π

ω

(1 + h)

(1 + nη)
= T

(1 + h)

(1 + nη)
. (20)

One can see that the oscillation period of the particle differs from that of the field of the
frequency-modulated electromagnetic wave.

We will seek the solution of the first equation in (14) in the form x(t) from (14). By
representing constants x̃ and Ṽx in the form:
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x̃ = x0 +
N∑

n=−N

χx (z0 − z̃)

γk (1 + nη)
+

qbx
γωk

N∑
n=−N

Jn (µ)

(1 + nη)2 cos Φn0,

Ṽx = χx
c

γ

(
1− Ṽz

c

)
=
χx

γ

c

(1 + h)
,

(21)

we find that:

ξ(t) = −
N∑

n=−N

χx

γ (1 + nη)
ζ(t)− qbx

γωk

N∑
n=−N

Jn (µ)

(1 + nη)2 cos Φn. (22)

Similarly, we obtain for y(t) in (15):

ỹ = y0 +
N∑

n=−N

χy (z0 − z̃)

γk (1 + nη)
+
fqby
γωk

N∑
n=−N

Jn (µ)

(1 + nη)2 cos Φn0,

Vy = χy
c

γ

(
1− Vz

c

)
=
χy

γ

c

(1 + h)γ
,

η(t) = −
N∑

n=−N

χy

γk (1 + nη)
ζ(t)− fqby

γωk

N∑
n=−N

Jn (µ)

(1 + nη)2 cos Φn.

(23)

4. The motion of a particle averaged over an oscillation period

In this section, we will perform the averaging of the coordinate r(t), velocity V (t),
momentum p(t), and energy ε(t) of the particles over its oscillation period (20) with (8), (11)
and (14) in the field of a frequency-modulated electromagnetic wave.

Consider a new variable of the integration ξ′ = ξ (t′), then:

Φ′n = Φn (t′) ;

dt′ =
dΦ′n

ω (1 + nη)

1

1− Vz/c
=

1 + g

ω (1 + nη)
dΦ′n.

(24)

Since the motion of particle is a superposition of two kinds of periodic motion with
frequencies ω and ω′, averaging will be carried out according to the formula:

f̄(t) =
1

T̃n

Φ(t̃)∫
Φ(t)

f(t′)
1 + g

ω (1 + nη)
dΦ′n, (25)

where f (t′) is an arbitrary function taking into account (7), (15) and (20).
For the coordinate x in (14), we have:

x̄ (t) =
1

T̃

t̃∫
t

x (t′) dt′ =

(
x0 −

N∑
n=−N

χxΦn0

γk (1 + nη)
+

qbx
γωk

N∑
n=−N

Jn (µ)

(1 + nη)2 cos Φn0

)
+

χx

γk

N∑
n=−N

1

T̃n

t̃∫
t

Φn (t′)

(1 + nη)
dt′ − qbx

γωk

N∑
n=−N

1

T̃n

t̃∫
t

Jn (µ)

(1 + nη)2 cos Φn (t′) dt′,

(26)

where
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t̃ = t+ T̃n (27)

see (7), (15) and (28).

Φn (t) = (1 + nη)
[
ωt− k

(
z̃ + Ṽzt+ ζ (t)

)]
+ α + nψ =

(1 + nη) [ω̃t− kz̃ − kζ (t)] + α + nψ.
(28)

By using (27) and (28), we obtain the expression:

t̃∫
t

Φn (t′) dt′ = (α + nψ + (1 + nη) [ω̃t− kz̃]) T̃ − (1 + nη) k

t̃∫
t

ζ (t) dt′ (29)

for the first integral in the right-hand side of (26). The integral in the right-hand side of (29) is
independent of t, because ζ (t) is periodic function with a period T̃n. This integral is zero. The
Fourier component of the function ζ (t) multiplied by T̃n.

Expression (29) can then be transformed to:

t̃∫
t

Φn (t′) dt′ =
(
α + nψ − (1 + nη) k

(
z̃ + ζ̄

))
T̃ + 2πt, (30)

where ζ̄ is the average value of the function ζ (t) in the time interval equal the period T̃n.
By substituting into (26) the values of integrals from (30) with ζ̄ = 0, we finally obtain:

x̄(t) = x̃+ Ṽx

(
t+ T̃n/2

)
, (31)

where x̃ and Ṽx are defined by expressions (21).
In the same way, we find:

ȳ(t) = ỹ + Ṽy

(
t+ T̃ /2

)
, (32)

from (32) ỹ and Ṽy are defined by expressions in (23).
Finally, taking into account that ζ̄ = 0, the expression for:

z̄(t) = z̃ + Ṽz

(
t+ T̃ /2

)
, (33)

where z̃ and Ṽz are defined by expressions (17) and (18).
Averaging the components (11) of the particle velocity, we obtain:

V̄x = Ṽx, V̄y = Ṽy, V̄z = Ṽz. (34)

As might be expected, the speed of the particle V̄ in (26) corresponds Ṽ with (18), (21)
and (23).

From the average value of the longitudinal component of the particle momentum, we
obtain the expression:
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p̄x = χx +
q2bx (bxχx + fbyχy)

γ2ω2 (1 + h)

N∑
n=−N

J2
n (µ)

(1 + nη)2 ;

p̄y = χy +
q2by (bxχx + fbyχy)

γ2ω2 (1 + h)

N∑
n=−N

J2
n (µ)

(1 + nη)2 ;

p̄z =
γ

1 + h

{
h+ h2 +

q2

2γ4ω2
(bxχx + fbyχy)

2
N∑

n=−N

J2
n (µ)

(1 + nη)2 +

q4
(
b2
x + b2

y

)2

16γ4ω4

N∑
n,k=−N

n6=k

J2
n (µ) J2

k (µ)

(1 + nη)2 (1 + kη)2 +
q4
(
b2
x + b2

y

)2

32γ4ω4

N∑
n=−N

J4
n (µ)

(1 + nη)4

}
.

(35)

The average energy ε̄ of the particles is determined by formula:

ε̄ =
cγ

1 + h

{
(1 + h)2 +

q2

2γ4ω2
(bxχx + fbyχy)

2
N∑

n=−N

J2
n (µ)

(1 + nη)2 +

q4
(
b2
x + b2

y

)2

16γ4ω4

N∑
n,k=−N

n6=k

J2
n (µ) J2

k (µ)

(1 + nη)2 (1 + kη)2 +
q4
(
b2
x + b2

y

)2

32γ4ω4

N∑
n=−N

J4
n (µ)

(1 + nη)4

}
.

(36)

5. The case of an arbitrary polarization for a particle being initially at rest

Consider the case when the particle is initially at rest (V0 = 0) and the Bessel functions
indices are equal to each other (k = n). Formula (13) expresses χx, χy, γ and taking into
account that:

Φn (0) = Φn0 = (ω + nω′) ξ0 + α + nψ; ξ0 = −z0/c,

we obtain:

χx = −qbx
ω

N∑
n=−N

Jn (µ) sin Φn0

(1 + nη)
;

χy = −fqby
ω

N∑
n=−N

Jn (µ) sin Φn0

(1 + nη)
;

γ = mc.

(37)

For a wave with an arbitrary polarization [8]:

b2
x ± b2

y = ρ2b2, (38)

where ρ is the ellipticity parameter (ρ = ±1 corresponds to the linear polarization and
ρ = ±1/

√
2 does to the circular one).

In other cases, the value ρ corresponds to an elliptical polarization (0 ≤ ρ ≤ 1), in
which:

χ2
x + χ2

y =
q2ρ2b2

ω2

N∑
n=−N

J2
n (µ) sin2 Φn0

(1 + nη)2 , (39)
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(bxχx + fbyχy)
2 =

q2ρ4b4

ω2

N∑
n=−N

J2
n (µ) sin2 Φn0

(1 + nη)2 . (40)

From (10), we obtain the value of h at the initial time:

h =
1

4

{
σ

(
N∑

n=−N

J2
n (µ)

(
1 + 2 sin2 Φn0

)
(1 + nη)2

)}
, (41)

and according to (41):

σ =
q2ρ2b2

m2c2ω2
=

2q2

πm2c5
Iλ2, (42)

where I = cρ2b2/4π is the intensity of the elliptically polarized electromagnetic wave, and
λ = 2πc/ω is the wavelength.

The oscillation period of a particle is:

T̃n = T

(
1

(1 + nη)
+
σ

4

(
N∑

n=−N

J2
n (µ)

(
1 + 2 sin2 Φn0

)
(1 + nη)3

))
. (43)

By substituting (37) – (41) in (36), we obtain the average energy of a particle at rest in
the initial wave of arbitrary polarization:

ε̄−mc2 =
mc2σ

4

{
N∑

n=−N

J2
n (µ)

(
1 + 2 sin2 Φn0

)
(1 + nη)2 +

N∑
n=−N

J4
n (µ)

(1 + nη)4

σ
(
2 sin2 Φn0 + 1/8

)(
1 +

(
σJ2

n (µ)
(
1 + 2 sin2 Φn0

))
/
(
4 (1 + nη)2))

}
.

(44)

The maximum average energy is obtained for the phase Φn0 = π/2 or 3π/2, when the
field at the point where a particle in located initially zero. In this case, we have:

ε̄−mc2 =
3mc2σ

4

{
N∑

n=−N

J2
n (µ)

(1 + nη)2 +
N∑

n=−N

J4
n (µ)

(1 + nη)4

17σ(
24 + 18σJ2

n (µ) /
(
(1 + nη)2))

}
.

(45)
The minimum average energy corresponds to the phase Φn0 = 0 or π and is determined

by the expression:

ε̄−mc2 =
mc2σ

4

{
N∑

n=−N

J2
n (µ)

(1 + nη)2 +
N∑

n=−N

J4
n (µ)

(1 + nη)4

σ(
8 + 2σJ2

n (µ) / (1 + nη)2)
}
. (46)

The energy 〈ε̄〉 of the charged particle, being further averaged over the initial phase Φn0,
in the plane monochromatic arbitrarily polarized wave is given by:

〈ε̄〉 −mc2 =
mc2σ

4

{
N∑

n=−N

6J2
n (µ)

(1 + nη)2−

N∑
n=−N

7σJ4
n (µ) + 32J2

n (µ) (1 + nη)2

2 (1 + nη)2
√

3J4
n (µ)σ2 + 16σJ2

n (µ) (1 + nη)2 + 16 (1 + nη)4

 .

(47)
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For the private case of wave circular polarization when the difference between Ex and
Ey corresponds to π/2 or 3π/2 (see (6) and (7)). This means that waves are located in opposite
phases and cancel each other out. We obtain the average energy ε̄ of the particle:

ε̄−mc2 =
σmc2

2


N∑

n=−N

J2
n (µ)

(1 + nη)2 + σ

N∑
n=−N

J4
n (µ)

(1 + nη)4

(
4 + 2σ

N∑
n=−N

J2
n (µ)

(1 + nη)2

)

. (48)

The resulting formulas (44), (45), (46) (47) and (48) for the average kinetic energy
of the particles comprise an explicit dependence on the initial particle velocity, amplitude
of the electromagnetic wave, a frequency modulation index, the frequency of the carrier wave,
frequency modulation, intensity and polarization, which allow one to make practical calculations.
When µ � 1, N = 1, the formulas (44), (45), (46) (47) and (48) become the special case of
linear and circular polarization form [6].

6. Conclusions

This article offers the exact solution for the equations of a charged particle’s motion in
the external field of a frequency-modulated electromagnetic wave. This solution indicates the
dependence of the electron velocity on the intensity of the monochromatic frequency-modulated
electromagnetic wave for the cases of elliptical polarization which are, therefore, the cases of
different initial conditions of the charged particle motion and wave polarization. In the electro-
magnetic wave (7) of the field E and H is periodic with average electric and magnetic field
values of zero. One would assume that such fields will have an alternating effect on charged par-
ticles and the average deviation caused by this influence is also zero. However, this assumption
is incorrect. In particular, in the field of a plane frequency-modulated electromagnetic wave, the
particle performs a systematic drift in the direction of the electromagnetic field, as well as the
drift direction of wave propagation. The values of the momentum and energy of the particle,
averaged over the period of vibration, were calculated. The oscillation period of the particle
differs from that of the field. As the field intensity is increased, the frequency of the oscillatory
motion of the particle tends to zero according to (20). The motion of the particle was shown to
be the superposition of motion at a constant velocity and vibrational motion with the frequency
of the electromagnetic field and the frequency modulation different from the field frequency.
In the absence of the frequency modulation, all the formulae go to the appropriate formulae
given in [6]. The solutions obtained are presented in the explicit dependence on the initial data,
the amplitude of the electromagnetic wave, the wave intensity and its polarization parameter
that allows practical application of the solutions. We have obtained the exact criterion for the
applicability of relativistic equations of motion for a charged particle in a frequency-modulated
electromagnetic field, depending on the intensity and duration of the pulse. This implies that
the accuracy of the analytical calculation increases with its time duration and decreases with
the intensity of the electromagnetic pulse. The practical significance of the research is that the
results can be used to develop relativistic electronic devices. In addition, the results may be
of interest for astrophysical research or studies involving plasma in an external electromagnetic
field.
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1. Introduction

Flow through nanotubes are intensively investigated, particularly due to its biological
applications, e.g., as a transport channel for some compounds into the cell (see, e.g., [1]).
Although there is no general approach in nanohydrodynamics [2-6], the Stokes approximation
(with variable viscosity) is available in many cases. We consider the axisymmetric case,
which is natural for the nanotube flow. Biologists need a reliable computational approach
to describe and predict the mass transport through a nanotube “to” and “from” the cell.
There are several computational schemes for solution of the Stokes and continuity equations,
but in the case of strongly varying viscosity, these schemes are plagued by difficulties. One
would like to have an instrument for testing of these algorithms. One convenient method
is to suggest benchmark solutions for some particular cases [7-9]. In this paper, such a
benchmark solution is constructed for the axisymmetric case. It is interesting to note that
the same mathematical problem appears in geophysics [10, 11].

This paper deals with the Stokes and continuity equations for the case of variable
viscosity and density having the following form:

(∇ · σ) = −ρG , (1)

∇(ρv) = 0, (2)

where v is velocity, η is a dynamic viscosity, σ is the total stress tensor, p is a pressure, G is
a gravitational force. We consider equations (1), (2) in cylindrical coordinates (r, ϕ, z) and
construct a solution for the case when the variables depend only on the radius r.

2. Benchmark solutions

We construct particular solutions of the system of Stokes and continuity equations for
specific density and viscosity distributions: η = η(r), ρ = ρ(r). Let vr = vr(r), vϕ = vϕ(r),
vz = vz(r), P = P (r), η = η(r), ρ = ρ(r), G = G(r). Then equation (1) simplifies
considerably:

2η
1

r
v,r + 2η′v,r + 2ηv,,r − 2η

1

r2
vr − P ′ = −ρGr (3)
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η′v,ϕ −
1

r
η′vϕ + ηv,,ϕ +

1

r
ηv,ϕ − η

1

r2
vϕ = −ρGϕ (4)

η
1

r
v,z + η′v,z + ηv,,z = −ρGz. (5)

The continuity equation takes the form:

ρ
1

r
vr + ρ′vr + ρv,r = 0. (6)

In this case, we obtain the following solutions of equations (1), (2):

vr = c
rρ
, vϕ = c1f(r) + c2r + C1(r)f(r) + C2(r)r,

vz = −
r∫

1

1
ηr2

(
r2∫
1

r1ρGzdr1 + c1)dr2 + c2,
(7)

P (r) =

∫
(ρGr + 2η

1

r
v,r + 2η′v,r + 2ηv,,r − 2η

1

r2
vr)dr, (8)

where

f(r) = exp(

r∫
1

(
1

r2

+
1

ηr3
2

1
r2∫
1

1
ηr31
dr1 + C

)dr2),

C1(r) =

∫
rρGϕ

η(f − f ′r)
dr, C2(r) = −

∫
fρGϕ

η(f − f ′r)
dr.

Formulas (7), (8) gives us the solution of equations (1), (2). Derivation of the solution is
presented in Appendix A in detail.

3. Multigrid method

In this work, we derive a procedure of multigrid method for solving the Stokes equa-
tions with variable viscosity in cylindrical coordinates. The analogous algorithm for the
Cartesian coordinates was described in [10]. We derive a similar scheme for cylindrical
coordinates.

As usual, the multigrid method algorithm contains three steps: 1) smoothing opera-
tion 2) restriction operation 3) prolongation operation. Cylindrical coordinates are orthog-
onal coordinates, thus the implementation of the prolongation and restriction operations in
our method is not different from that in the case of the Cartesian coordinates. As for the
smoothing operation, it differs. This procedure is described in Appendix B in detail.

The scheme for algorithm testing is as follows. Let us consider some particular
analytical solutions (7), (8): vr = −1

r
, vϕ = r2, vz = − 1

10
ρGzr

5 − 1
3
r3, P (r) = ρGrr + 1.2 1

r2

in the domain 1 6 r 6 2, 0 6 φ 6 1, 0 6 z 6 1 (ρ = const, Gr = 10, Gϕ = 0, Gz = 10,
η = r−3). We calculate the values for velocity and pressure given by our analytical solution
and take these values as the boundary conditions for the numerical algorithm. The deviation
of the numerical solution values from the analytical solution is related to the error of the
multigrid scheme. The dependence of the relative error on the grid step for the multigrid
scheme is shown in Figure.1. Positive curve slopes indicate a convergence for the algorithm.
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Fig. 1. Error norm via the grid resolution in logarithmic scale: blue lines-
pressure, red lines- vr , black lines - vϕ , green lines - vz; solid lines - L1-error,
dashed lines- L∞ -error, solid dotted lines- L2-error

Appendix A. Derivation of the Stokes equations solution

Integration of (6) gives us:

vr =
c

rρ
. (9)

Substitution of (9) in (3) gives us the expression for pressure:

P (r) =

∫
(ρGr+2η

1

r
v,r + 2η′v,r + 2ηv,,r − 2η

1

r2
vr)dr. (10)

Consider equation (4). Simple transformation gives us:

v,,ϕ + v,φ(
η′

η
+

1

r
)− v(

φ

1

r

η′

η
+

1

r2
) =
−ρGϕ

η
(11)

We seek a solution of (11) in the form vϕ(r) = vϕ0(r) + vϕ1(r), where vϕ0(r) is particular
solution of (11) and vϕ1(r) is the general solution of the corresponding homogeneous equation:

v,,ϕ + v,ϕ(
η′

η
+

1

r
)− v(

ϕ

1

r

η′

η
+

1

r2
) = 0. (12)

Let us make a replacement:

z =
v′ϕ
vϕ

(13)

in (12). It transforms into the first-order equation:

z′ + z(
η′

η
+

1

r
) + z2 − 1

r

η′

η
− 1

r2
= 0. (14)

If one makes the substitution z = 1
ηr
y, where y = y(r) then (14) transforms into the Riccati

equation:

y′ + y2 1

ηr
− η′ − η

r
= 0. (15)



Analytical benchmark solutions for nanotube flows... 675

Function y = η is a particular solution of (15). Keeping this in mind, we seek the solution
in the form y = u+ η. For function u = u(r) one obtains the Bernoulli equation:

u′ = −2
1

r
u− 1

ηr
u2. (16)

Note that u(r) = 0 is a solution. We seek a non-trivial solution of (16) in the form u = 1
r2
q

, where q = q(r). The equation simplifies:

q′ +
1

ηr3
q2 = 0,

giving us:

q =
1∫
1
ηr3
dr

Coming back to (12), we get:

v′ϕ
vϕ

=
1

ηr
(η +

1

r2

1∫
1
ηr3
dr

)

After integration, one obtains:

ln(|vϕ|) =

r∫
1

(
1

r2

+
1

ηr3
2

1
r2∫
1

1
ηr31
dr1 + c11

)dr2 + c21

Solution u(r) = 0 of (16) leads to the following solution of (12):

vϕ = cr

As a result, we obtain the general solution of (12) in the following form:

vϕ1(r) = c1f(r) + c2r,

where f(r) = exp(
r∫

1

( 1
r2

+ 1
ηr32

1
r2∫
1

1

ηr31
dr1+C

)dr2).

We seek a particular solution of equation (11) by the Lagrange method in the form
vϕ0(r) = C1(r)f(r) + C2(r)r.

Here C1(r), C2(r) satisfy the system of equation:

C ′1f(r) + C ′2r = 0

C ′1f
′(r) + C ′2 = −ρGϕ

η

.

Correspondingly, C1(r) =
∫ rρGϕ

η(f−f ′r)dr, C2(r) = −
∫ fρGϕ

η(f−f ′r)dr

As a result, we come to the following solution of equation (4):

vϕ(r) = c1f(r) + c2r + C1(r)f(r) + C2(r)r, (17)

we let v,z = w(r), equation (8) takes the form:

w′ + (
η′

η
+

1

r
)w = −ρ

η
Gz (18)

If one makes the substitution w = $ 1
ηr

, where $ = $(r), then (11) transforms into equation:

$′
1

ηr
= −ρ

η
Gz
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Integration gives us:

w = − 1

ηr
(

r∫
1

r1ρGzdr1 + c1),

As a result, we get the following expression for the velocity component:

vz = −
r∫

1

1

ηr2

(

r2∫
1

r1ρGzdr1 + c1)dr2 + c2. (19)

Appendix B. Gauss-Seidel smoother

Smoothing operation can be implemented on the basis of Gauss-Seidel iterations.
The respective iterative pressure and velocity update schemes for a regularly spaced grid
can be derived:

P new
(i,j,l) = P(i,j,l) + ηn(i,j,l)∆R

continuity
i,j,l θcontinuityrelaxation (20)

∆Rcontinuity
i,j,l = Rcontinuity

i,j,l − vr
r
− ∂vr

∂r
− 1

r

∂vϕ
∂ϕ
− ∂vz

∂z
, (21)

vnewr(i,j,l) = vr(i,j,l) +
∆Rr−Stokes

i,j,l

Cvr(i,j,l)
θStokesrelaxation (22)

vnewφ(i,j,l) = vϕ(i,j,l) +
∆Rϕ−Stokes

i,j,l

Cvϕ(i,j,l)

θStokesrelaxation (23)

vnewz(i,j,l) = vz(i,j,l) +
∆Rz−Stokes

i,j,l

Cvz(i,j,l)

θStokesrelaxation (24)

where θcontinuityrelaxation, θ
Stokes
relaxation are relaxation parameters. Cvr(i,j,l), Cvϕ(i,j,l) ,Cvz(i,j,l) is the coef-

ficients at vr(i,j,l)vϕ(i,j,l), vz(i,j,l) in Stokes equations (1). For models with variable viscosity,
the respective residuals in Eqs.(22)–(24) become:

∆Rr−Stokes
i,j,l = Rr−Stokes

i,j,l − ∂τrr
∂r
− τrr − τϕϕ

r
− 1

r

∂τrϕ
∂ϕ
− ∂τrz

∂z
+
∂P

∂r
, (25)

∆Rϕ−Stokes
i,j,l = Rϕ−Stokes

i,j,l − ∂τrϕ
∂r
− 2τrϕ

r
− 1

r

∂τϕϕ
∂ϕ
− ∂τϕz

∂z
+

1

r

∂P

∂ϕ
, (26)

∆Rz−Stokes
i,j,l = Rz−Stokes

i,j,l − ∂τrz
∂r
− τrz

r
− 1

r

∂τϕz
∂ϕ
− ∂τzz

∂z
+
∂P

∂z
(27)

where τ is a deviatoric stress tensor.

B.1 Discretization of the continuity equation

Fig. 2 shows an elementary volume (cell) of a 3D staggered grid that can be used for
discretization. Using the stencil with six velocity nodes around a cell (Fig.2), equation (21)
takes the form:

∆Rcontinuity
i,j,l = Rcontinuity

i,j,l − 1
rj+∆r/2

vr(i+1,j+1,l+1)+vr(i+1,j,l+1)

2
− vr(i+1,j+1,l+1)−vr(i+1,j,l+1)

∆r
−

− 1
rj+∆r/2

vϕ(i+1,j+1,l+1)−vϕ(i,j+1,l+1)

∆ϕ
− vz(i+1,j+1,l+1)−vz(i+1,j+1,l)

∆z
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Fig. 2. Indexing of different variables for a 3D staggered grid

Fig. 3. Stencil of a 3D staggered grid used for the discretization of the
r-Stokes equation with variable viscosity
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B.2 Discretization of Stokes equations

An example of stencil for the discretization of the r-Stokes equation is shown in Fig.3.

For terms in equations (22), (25), we obtain the following discretization:

1. Pressure derivative:

∂P

∂r
=
P(i−1,j,l−1) − P(i−1,j−1,l−1)

∆r

Discretization for terms which contain deviatoric stress tensor components:

2.

(
∂τrr
∂r

)i,j,l = (
∂

∂r
(2η

∂vr
∂r

))i,j,l = 2
1

∆r
(η(i−1,j,l−1)

vr(i,j+1,l) − vr(i,j,l)
∆r

−η(i−1,j−1,l−1)

vr(i,j,l) − vr(i,j−1,l)

∆r
)

3.

(τrr)i,j,l = (2η
∂vr
∂r

)i,j,l = (ηn(i−1,j,l−1) + ηn(i−1,j−1,l−1))
vr(i,j+1,l) − vr(i,j−1,l)

2∆r

4.

(τϕϕ)i,j,l = (2η(1
r

∂vϕ
∂ϕ

+ vr
r

))i,j,l = 1
rj

(ηn(i−1,j,l−1) + ηn(i−1,j−1,l−1))(
1

∆ϕ
(
vϕ(i,j+1,l)+vϕ(i,j,l)

2
−

−vϕ(i−1,j+1,l)+vϕ(i−1,j,l)

2
) + vr(i,j,l))

5.

(∂τrϕ
∂ϕ

)i,j,l = ( ∂
∂ϕ

(η(1
r
∂vr
∂ϕ

+ ∂vϕ
∂r
− vϕ

r
)))i,j,l = 1

∆ϕ
(ηrϕ(i,j,l−1)(

1
rj

vr(i+1,j,l)−vr(i,j,l)
∆ϕ

+
vϕ(i,j+1,l)−vϕ(i,j,l)

∆r

− 1
rj

vϕ(i,j+1,l)+vϕ(i,j,l)
2

)− ηrϕ(i−1,j,l−1)(
1
rj

vr(i,j,l)−vr(i−1,j,l)

∆ϕ
+

vϕ(i−1,j+1,l)−vϕ(i−1,j,l)

∆r
− 1

rj

vϕ(i−1,j+1,l)+vϕ(i−1,j,l)

2
))

6.

(∂τrz
∂z

)i,j,l = ( ∂
∂z

(η(∂vz
∂r

+ ∂vr
∂z

)))i,j,l = 1
∆z
ηrz(i−1,j,l)(

vz(i,j+1,l)−vz(i,j,l)
∆r

+
vr(i,j,l+1)−vr(i,j,l)

∆z
)−

−ηrz(i−1,j,l−1)(
vz(i,j+1,l−1)−vz(i,j,l−1)

∆r
+

vr(i,j,l)−vr(i,j,l−1)

∆z
)

.

Discretization for coefficient Cvr(i,j,l) in equation (16) takes the form:

Cvr(i,j,l) = −2
ηn(i−1,j,l−1)+ηn(i−1,j−1,l−1)

∆r2
− ηn(i−1,j,l−1)+ηn(i−1,j−1,l−1)

r2j
−

− 1
r2j

ηrϕ(i,j,l−1)+ηrϕ(i−1,j,l−1)

∆ϕ2 − ηrz(i−1,j,l)+ηrz(i−1,j,l−1)

∆z2

Discretization for the ϕ-Stokes and z-Stokes equations can be constructed and indexed anal-
ogously.
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In this paper, we apply results of analysis of the Raman spectrum from an amorphous carbon film modified

with iron (a− C : Fe) which leads to construction of clusters containing fragments of graphene and a layer

of iron atoms. Such clusters may be candidates for the role of microwave radiation absorbers. For the

Raman experiments we performed deposition of a thin film of a − C : Fe. Details of the film deposition

process, together with the corresponding Raman experiments are presented in this paper. Comparison with

a literature model was performed for the intensity ratio of the maxima for specific Raman bands, using the

letter D to represent “disorder” and the letter G to represent “graphite”. Comparison gives evidence for the

existence of nanosize fragments of graphene embedded in an amorphous matrix of the a− C : Fe film. The

diameter of the fragments is predicted to attain a value of about 1.2 nm. Moreover, in a comparison with

experimental data for defective graphite, the position of the maximum of the D band for a−C : Fe appeared

to be red shifted. This could support the proposition that damping of Raman-active oscillations occurs by

an electron gas in fragments of graphene after introduction of iron, e.g. after intercalation. On the basis

of these estimates, we modeled a symmetrical polycyclic aromatic hydrocarbon having a similar size and

converted it into fragment of a graphene plane by removal of hydrogen atoms occupying the edge states. To

preserve symmetry, we placed atoms of iron on top of the fragment, situating them exactly above the centers

of hexagons at a certain distance and placed another fragment of graphene on the top of the iron atoms,

symmetrically. For a distance of 2.52 Åbetween the centers of the hexagon and the iron atom, distortions

of carbon-carbon valence bonds and angles were found to be minimal, as shown through optimization of

the system’s geometry using the Avogadro molecular editor. This result supports an hypothesis of graphene

fragments during the growth of an amorphous carbon film modified by simultaneous addition of a dopant

metal such as iron. This example may illustrate the stability of a two-dimensional electron gas confined

between the fragments.

Keywords: graphene, iron, intercalation, carbon, nanoclusters, encapsulation.

Received: 1 October 2015
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1. Introduction

Academic interest has recently been growing for the relatively new nanocomposites
formed from clusters of graphene and metals. For example, two dimensional inclusions of iron
were incorporated between planar fragments of graphene due to the lattice parameter match
between graphene and two-dimensional iron [1,2]. On the other hand, routine technological
methods to achieve similar goals have so far not been reported. Simultaneous magnetron
sputtering of graphite and metal targets may be one way in which such clusters may be
formed. In this case, a stacking between two dimensional metal and graphene plane fragments
may occur, usually termed intercalation. The metal atoms can be situated either between
two graphene planes or above a single fragment [3,4]. However, experimental evidence for the
existence of such fragments is limited to exploiting arguments concerning the activation of D
and G Raman bands in infrared spectra of the composites [3–7]. The authors of these papers
term the incorporation of metal atoms in a carbon environment as ‘encapsulation’. For the
case of pairs of graphene planes and iron metal atoms fragments placed between them, one
may consider these planes as outer “shells” of a capsule and use this term. However, there
has until now been no direct observations of the intercalated graphene clusters, although
some modelling results have been published [3, 4].
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Fig. 1. Raman spectrum of a thin film of a-:Fe ([Fe]/[C]=0.62) and its Gauss-
ian decomposition: empty squares stand for experimental data. Insets show
two types of oscillations of carbon atoms in a hexagon contributing to D and
G Raman bands, correspondingly. An interference pattern is distinctly recog-
nizable. Result of smoothing [17] is presented by empty circles. Solid lines
depict Gaussian decomposition discriminating D and G bands as contour 1
and (contour 2), correspondingly; curve 3 portrays the sum of contours 1 and 2
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Fig. 2. Dependence of the spectral position of the RamanD band for defective
graphite as a function of energy of photons exciting the Raman spectra, [18].
Arrows depict the position of the D band for the photon energy used in this
paper

Practical interest in amorphous carbon containing encapsulated clusters of magnetic
metals was linked to the intriguing possibility of electromagnetic radiation absorption in the
microwave spectral region (frequency ∼ 10 GHz) [8]. This could provide opportunities to
use nanocomposite films for purposes of electromagnetic shielding in many different areas,
including stealth technology [9]. This effect might be linked to the excitation of Frőlich-like
resonance because of either the specific magnetic properties of nanosize portions of ferro-
magnetic materials [10] or their special dielectric characteristics. Among valuable magnetic
properties, hysteresis losses play the most important role for contribution to the absorption
of microwaves. However, for magnetic clusters of several nanometers in size, the hysteresis
losses are negligibly small [11]. Thus, the observed effect of microwave absorption might be
simply explained by the peculiarities of electromagnetic absorption by particles of special
shapes. These could be e.g., flat nanoclusters confining a two-dimensional electron gas em-
bedded in the nanocomposite because the Frőlich resonance shifts for this particular case
to the microwave region (see, e.g. [12]). It is natural to postulate the existence of two-
dimensional conductive clusters that may absorb microwave radiation and real fragments of
graphene. Thus, in this study, we investigate fragments of graphene and ordered layers of
iron atoms. If a single layer of iron is absorbed by a single fragment of graphene, one may
term this situation as decoration. When two or more fragments are involved, this situation
might be termed as intercalation. For symmetry reasons, we present the case of intercalation
when a layer of iron atoms is placed between a pair of fragments of graphene. To be precise,
iron atoms are situated above the centers of the carbon hexagons. A similar geometrical
picture was considered [13], but more fragments of graphene planes were considered there.
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Fig. 3. Dependence of the ratio ID
IG
E4 on the distance La between defects

in exfoliated graphene exposed to ion bombardment. The left hand part of
the curve to the maximum represents fragmented graphene embedded in the
amorphous matrix; points to the right from the maximum characterize passage
through the percolation threshold; here ID and IG are intensities of Raman
scattering measured at the maxima of the contours of D and G correspond-
ingly; E is the energy of the photon used for excitation of the Raman spectrum.
Empty squares depict experimental data from [14], [15]. The solid line shows
the best fit to the equation in [15]. The left arrow gives the size of graphene
fragments for the case of an amorphous film of a-C : Fe: ( ID

IG
E4)exp as de-

termined from Fig.1. The right arrow shows the hypothetical case when the
percolation cluster consists of linking fragments of graphene

Fig. 4. A view of a pair of fragments of graphene planes encapsulating a layer
of iron atoms after structure optimization performed by the Avogadro package.
Gray and dark gray circles portray atoms of carbon and iron correspondingly
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Fig. 5. The Fe bond angle distribution in the graphene layers. Bars represent
the Fe-Fe interatomic distance after optimizing the geometry of the atomic
configuration as in Fig. 4. The full line corresponds to part of the radial
distribution function for amorphous iron [20]

Here we derive geometric parameters of the cluster by comparison of the ratio of specific
Raman bands obtained from our experimental data and calibration curve suggested recently
in ( [14], [15]).The geometric optimization of the model of the cluster was performed using
the Avogadro molecule editor [16]. This is useful for qualitative investigation of the stability
of new materials. The statistical distributions of bond length between atoms forming the
cluster are also presented and discussed here.

2. Experimental

The film was grown by the simultaneous sputtering of graphite and iron with an
alternating current magnetron system operating at a frequency of 1.78 MHz. More technical
details are presented in [11]. Here we note that the chemical composition of film, thickness
and specific density were obtained using both Rutherford backscattering and nuclear reac-
tions with a deuteron beam of energy 1 MeV. Analysis of the experimental data shows a
concentration ratio [Fe]/[C] of 0.62 and traces of oxygen with a corresponding ratio [O]/[C]
of 0.05. The film was ∼ 1μm in thickness and the density � =3.9g/cm3. Raman spectra
were obtained using an Ocean Optics R-2001 spectrometer operating at 785 nm and 500 mW
radiation. The radiation was delivered to the investigating sample by a fiber waveguide. A
similar waveguide was used for detection of the scattered radiation.
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of atoms in the iron nanocluster [21], [22]. The gap becomes zero for N=37

3. Results and discussion

3.1. Geometrical characteristics of graphene fragment

Figure 1 shows the Raman spectrum for a − C : Fe in the area corresponding to
atomic vibrations of the carbon matrix where specific bands D and G manifest themselves.
The spectrum looks like a wide band slightly modified with an interference pattern. We
applied the Swanepoel method [8] for smoothing the interference and the result is presented
in Fig.1 by empty circles. The decomposition of the resulting function was performed using
the best fit by a sum of two Gaussians extracting the contribution of D and G lines from
the background. A comparison was performed between the spectral position of the Raman
band D extracted from the experiment presented in Fig.1 and the dispersion dependence
for the position of the D band for disordered graphite depicted in Fig.2. The dependence
presented in Fig.2 is plotted for the position of the D band measured in inverse wavelength
versus the exciting Raman spectra photon energies. The arrow in Fig.2 shows the prediction
for the position of the D band for our experiment, equal to ∼1310cm−1. However, the
Gaussian decomposition of data presented in Fig.1, gives a different inverse wavelength
value, 1290cm−1. It means that the position of the D band presented in Fig.1 is red-shifted
in comparison with the prediction. That might be used as evidence of a damping process
of the C − C vibrations that might be realized through excitation of a free electron gas in
the vicinity of the conducting cluster. This fact may be used as evidence for the existence
of conductive inclusions embedded in an amorphous carbon matrix. Among them, the iron-
decorated or iron-intercalated fragments of graphene might occur. Note that the ratio of
ID
IG

characterizes the size of the graphene fragment forming the amorphous carbon matrix,
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as was demonstrated in recent papers [14], [15] where a correction to the energy of photons
exciting the Raman spectrum E was performed. Here ID and IG are the intensities for
Raman scattering measured at the maxima of the contours of D and G correspondingly. To
be precise, the calibration curve from [15] establishing a link between the ratio and distance
between defects in exfoliated graphene is depicted in Fig.3. This dependence consists of
two parts: that of the left side of the maximum and that of the right part. The right part
corresponds to the case when a percolation cluster containing linking graphene fragments
has formed. The left part characterizes an ensemble of graphene fragments separated from
each other by an amorphous matrix. Therefore, a direct comparison of the experimental
the value obtained from Fig.1, ( ID

IG
E4)exp, with the dependence presented in Fig.3 by a solid

line, is valid. The left arrow in Fig.3 corresponds to the case of an amorphous structure and
gives an estimation for the graphene fragment size for our sample of ≈ 1.2 nm. The right
arrow corresponds to the hypothetical case of formation of the infinite percolation cluster in
an amorphous carbon matrix.

3.2. Optimisation of geometry

Based on the above information for the size of a fragment of graphene, we chose
as a model a polycyclic aromatic hydrocarbon C54H18 [19] having almost the same size as
predicted by Raman spectroscopy. We made a slight modification with the hydrocarbon,
removing atoms of hydrogen occupying the edge states. Afterwards we constructed the
layered system. The iron atoms were placed exactly above the centers of each hexagon
belonging to a basal fragment of graphene maintaining a certain distance L above the plane.
Another fragment of graphene was placed symmetrically on the top of the layer of iron atoms
keeping the same distance from the each hexagon center to each iron atom of L. Thus, we
investigate case of “intercalation”, but one may reduce the system size to obtain results for
the case “decoration” without loss of generality.

Different occupations of empty places above hexagons may occur in reality. Here, we
considered maximal occupation of empty places by analogy with previous paper where we
modeled the interaction of cobalt with unsymmetrical graphene fragments.

A schematic view of the carbon-iron cluster after optimization of the geometry by
Avogadro is portrayed in Fig.4. Note that after optimization both the Fe-Fe and C-C bond
lengths only slightly deviate from their initial values of 2.61Å and 1.42Å respectively. It is
seen in the Figure 5 that the interplanar distances are slightly changed after optimization,
deviating from the initial value of L = 2.52Å. It might be interesting to exploit ab initio
modeling to investigate details of the electronic structure of carbon-iron clusters more exactly
before a firm conclusion on the possibility of absorption of microwaves by the clusters can be
formed. However, for ab initio modeling, computation time is expensive. Thus, we analyze
here the electronic spectrum qualitatively. First of all it is important to estimate with
more details the degree of amorphization of the iron layer obtained after optimization of the
geometry because electronic properties are very sensitive to this parameter. For this purpose,
we present in Fig.5 an histogram of the Fe-Fe interatomic distribution in comparison with a
similar distribution for amorphous iron. One may see in Fig.5 that the distribution of Fe-Fe
bonds is very sharp in comparison with amorphous iron itself.

Furthermore, since we are dealing with nano-dimensional clusters, it is interesting to
see how the effects of electron spectrum size quantization can affect the electrical conductivity
of the iron layer and adjacent graphene plane fragment.

Figure 6 shows the dependence of the energy gap between the free and occupied
states in iron nanoclusters (HOMO-LUMO gap), as a function of the number of atoms
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forming them. It is seen that the dependence may be approximated by a linear trend that
reaches zero when the number of atoms is approximately equal to M = 37. In this case,
the cluster of iron is metallic. Note that this cluster will differ only slightly in size from the
analog, shown in Figure 4. This may indicate a good estimation of the size of the cluster
size performed by analyzing the Raman spectrum. Because a possible difference may exist
between the work functions of the graphene plane fragments and two-dimensional layer of
iron metal, electrons can be either localized in the vicinity of iron layer or may delocalize
within a whole fragment of graphene -iron - fragment of the graphene sandwich.

When electrons in an iron cluster behave as they do in a bulk metal, one may use
a value known for a bulk iron: 4.5-4.7 eV [23]. In turn, to evaluate the work function W

of a fragment of graphene one can use the expression: W = Ip +
Eg

2
, where Ip is ionization

potential for the fragment and Eg is its width of optical gap.
The value of Ip might be estimated using a well-known equation for polycyclic aro-

matic hydrocarbons: Ip = 5.1 + 0.7Eg (eV) [24]. For a fragment of graphene containing 37
hexagonal rings (37 is number of atoms when the layer of iron becomes conductive), the value
for Eg might be estimated using an approximate equation for symmetric hydrocarbons [25]:
Eg = 2|β|M−1/2; here 2|β| ≈ 2.9 eV is the energy of interaction between pair of adjacent π
orbitals. M is number of hexagons in the fragment. Eg ≈0.95 eV for M = 37, thus W =
6.24 eV. That is the work function for a fragment of graphene supporting a conductive iron
layer is bigger than that for bulk iron. One may expect for this situation some smearing of
the free electron gas from the iron layer to the graphene fragments.

4. Conclusions

The estimations performed in this paper lead to two preliminary conclusions:
1. Flat particles containing fragments of graphene planes separated by a layer of iron

may be present in an a-C:Fe structure.
2. Whether the fragment would be metallic or not will depend upon the possibility of

the formation of the iron layer with dimensions that are sufficient for suppression of quantum
effects.

The paper was presented at the 10th Simposium “Thermodynamics and Material
Science” 7-11.09.2015, St. Petersburg, Russia.
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1. Introduction

Quantum biphoton states with orbital-angular-momentum (OAM) can be used in
quantum communications to extend the alphabet of quantum cryptography, which can
increase the transmission rate [7]. Of particular interest are quantum walks, where the in-
terference of several walkers can be used to realize various simulations, including database
search [1,12], quantum teleportation, and quantum cryptography [2–4], enabling absolutely
secure communications. Quantum walks and generation of biphoton states with OAM can
be implemented in arrays of coupled waveguides with closed-loop boundary conditions [5].
Recently, a new type of coupled waveguide with a twisted geometry was demonstrated in
a photonic-crystal fiber [6]. Such waveguides are able to effectively provide the transfer
of OAM states. The behavior and generation of biphotons in twisted waveguides can be
described by the Shrödinger equation and evolution of the pump profile can be desribed
by the classical coupled-mode equations. The biphoton entanglement with OAM was first
experimentally demonstrated by Zeilinger et al. using the process of spontaneous para-
metric down-conversion (SPDC) [7]. We consider a linear polarization of light and small
twist of waveguides, with the amount of twist . 1◦, and in this case the structure of the
pump and biphoton modes is essentially the same as in the straight array. We formulate
the mathematical model under such conditions.

In our work, we consider generation of biphonons through spontaneous four-wave
mixing (SFWM) through χ(3) nonlinearity in optical fibers. We have not considered χ(2)

nonlinearity, because it requires a crystal lattice without a center of inversion and it is
difficult to realize in the optical fiber, unlike χ(3) nonlinearity which occurs in conventional
optical fibers. However, in the case of χ(3) nonlinearity, the frequencies of pump wave
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and biphotons may be close to each other, which requires narrow-band filtering before the
single-photon detectors [15].

We numerically solve the classical coupled-mode equations for pump profile and
Shrödinger equation for biphotons in twisted waveguides.

2. Derivation of Schrödinger equation for biphoton wave function in a twisted
waveguide array

The normalized pump field profile evolution along the propagation distance z is
defined through the classical coupled-mode equations [8]:

i
dEn

dz
+ C(ω) exp [−iωχ̇0(z)]En+1 + C(ω) exp [iωχ̇0(z)]En−1 = 0, (1)

where En is the complex field amplitude in the nth waveguide, and EN maps to E0, and
E−1 maps to EN−1 due to closed-loop boundary conditions [9], n is the waveguide number,
N is the total number of waveguides, χ0(z) ≡ χ0(z + L) is the periodic waveguide bending
profile, L is the modulation period, coefficient C(ω) defines a coupling strength between
the neighboring waveguides (it characterizes diffraction strength in a straight waveguide
array (WGA) with χ0 ≡ 0) [10]. In our case, χ̇0(z) = const, because the waveguide
bending profile is the same for all values of z.

The eigenmode solutions of Eqs. (1) are E
(m)
n(z) = ε

(m)
n exp(iβmz), where

m = 0, . . . , N − 1 is the mode number, ε(m)
n = exp(i2πmn/N) are the mode profiles, and

βm = 2C cos(2πm/N − φ0) (where φ0 = ωχ̇0(z)) are the propagation constants. The eigen-
modes E(m)

n(z) represent discrete optical vortices [14], or states with OAM due to a twisted
structure of their phase profiles. Here, the supermode number m corresponds to the OAM.

Generation of photon pairs in cubic nonlinear WGAs through SFWM in the absence
of multiple photon pairs can be characterized by the evolution of a bi-photon wave function
ψns,ni

(z) in a Schrödinger-type equation. The equation is obtained from the Hamiltonian,
and has a form similar to that of quadratic media [13]:

i
dψns,ni

(z)

dz
=

− C
[

exp [iωχ̇0(z)]ψns−1,ni
(z) + exp [iωχ̇0(z)]ψns,ni−1

(z) + exp [−iωχ̇0(z)]ψns+1,ni
(z)

+ exp [−iωχ̇0(z)]ψns,ni+1
(z)
]
−∆β(0)ψns,ni

(z) + iγE(p)
ns

(z)E(p)
ns

(z)δns,ni
, (2)

where ns and ni are the waveguide numbers describing the positions of the signal and
the idler photons, and E

(p)
ns (z) is the pump amplitude in waveguide number ns. ∆β(0)

is the linear four-wave mixing phase-mismatch in a single waveguide, γ is a nonlinear
coefficient [11]. Dimensionless quantities ∆β(0) and γ in the numerical simulations were
considered equal to 1.
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It is convenient to make a transformation ψns,ni
(z) = ψns,ni

(z) exp(−i∆β(0)z). Then,
(2) takes the form:

i
dψns,ni

(z)

dz
=

− C
[

exp [iωχ̇0(z)]ψns−1,ni
(z) + exp [iωχ̇0(z)]ψns,ni−1

(z) + exp [−iωχ̇0(z)]ψns+1,ni
(z)

+ exp [−iωχ̇0(z)]ψns,ni+1
(z)
]

+ iγE(p)
ns

(z)E(p)
ns

(z)δns,ni
exp(i∆β(0)z). (3)

3. Numerical solution

3.1. Numerical solution for pump field

We consider the algorithm for solving equation (1) for a system of three waveg-
uides with closed-loop boundary conditions. Schematically, the system appears as shown
in Fig. 1.

FIG. 1. Scheme of coupled twisted waveguides

Firstly, we consider a system with open boundary conditions, which is described by
a three-diagonal matrix of the form:B1 C2 0

A2 B2 C2

0 A3 B3

E1

E2

E3

 =

D1

D2

D3

 , (4)

where An = −i(∆z/2)C exp [iωχ̇0(z)]; Bn = 1; Cn = −i (∆z/2)C exp [−iωχ̇0(z)];
En = En(z); Dn = −AnEn−1 (z −∆z)+BnEn (z −∆z)−CnEn+1 (z −∆z); n = 1, 2, . . . , N ;
∆z – step along z axis.

This matrix ratio is equivalent to the system of linear equations of the form AE = D,
where E is a column vector with unknown values, and the matrix A and a column vector
D are known. The solution can be found by the shuttle method or, for example, by the
formula E = A(−1)D = linsolve(A,D), which is implemented in a software package Matlab.

In the case of closed-loop boundary conditions, we obtain the following matrix
relation:
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B1 C2 A1

A2 B2 C2

C3 A3 B3

E1

E2

E3

 =

D1

D2

D3

 . (5)

The solution can also be found by the formula E = A(−1)D = linsolve(A,D). For
clarity, we give the matrix ratio for the system of five waveguides, which is constructed by
a similar algorithm:


B1 C1 0 0 A1

A2 B2 C2 0 0
0 A3 B3 C3 0
0 0 A4 B4 C4

C5 0 0 A5 B5



E1

E2

E3

E4

E5

 =


D1

D2

D3

D4

D5

 . (6)

Thus, we can similarly obtain the numerical solution for the system of any number
of waveguides. The figures show the numerical solutions for the direct (Fig. 2) and twisted
(Fig. 3) arrays of the three waveguides.

FIG. 2. Pump power (|En|2), in the system of three straight waveguides

FIG. 3. Pump power (|En|2), in the system of three twisted waveguides
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3.2. Numerical solution of Schrödinger equation for biphoton wave function

Now, we consider the numerical algorithm for Schrödinger equation (3) for system
of three twisted waveguides with closed boundary conditions.

We transform this equation by the Crank-Nicolson scheme to the following form:

iψj+1
ns,ni

= iψj
ns,ni
− ∆z

2

[
α2

(
ψj
ns−1,ni

+ ψj
ns,ni−1

)
+ α1

(
ψj
ns+1,ni

+ ψj
ns,ni+1

)
+ α2

(
ψj+1
ns−1,ni

+ ψj+1
ns,ni−1

)
+ α1

(
ψj+1
ns+1,ni

+ ψj+1
ns,ni+1

) ]
+

∆z

2
iγ
(
Ej

ns

)2
δns,ni

exp
(
i∆β(0)∆zj

)
+

∆z

2
iγ
(
Ej+1

ns

)2
δns,ni

exp
(
i∆β(0)∆z(j + 1)

)
,

(7)

where α1 = C exp[−iωχ̇0], α2 = C exp[iωχ̇0].
Furthermore:

− r2 · ψj+1
ns−1,ni

− r2 · ψj+1
ns,ni−1 + ψj+1

ns,ni
− r1 · ψj+1

ns+1,ni
− r1 · ψj+1

ns,ni+1

= r2 · ψj
ns−1,ni

+ r2 · ψj
ns,ni−1 + ψj

ns,ni
+ r1 · ψj

ns+1,ni
+ r1 · ψj

ns,ni+1

+ r3
(
Ej

ns

)2
exp(r4j) + r3

(
Ej+1

ns

)2
exp (r4(j + 1)) , (8)

where r1 = i
∆z

2
α1, r2 = i

∆z

2
α2, r3 =

∆z

2
γ, r4 = i∆β(0)∆z.

Thus, we obtain the following numerical scheme:

−r2 · ψj+1
ns−1,ni

− r2 · ψj+1
ns,ni−1 + ψj+1

ns,ni
− r1 · ψj+1

ns+1,ni
− r1 · ψj+1

ns,ni+1 = Dj
ns,ni

, (9)

where

Dns,ni
= r2 · ψj

ns−1,ni
+ r2 · ψj

ns,ni−1 + ψj
ns,ni

+ r1 · ψj
ns+1,ni

+ r1 · ψj
ns,ni+1

+ r3
(
Ej

ns

)2
exp(r4j) + r3

(
Ej+1

ns

)2
exp(r4(j + 1)).

As a result, we now have a two-dimensional problem. Next, we can obtain the
one-dimensional problem by reshaping matrix for the psi-function in a column vector:

ψ1,1 ψ1,2 ψ1,3

ψ2,1 ψ2,2 ψ2,3

ψ3,1 ψ3,2 ψ3,3

 −→



ψ1,1

ψ1,2

ψ1,3

ψ2,1

ψ2,2

ψ2,3

ψ3,1

ψ3,2

ψ3,3


. (10)

Finally, we have a five-diagonal matrix. In matrix form, the problem takes the
following form:
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

1 −r1 −r2 −r1 0 0 −r2 0 0
−r2 1 −r1 0 −r1 0 0 −r2 0
−r1 −r2 1 0 0 −r1 0 0 −r2
−r2 0 0 1 −r1 −r2 −r1 0 0

0 −r2 0 −r2 1 −r1 0 −r1 0
0 0 −r2 −r1 −r2 1 0 0 −r1
−r1 0 0 −r2 0 0 1 −r1 −r2

0 −r1 0 0 −r2 0 −r2 1 −r1
0 0 −r1 0 0 −r2 −r1 −r2 1





ψ1,1

ψ1,2

ψ1,3

ψ2,1

ψ2,2

ψ2,3

ψ3,1

ψ3,2

ψ3,3


=



D1,1

D1,2

D1,3

D2,1

D2,2

D2,3

D3,1

D3,2

D3,3


. (11)

This matrix ratio is equivalent to the matrix system of linear equations of the form
AΨ = D, where Ψ is a vector-column with unknown values, and the matrix A and a column
vector D are known. The solution can be found by splitting methods or, for example, by
the formula Ψ = A(−1)D = linsolve(A,D), implemented in the Matlab software package.

Figures 4 and 5 show the numerical solutions for the squared modulus of the bipho-
ton wave function respectively for forward and twisted arrays of three waveguides. In
Figs. 4 and 5, we see 9 imaginary waveguides, which corresponds to the 3 real waveg-
uides. Thus, waveguides with numbers 1–3 correspond to the biphoton wave function
with signal photon located in the 1st wavegude and idler photon located in 1–3 waveg-
uides respectively. Similarly, waveguides 4–6 correspond to the signal photon located in
the2nd waveguide and the idler photon located in waveguides 1–3, and waveguides 7–9
correspond to the signal photon located in the 3rd waveguide and the idler photon located
in waveguides 1–3.

FIG. 4. Two-photon correlations (|Ψns,ni
|2), in case of photon generation by

SFWM from a pump inside the array for system of three straight waveguides

If we transform the Fig. 5 to a more convenient form Fig. 6, we can see the two-
photon correlations (|Ψns,ni

|2) at three different distances, which are of practical interest
(a: z = 0; b: z = 0.375L; c: z = 0.604L, where L is the distance at which the biphoton
wave function restores its initial state, when photons propagate in the regime of quantum
walks in the absence of pumping). At z = 0 (a), there are no photons. At distance (b),
the generated photons are mostly bunched: appearing in the same waveguides. In (c), the
photons are anti-bunched; appearing at different waveguides.
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FIG. 5. Two-photon correlations (|Ψns,ni
|2), in case of photon generation by

SFWM from a pump inside the array for system of three twisted waveguides

FIG. 6. Two-photon correlations (|Ψns,ni
|2), in case of photon generation by

SFWM from a pump inside the array. (a) z = 0, (b) z = 0.375L, (c)
z = 0.604L. At z = 0 (a), there are no photons. At distance (b), the
generated photons are mostly bunched; appearing in the same waveguides.
In (c), the photons are anti-bunched.

Thus, we obtain that in the case of photon generation by SFWM from a pump inside
the array, the signal and idler photons can be bunched at some distances and anti-bunched
at other distances.

4. Conclusion

We have numerically solved the classical equation of coupled modes for the pump
wave and the Schrödinger equation for biphoton wave function of three twisted waveguides.
We analyzed integrated photon generation through spontaneous four-wave mixing. We have
shown that the generated photons can demonstrate bunching behavior at some distances
and anti-bunching behavior at other distances. These features can be controlled by the
amount of twist and the input pump profile. Also, in the future, it is of interest to consider
the effects of nonlinear phase modulation and self-focusing due to the pumping.
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1. Introduction

Many publications (see, e.g., [1- 12]) have studied the formation of various structural
forms of ZrO2 nanocrystals and have analyzed the reasons for the relatively high stability of
the thermodynamically non-equilibrium modifications in nanocrystalline zirconium dioxide
at relatively low temperatures. Publications [1-3] link this peculiarity of zirconium dioxide
nanocrystals to a dimensional effect. Publications [4-12] examined the impact of the methods
and parameters of ZrO2 nanocrystal synthesis on their structure, morphology and properties.
Studies on the mechanism for nanocrystalline zirconium dioxide formation [4, 5, 14, 15] and
its behavior during heating [3, 7, 16] indicated that a more detailed analysis was needed of the
impact of the reaction system prehistory on the process of ZrO2 nanoparticle crystallisation.

The study of zirconium dioxide nanocrystals by comprehensive thermal analysis [16-
19] has revealed a number of unusual effects in their behavior. Numerous publications [16-19]
that have used this method to study the processes occurring in ZrO2 particles obtained by
different methods have reported an intensive exothermic effect in the 200–500◦C temperature
range which was accompanied by a loss of mass. The appearance of an exothermic effect in
the 400–500◦C temperature range is explained in publications [15-18] by the crystallisation
of X-ray amorphous ZrO2. The authors of publications [19, 20] attribute the exothermic
effect to oxidation of carbon-containing compounds because nanocrystalline ZrO2 was pro-
duced using zirconium oxalate, butanediol or other organic reagents. Publications [4, 5,
7, 8, 16, 21-27] explain the stabilization of the tetragonal (pseudo-cubic) modification of
zirconium dioxide in the low-temperature range by the inclusion of water into the nanopar-
ticle structure, while removal of water during heating initiates a structural rearrangement,
accompanied by an exothermic effect.

The lack of a clear interpretation of the reasons for structural changes in the zirconium
dioxide-based nanocrystals, including those accompanied by an exothermic effect with a
simultaneous loss in mass during heating, requires a detailed study of these transformations.

2. Experimental methods

Zirconium dioxide nanocrystals were produced by hydrothermal processing of zirco-
nium oxyhydroxide precipitated from a ZrOCl2 solution by the technique described in [28].
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The “isothermic calcination-quenching” method, using a specially designed furnace
to ensure high sample heating and cooling rates, studied the structural change kinetics in the
condition and dimensions of the zirconium dioxide nanocrystals depending on temperature
and heat treatment duration.

The X-ray diffraction study was made on a DRON-3M diffractometer, CuKα-radiation.
Quantitative analysis of the tetragonal (t-ZrO2) and monoclinic (m-ZrO2) forms of zirconium
dioxide and precise determination of the position of the diffraction maximums were conducted
using the method of an internal reference introduction (α-Al2O3). The size and shape of
the crystallites were determined in accordance with the recommendations of publication [9]
based on the data on expansion of the X-ray diffraction line and high-resolution transmission
electron microscopy (Jeol JEM-200).

3. Results and discussion

Based on X-ray phase analysis (Fig. 1), the nanoparticles produced under hydrother-
mal conditions consisted of two structural modifications: t-ZrO2 and m-ZrO2. Quantitative
calculation of the t-ZrO2 and m-ZrO2 content, performed by the technique described in
publication [28], showed that 80±5 % t-ZrO2 and 20±5 % m-ZrO2 are present in the system.

It should be noted that this ratio of t-ZrO2/m-ZrO2 is fairly stable and typical for the
technique used to obtain the nanoparticles, as confirmed by the results of previous studies
[4, 5, 7, 14-16, 25, 27, 28].

The dimensions of ZrO2 nanocrystals, which were determined by both transmission
electron microscopy (Fig. 2) and based on data from the expansion of the X-ray diffraction
lines (Fig. 1) for t-ZrO2 and m-ZrO2, essentially coincided and were 20±3 nm, on the
basis of which it can be concluded that the nanoparticles produced under hydrothermal
conditions were monocrystalline. Structural analysis results for individual nanoparticles by
high-resolution transmission electron microscopy also attest to the monocrystalline nature
of the produced zirconium dioxide nanoparticles and the fusion on the edges of individual
nanocrystals. It is noted that the resulting ZrO2 nanocrystal dimensions are reproduced
fairly consistently when ZrO2 nanocrystals are synthesised under hydrothermal conditions,
as follows from the results of previous studies (see, e.g., [5, 9, 14, 28]). The dimensions of
the ZrO2 nanocrystals may be reduced somewhat to 15–18 nm by reducing the duration of
hydrothermal treatment [5], however in this case, zirconium oxyhydroxide is generally not
completely dehydrated [5]. We therefore used such hydrothermal processing conditions for
zirconium oxyhydroxide which result in its complete dehydration with the formation of ZrO2

nanocrystals, according to the data of publication [5].
The results from the kinetic study of the change in zirconium dioxide nanocrystal

structure and size when heated in the “isothermic calcination-quenching” mode are shown
in Fig. 2. Three temperature regions with varying nanoparticle behavior are isolated, based
on analysis of the resulting dependences of the quantity of tetragonal modification and
particle size of zirconium dioxide on the temperature and duration of treatment (Fig. 2).
This temperature ranges to 500◦C, from 600 to 800◦C and from 900 to 1100◦C.

After thermal treatment of the nanoparticles at temperatures up to 500◦C, there are
no noticeable changes in the structure or particle size of ZrO2 (Fig. 2). It is also precisely
in this temperature range that significant exothermic effects are observed, accompanied by
simultaneous water release [16]. Since the total quantity of crystalline ZrO2, the ratio of
metastable tetragonal and monoclinic zirconium dioxide modifications, and the sizes of the
nanocrystals during thermal treatment in the examined temperature range do not essentially
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Fig. 1. X-ray diffraction of the nanocrystalline zirconium dioxide, obtained
by hydrothermal synthesis

Fig. 2. The dependence of the amount of t-ZrO2 (a) and crystallite size t-ZrO2

and m-ZrO2 (b) of the duration and temperature of heat treatment
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change (Fig. 2), there are no grounds to classify the observed thermal effects as crystalliza-
tion of amorphous zirconium dioxide, polymorphous transition t-ZrO2 → m-ZrO2 or change
in surface energy because of growth in nanoparticle grains. The process leading to heat
release could be structural rearrangement in the nanocrystals, which does not cause trans-
formation of one polymorphous modification of zirconium dioxide nanoparticles into another,
and linked, for example, to relaxation processes in nanoparticle sublattices, primarily and
apparently in the anion sublattice. The structural changes in the anion sublattice may be
initiated, in particular, by certain dehydration reactions in the nanocrystals:

ZrO2 · nH2O→ ZrO2 + nH2O (1)

OH−

�
Zr4+ −→ Zr4+ −O2− + H2O,

�
OH−

(2)

which alter the anion sublattice structure, and consequently, create conditions for the occur-
rence of relaxation processes, which reduce the system internal energy, i.e., occurring with
an exothermic effect. The presence of structural changes in the nanocrystals, accompanying
the dehydration process is confirmed by data indicating a change in the position and ratio
of the intensity of X-ray diffraction lines in t-ZrO2.

t-ZrO2 h k l d/n h k l d/n

Standard (24-1164) 2.995 2.635

Original sample 1 0 1 2.971 0 0 2 2.601

Sample after heat treatment at 500◦C 2.951 2.592

The proposed interpretation of t-ZrO2 nanocrystal behavior in the 500◦C temperature
range correlates with previous zirconium dioxide structural study results indicating that its
structure in the planes (1 0 1) coincides with the t-ZrO2 structure [29]. The difference in the
structure between zirconium X-ray amorphous hydroxide and tetragonal dioxide, according
to publication [28-30] is that in the first case, the planes (1 0 1) are arranged randomly. Since,
according to data [10, 11, 26], during zirconium hydroxide dehydration under hydrothermal
conditions, the formed ZrO2 nanoparticles inherit the structure of the hydrate precursor,
one can thus hypothesize that the formed t-ZrO2 nanoparticles also inherit the random
arrangement of anions between the planes (1 0 1). This random atom arrangement in the
anion sublattice will thus be stabilized by the presence of water in it [2, 7, 14, 16], while
the dehydration processes (1) and/or (2) initiate a more orderly arrangement of O2− ions,
which, apparently, also causes the corresponding exothermic effects [16].

Heat treatment in the 600–700◦C temperature range results in a noticeable increase
in the amount of ZrO2 monoclinic modification (up to 50%), while the particle size does not
essentially change. Mass loss by the sample due to water release during t-ZrO2 → m-ZrO2

transformation, which is slight in this temperature range, is only about 0.5 mass% [16].
At the same time, as shown by the nanoparticle study using high-resolution transmission
electron microscopy, after heat treatment of nanoparticles in this temperature range, their
morphology changes significantly (Fig. 3). They are converted from essentially non-faced
particles into well-faced particles with the characteristic shape for crystallites of the relevant
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structural modifications (Fig. 3). This is apparently caused by activation of atom movement
in the nanoparticles in this temperature range. We also note that an increase in the per-
centage of m-ZrO2 nanoparticles to 50% without a change in their mean size was observed
previously [29] for the behavior of zirconium dioxide nanoparticles by thermal radiography
when heated to 800◦C.

Fig. 3. Microphotographs of ZrO2 nanocrystals, obtained in hydrothermal
conditions (a) and after heat treatment at 700◦C

It follows from the kinetic studies (Fig. 2) that for the 900–1100◦C temperature range,
structural transformation t-ZrO2 → m-ZrO2 ends completely, while the size of the m-ZrO2

nanocrystals more than doubles to 50–60 nm (Fig. 2). Based on thermal analysis, in addition
to the exothermic conversion, a slight water release is observed here, leading to mass loss by
the sample of about 0.1 mass% [16]. It is noted that in the 900–1000◦C temperature range,
in addition to the growth of m-ZrO2 nanocrystals, there is a growth of t-ZrO2 nanocrystals
(Fig. 2). This type of change in the nanoparticle dimensions is apparently due to activation
of mass transfer at these temperatures both between the nanoparticles of one structural
modification and transfer of matter from the non-equilibrium structural modification of t-
ZrO2 at this temperature to equilibrium m-ZrO2.

The findings, as well as the fact that t-ZrO2 → m-ZrO2 transformation may occur
essentially without a change in particle size supports the weak impact of the dimensional
effect on nanoparticle t-ZrO2 stability at low temperatures, as indicated in a number of
publications [1, 2]. The stabilizing effect of the water, localized in the anion sublattice of
the zirconium dioxide nanoparticle is the primary factor which determines the stability of
t-ZrO2 nanoparticles at temperatures up to 500◦C.

4. Conclusion

It has been shown that the occurring changes in ZrO2 nanoparticles in the 300–500◦C
temperature range are linked to the release of water, accompanied by an exothermic effect,
to all appearances determined by structural re-arrangement in the t-ZrO2 nanocrystals,
initiated by dehydration, and resulting in a more orderly arrangement of the atoms in the
anion sublattice.

The t-ZrO2 → m-ZrO2 transition in the 600 to 800◦C temperature range essentially
occurs without a change in nanocrystallite size, but with a noticeable water loss. Removal of
the stabilizing water from the t-ZrO2 structure also results in a transition of the metastable
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tetragonal modification of zirconium dioxide to that of the monoclinic ZrO2 modification
which is stable at these temperatures.

In the 800 to 1100◦C temperature range, mass transfer from the non-equilibrium t-
ZrO2 nanocrystallites to the m-ZrO2 equilibrium phase makes a significant contribution to
the increase in the percentage of m-ZrO2 nanocrystals.
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Cryometry investigations of the C60(OH)24±2 – H2O and C70[=C(COOH)2]3 – H2O binary systems were conducted

over the 0.1 – 10 g concentration range of fullerenols per 1 dm3 of solutions. The decreases of the temperatures
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fullerenols (trismalonates) activities and activity coefficients and excess Gibbs energy of the solutions were cal-

culated. All solutions demonstrated huge deviations from those of ideal solutions. The last fact, to our opinion,
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which was proved by the results of visible light scattering analysis.
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1. Introduction

This article is the continuation of a series of articles devoted to the synthesis, identifica-
tion and physico-chemical properties investigation of nanoclusters, which represented the moder-
ately water soluble derivatives of light fullerenes C60 and C70 [1–14] – poly-hydroxyl fullerenols
(fullerenol-d C60(OH)24±2 and malonic ester – trismalonate C70[=C(COOH)2]3). In previous ar-
ticles’ authors have reported on the volume, refraction, electrical, transport properties of these
water soluble nanoclusters and their aqueous solutions, also investigations of solubility in water
in poly-thermal conditions and in some ternary water-salt systems and complex thermal analysis
of nanocluster crystal-hydrates were performed.

2. Reasons for direct excess functions in fullerenols (trismalonates) – H2O solutions
determination

We are not aware of any direct experimental data concerning the determination of excess
thermodynamic data (primarily activity coefficients) in binary (or more component) solutions
of fullerenes or their derivatives in any solutions. This fact may, to our opinion, be explained
by the very low solubility of such nanoclusters in the main part of the solvents (see, for
example [15–17]). The synthesis of well water soluble nanoclusters (such as: poly-hydroxyl
fullerenols C60(OH)n, C70(OH)n; some ethers – for example: trismalonic esters – trismalonate
C60[=C(COOH)2]3, C70[=C(COOH)2]3, some adducts with amino-acids (for example arginine
C60(C6H12NaN4O2)8H8 or alanine [18]), the solubility of which in water depends on the type
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of nanocluster and temperature, may be from tens to hundreds of grams of nanocluster per dm3

of water. This fact makes it possible to determine excess functions of the solution by standard
methods, for example, cryometry (described in this article) or by the determination of water
activity by isopiestic method. Such determination is, to our opinion, may be very interesting
because of the following reasons.

Visible light scattering analysis in light fullerenols (trismalonates) – H2O solutions at
room temperature was provided repeatedly (see [1,5,14]). In all cases, one can see the following:

— No monomer molecular nanoclusters (with linear dimension diameter d0 ≈ 1.5 − 2.0 nm)
were seen in all investigated solutions, even in the dilute solution (C = 0.1 g/dm3).

— The diameters of the first type aggregates (first order clusters of percolation) have similar
sizes – some tens of nm d1 ≈ 20 − 80 nm over the whole concentration range.

— The diameters of the second type aggregates (second order clusters of percolation) also
have similar sizes – hundreds nm d2 ≈ 100 − 400 nm.

— The third type aggregates (third order clusters of percolation) have not been seen at any
concentrations except in the most concentrated solution at C > 1 g/dm3, where clusters
with extremely huge linear dimension (some microns) are formed: d3 > 1000 nm – the
solution ‘becomes very heterogeneous’ but stable as a colloid system.

— So, to describe these facts in the aggregation process, a stepwise model of particle
growth was invoked, in other words, a hierarchical type of association of fullerenols
(trismalonates) components in water solution is observed. We consider that monomer
spherical molecules form the first type spherical aggregates. Next, the initial spherical
associates form the second type spherical associates. Next, the second type spherical as-
sociates form the third type spherical associates (the last ones correspond to the colloidal
heterogeneous system).

3. The possibility of determining excess functions in fullerenol (trismalonates) – water
solutions

In order to check the possibility of determining the excess function of C60(OH)24±2 –
H2O and C70[=C(COOH)2]3 – H2O in the selected concentration range by cryometry method,
the following conditions must be met:

— The solubility in the C60(OH)24±2 – H2O and C70[=C(COOH)2]3 – H2O binary systems
at ∼273.15 K is great enough so that the solution is formally homogeneous, i.e. does
not consist of solid crystal hydrates of C60(OH)24±2 or C70[=C(COOH)2]3. Preliminary
experiments show that in both cases, the solubilities of both nanoclusters at 273.15±1 K
is ≈ 360 g/dm3 for C70[=C(COOH)2]3 and ≈ 210 g/dm3 for C60(OH)24±2. So, if we
choose the concentration range not more than tens g/dm3 we can be sure that no solid
crystal hydrates can co-crystallize with water ice during crystallization of the respective
solutions.

— Additionally one must be sure that solutions of the nanoclusters are really homogeneous
– do not delaminate and are not colloidal in nature. In this case, only more or less dilute
solutions may satisfy these requirements (see lower points 10, 11 in Table 1 were not
taken into account).

— The last requirement is that the temperature decrease ∆T should be more or less signif-
icant – hundredth, or even better, tenth of a K. This requirement is easily satisfied.
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TABLE 1. Cryometry data and excess function in the binary solutions fullerenol-
60-d – H2O (marked by *) and trismalonate-C70 – H2O (marked by **) at
273.15 K

Number

*Molar fraction of
fullerenol-60-d

in solution
xfullerenol-60-d

(rel.un.)

*Temperature
of water

crystallization
decrease
∆T (K)

**Molar fraction
of trismalonate-
C70 in solution

xfullerenol-70-d

(rel. un.)

**Temperature
of water

crystallization
decrease
∆T (K)

1 0.000 0.000 0.000 0.000

2 1.607 · 10−6 0.047 1.736 · 10−6 0.045

3 3.981 · 10−6 0.070 4.430 · 10−6 0.064

4 7.933 · 10−6 0.099 8.616 · 10−6 0.089

5 1.586 · 10−5 0.149 1.714 · 10−5 0.126

6 3.952 · 10−5 0.234 4.275 · 10−5 0.183

7 7.905 · 10−5 0.350 8.506 · 10−5 0.271

8 1.185 · 10−4 0.469 1.281 · 10−4 0.343

9 1.579 · 10−4 0.565 1.710 · 10−4 0.410

10 5.130 · 10−4 0.785***
11 8.510 · 10−4 1.095***

Number
*ln aH2O

(water activity)
(rel. un.)

**ln aH2O

(water activity)
(rel. un.)

*aH2O

(water activity)
(rel. un.)

**aH2O

(water activity)
(rel. un.)

1 0.000 0.000 1.00000 1.00000

2 −4.236 · 10−4 −4.056 · 10−4 0.99958 0.99959

3 −6.309 · 10−4 −5.775 · 10−4 0.99937 0.99942

4 −8.922 · 10−4 −8.027 · 10−4 0.99911 0.9992

5 −0.00134 −0.00113 0.99866 0.99887

6 −0.00211 −0.00165 0.99789 0.99835

7 −0.00315 −0.00244 0.99685 0.99756

8 −0.00422 −0.00309 0.99579 0.99692

9 −0.00508 −0.00369 0.99493 0.99632

Number

*ln γH2O

(water activity
coefficient)
(rel. un.)

**ln γH2O

(water activity
coefficient)
(rel. un.)

*derivative
d ln γH2O
dxfullerenol-d

(rel. un.)

**derivative
d ln γH2O

dxtrismalonate-C70

(rel. un.)

1 0.00000 0.00000 −262.6 −230.3

2 −4.22 · 10−4 −4.03 · 10−4 −174.4 −147.0

3 −6.26 · 10−4 −5.73 · 10−4 −75.71 −57.99

4 −8.84 · 10−4 −7.94 · 10−4 −60.303 −45.28

5 −0.00132 −0.00112 −43.51 −28.68

6 −0.00207 −0.00161 −28.42 −18.436

7 −0.00307 −0.00236 −25.71 −15.83

8 −0.0041 −0.00296 −23.47 −13.49

9 −0.00492 −0.00352 −20.82 −13.05
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Number
*derivative
d ln γfullerenol-d
dxfullerenol-d

(rel. un.)

**derivative
d ln γtrismalonate-C70
dxtrismalonate-C70

(rel. un.)

*ln γfullerenol-60-d

(rel. un.)
**ln γtrismalonate-C70

(rel. un.)

1 – – – –
2 1.08 · 108 8.38 · 107 2628 2737

3 1.901 · 107 1.31 · 107 2737 2829

4 7.60 · 106 5.24 · 107 2780 2860

5 2.74 · 106 1.67 · 106 2807 2878

6 719101 431233 2835 2896

7 325211 186088 2862 2914

8 198035 105294 2885 2931

9 131834 76302 2906 2947

Number
*ln afullerenol-60-d

(rel. un.)
**ln atrismalonate-C70

(rel. un.)
*ϕfullerenol-60-d

(rel. un.)
**ϕtrismalonate-C70

(rel. un.)
1 – – – –
2 2614 2724 −195 −205

3 2724 2816 −219 −228

4 2768 2848 −235 −244

5 2795 2867 −252 −261

6 2824 2886 −278 −286

7 2852 2905 −302 −309

8 2875 2922 −318 −326

9 2897 2938 −330 −338

Number
*Gex/RT
(rel. un.)

**Gex/RT
(rel. un.)

*Gmix/RT
(rel. un.)

**Gmix/RT
(rel. un.)

1 0.00000 0.00000 0.00000 0.00000

2 −0.00186 −0.00178 −0.00186 −0.00178

3 −0.00275 −0.00254 −0.00275 −0.00254

4 −0.00388 −0.00353 −0.00388 −0.00353

5 1.903 · 10−5 2.123 · 10−5 1.894 · 10−5 2.114 · 10−5

6 4.844 · 10−5 5.381 · 10−5 4.825 · 10−5 5.360 · 10−5

7 9.831 · 10−5 1.081 · 10−4 9.795 · 10−5 1.077 · 10−4

8 1.488 · 10−4 1.640 · 10−4 1.482 · 10−4 1.634 · 10−4

9 1.999 · 10−4 2.203 · 10−4 1.993 · 10−4 2.196 · 10−4

*** – unstable, heterogeneous solution.
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4. Cryometry investigation in the C60(OH)24±2 - H2O and C70[=C(COOH)2]3 – H2O
binary systems. Main thermodynamic equations

Let us introduce designation:

∆F = F S − FL, ∆T = T f0 − T, (1)

where T f0 – is the melting point for pure solvent, for water T f0 = 273.15 K, T – current
temperature (K), ∆F – molar change of thermodynamic function F , F S – molar function F for
the solid phase, FL – molar function F for the liquid phase.

Condition of chemical phase equilibrium liquid (l) – solid (s) for pure solvent – wa-
ter (w):

µwS0 = µwL0 +RT ln aw, (2)

where: µwS0 , µwL0 – standard chemical potential of the solvent – water, in the solid and liquid
phases, correspondingly, aw – water activity in the scale of molar fractions in symmetrical
normalization scale. Thus:

−∆Hf
w + ∆CP

(
T − T f0

)
+ T

[
∆Sfw − ∆CP ln

(
T/T f0

)]
= RT ln aw, (3)

ln
(
T/T f0

)
= ln

(
T f0 − ∆T/T f0

)
= ln

(
1 − ∆T/T f0

)
≈ −∆T/T f0 , (4)

where: ∆Hf
w, ∆Sfw, ∆CP – molar enthalpy, entropy and change of isobaric heat capacity of

water at the temperature T f0 . So:

−∆Hf
w

[
1 − T/T f0

]
+ ∆CP

[
T − T f0 − T ln

(
T/T f0

)]
= RT ln aw, (5.1)

−∆Hf
w∆T/T f0 + ∆CP∆T

(
−1 + T/T f0

)
= RT ln aw, (5.2)

−∆Hf
w∆T − ∆CP∆T 2

R
(
T f0 − ∆T

)
T f0

= ln aw. (5.3)

Later, we shall use formula (5.3) as a base one for the calculation of the solution’s
excess functions. In all calculations, we will use symmetrical normalization of the excess
functions, as if nanoclusters are very weak electrolytes – practically non-electrolytes (see, for
example [4, 6, 12]). So, we assume that:

aH2O (xH2O = 1) = γH2O (xH2O = 1) = 1, (6.1)

ananocluster (xnanocluster = 1) = γnanocluster (xnanocluster = 1) = 1, (6.2)

where: ai, γi – activity and activity coefficients of i-th solution component.
Experimental data were obtained with the help of metastatic Beckman thermometer.

Data are represented in the Fig. 1 and Table 1. The arrow in the Fig. 1 shows the temperature
decrease in the case of an ideal non-electrolyte solution. So, one can see how huge temperature
decrease is observed in our cases for water soluble nanocluster solutions.
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FIG. 1. The decrease of the temperatures of the beginning of the H2O – ice
crystallization in fullerenols (trismalonates) – H2O solutions (∆T = 273.15 − T )

5. Partial excess functions of water and fullerenols (trismalonates) components in the
C60(OH)24±2 – H2O and C70[=C(COOH)2]3 – H2O binary systems

The graphics for the dependence ln of water activity (ln aH2O), ln of water activity co-
efficient (ln γH2O), against molar fraction of fullerenols (trismalonates) in aqueous solutions are
represented in Fig. 2, 3 in Table 1. The dependence of the derivative of ln of water (nanocluster)
activity coefficients (d ln γH2O/dxfullerenol-d(trismalonates-C-70)) and
(d ln γfullerenol-d(trismalonate-C-70)/dxfullerenol-d(trismalonate-C-70)) in fullerenols (trismalonates) – H2O solu-
tions against molar fraction of fullerenols (trismalonates) in aqueous solutions are also repre-
sented in Fig. 4, 5 (curves – approximation, points – experimental data). The approximation is
also represented in the Fig. 4, 5. For calculation we used the Gibbs-Duheim equation:(

∂ ln ananocluster

∂ ln xnanocluster

)
T

= − xH2O

xnanocluster

(
∂ ln aH2O

∂ ln xH2O

)
T

. (7)

The dependence of ln of fullerenols (trismalonates) activity coefficients
(ln γfullerenol-d(trismalonate-C-70)) and the ln of fullerenols (trismalonates) activity
(ln afullerenol-d(trismalonate-C-70)) in fullerenols (trismalonates) – H2O solutions against molar fraction
of fullerenols (trismalonates) in aqueous solutions are represented in Fig. 6, 7 and Table 1.

6. Excess and Mixing Gibbs energy in the binary systems: C60(OH)24±2 – H2O and
C70[=C(COOH)2]3 – H2O. Miscibility gap and micro-heterogeneous behavior of the
solutions

We have also calculated the dependence of the excess Gibbs energy of the solutions
(Gex) in fullerenols (trismalonates) – H2O solutions against the molar fraction of fullerenols
(trismalonates) in aqueous solutions (Fig. 8) and the dependence of the Gibbs energy of solution
mixing (Gmix) and the miscibility gap in fullerenols (trismalonates) – H2O solutions against
molar fraction of fullerenols (trismalonates) (Fig. 9) and also Table 1:

Gex = RT [ln γnanocluster + xH2O ln γH2O] , (8)
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FIG. 2. The dependence of ln of water activity (ln aH2O) in fullerenols (tris-
malonates) – H2O solutions against molar fraction of fullerenols (trismalonates)
in aqueous solutions.

FIG. 3. The dependence of ln of water activity coefficients (ln γH2O) in
fullerenols (trismalonates) – H2O solutions against molar fraction of fullerenols
(trismalonates) in aqueous solutions.

Gmix = RT [xnanocluster ln ananocluster + xH2O ln aH2O] . (9)

One can see the inflection points in the Fig. 8, 9 where the second derivatives:[
∂2Gmix/∂x2

nanocluster

]
T,P

and [∂2Gex/∂x2
nanocluster]T,P change signs or derivatives[

∂Gmix/∂xnanocluster

]
T,P

and [∂Gex/∂xnanocluster]T,P cross through zero. Geometrically, this means

that convexity in the graphics Gex (xnanocluster) and Gmix (xnanocluster) is replaced by the concavity.
Additionally, if the behavior of the first function is arbitrarily the sign of the derivative, then[
∂2Gmix/∂x2

nanocluster

]
T,P

in the concentration range of diffusion stability should be positive. So,

we can consider that in the region xnanocluster > 2 · 10−5 rel. un., the homogeneous solution
exfoliates and becomes micro-heterogeneous. Experiments with light scattering show us that
it is concentration region of the transition of the first type aggregates (first order clusters of
percolation) with the linear dimensions d1 ≈ 20 − 80 nm to the second type aggregates (second
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FIG. 4. The dependence of the derivative of ln of water activity coefficients
(d ln γH2O/dxfullerenol-d(trismalonates-C-70)) in fullerenols (trismalonates) – H2O solutions
against molar fraction of fullerenols (trismalonates) in aqueous solutions (curves
– approximation, points – experimental data).

FIG. 5. The dependence of the derivative of ln of fullerenols (trismalonates)
activity coefficients (d ln γfullerenol-d(trismalonate-C-70)/dxfullerenol-d(trismalonate-C-70)) in
fullerenols (trismalonates) – H2O solutions against molar fraction of fullerenols
(trismalonates) in aqueous solutions.



712 M. Yu. Matuzenko, D. P. Tyurin, O. S. Manyakina, K. N. Semenov, et al.

FIG. 6. The dependence of ln of fullerenols (trismalonates) activity coefficients
(ln γfullerenol-d(trismalonate-C-70)) in fullerenols (trismalonates) – H2O solutions against
molar fraction of fullerenols (trismalonates) in aqueous solutions.

FIG. 7. The dependence of ln of fullerenols (trismalonates) activity
(ln afullerenol-d(trismalonate-C-70)) in fullerenols (trismalonates) – H2O solutions against
molar fraction of fullerenols (trismalonates) in aqueous solutions.
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FIG. 8. The dependence of the excess Gibbs energy of the solutions (Gex) in
fullerenols (trismalonates) – H2O solutions against molar fraction of fullerenols
(trismalonates) in aqueous solutions

FIG. 9. The dependence of the Gibbs energy mixing of the solutions (Gmix) and
the miscibility gap in fullerenols (trismalonates) – H2O solutions against molar
fraction of fullerenols (trismalonates) in aqueous solutions
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order clusters of percolation) with the linear dimensions d2 ≈ 100 − 400 nm. In other words,
this is the concentration range where a transition occurs from a nano-heterogeneous system to a
micro-heterogeneous one.
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1. Introduction

This article is a continuation in the series of articles devoted to the synthesis, identifica-
tion and physico-chemical properties investigation of nanoclusters, which represented the fairly
water soluble derivatives of light fullerenes C60 and C70 [1–14] – poly-hydroxylated fullerenols(
fullerenol-d C60(OH)24±2 and malonic ether – trismalonate C70[=C(COOH)2]3

)
. In previous

articles, the authors have reported on the volume, refraction, electrical, transport properties of
water soluble nanoclusters and their aqueous solutions. Also, the investigations of solubility in
water under poly-thermal conditions as well as in some ternary water-salt systems and complex
thermal analysis of nanocluster crystal-hydrates were made.

2. The synthesis of the adduct of light fullerene C60 with arginine C60(C6H13N4O2)8H8

Arginine hydrochloride (L–C6H14N4O2·HCl) (5 g) and sodium hydroxide (2.5 g) were
dissolved in 30 ml of water and 200 ml CH3CH2OH. In the other vessel fullerene C60 (0.5 g) was
dissolved in 80 ml o–C6H4(CH3)2. Then both solutions were combined, mixed and remained at
room temperature for 120 hours. A deep-brown exfoliating solution was formed. The colorless
organic phase was separated from the aqueous inorganic one. The aqueous phase was salted
using excess methanol (CH3OH) over 24 hours. At that time, the sedimentation of the of the
light fullerene C60 adduct with arginine was completed. The precipitate was filtered and washed
repeatedly with a mix of CH3OH with concentrated HCl. Recrystallization of precipitate was
performed 3 times. Finally, the precipitate was dried at 60 ◦C for 8 hours. Previously, the
synthesis of an original β-alanine C60 adduct was described [18]. Correspondingly, the L-
arginine – light fullerene C60 adduct was formed – C60(C6H12NaN4O2)8H8 with a yield ≈ 80 %.
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3. Reasons for direct excess functions in fullerene-arginine adduct – water solutions
determination

The authors do not know of any direct experimental data concerning the determination
of the excess thermodynamic data (primarily activity coefficients) in binary (or more com-
ponent) solutions of fullerenes or their derivatives in any solutions. This fact may, to our
opinion, be explained by the very low solubility of such nanoclusters in the majority of sol-
vents (see, for example [15–17]). For fairly water soluble nanoclusters (e.g.: poly-hydroxylated
fullerenols C60(OH)n, C70(OH)n; some esters – for example: trismalonic esters – trismalonate
C60[=C(COOH)2]3, C70[=C(COOH)2]3, some adducts with amino-acids (for example arginine
C60(C6H12NaN4O2)8H8 or alanine [18]), their solubility in water, which depends on the type
of nanocluster and temperature, may vary from tens to hundreds grams of nanocluster per dm3

of solvent. This fact permitted us to determine excess functions of the solution by standard
methods, for example, cryometry (as described in the present article) or by the determination
of water activity by isopiestic method. Such determination is, to our opinion, may be very
interesting because of the following reasons.

Visible light scattering analysis in C60(C6H12NaN4O2)8H8 – water solutions (as well as
in light fullerenols (trismalonates)-water solutions) at room temperature was provided repeatedly
(see [1, 5, 14]). In all cases, one can observe the following:

– No monomer molecular nanoclusters (with linear dimension diameter d0 ≈ 1.5 – 2.0 nm)
are seen in all investigated solutions, even in the dilute solution (C = 0.1 g/dm3).

– The diameters of the first type aggregates (the first order clusters of percolation) have
the similar order – tens of nm d1 ≈ 20 – 80 nm over the entire concentration range.

– The diameters of the second type aggregates (the second order clusters of percolation)
also have a similar order – hundreds nm d2 ≈ 100 – 400 nm.

– The third type associates (the third order clusters of percolation) have not been seen
at any concentrations except in the most highly concentrated solution at C > 1 g/dm3,
where clusters with extremely huge linear dimension (on the order of microns) are
formed: d3 > 1000 nm – the solution ‘becomes very heterogeneous’ but stable as a
colloidal system.

– Thus, to describe such facts in the aggregation process, a stepwise model of particle
growth was invoked, in other words, a hierarchical type of association of fullerenols (tris-
malonates) components was observed in aqueous solutions. We consider that monomer
spherical molecules form the first type of spherical aggregates, then, the first type
spherical associates form a second type of spherical associates. Next, the second
type of spherical associates form a third type spherical associates (the last ones cor-
respond to a heterogeneous colloidal system). A typical figure of the distribution for
C60(C6H12NaN4O2)8H8 nanoclusters in aqueous solutions at comparatively high concen-
trations is represented below – in Fig. 1 (the third type associates).

4. The possibility of the determination of the excess functions in
C60(C6H12NaN4O2)8H8 – water solutions

In order to check the possibility of determining the excess functions in
C60(C6H12NaN4O2)8H8 – H2O solutions in the selected concentration range by cryometry
method one must be sure of the following:

– Solubility in the binary system C60(C6H12NaN4O2)8H8 – H2O at a temperature of
273.15 K is great enough such that the solution is formally homogeneous, i.e. does not
consist of solid C60(C6H12NaN4O2)8H8 crystal hydrates. Preliminary experiments show



Cryometry and excess functions of the adduct of light fullerene C60 and . . . 717

FIG. 1. The linear dimension of the particles on the base of the adducts
C60(C6H12NaN4O2)8H8 in aqueous (δ) solutions at C = 5 g/dm3 (different curves
correspond to the different times of observation (signal integration)

that in both cases, the solubility of C60(C6H12NaN4O2)8H8 nanoclusters at 273.15±1 K
is ≈ 70 g/dm3. So, if we set the concentration range at not more than tens g/dm3, we
can be sure that no solid crystal hydrates can co-crystallize with water ice during the
crystallization.

– Additionally, one must be sure that the nanocluster solutions are really homogeneous –
do not delaminate and are not colloidal. In our case, only more or less diluted solutions
may satisfy these request (see lower).

– The last condition is that the temperature decrease ∆T should be more or less signifi-
cant – hundredths, or even better tenth of a degree K. Fortuitously, this request is easily
satisfied.

5. Cryometry investigation in the binary system: C60(C6H12NaN4O2)8H8 – H2O. The
decrease of the temperatures of the beginning of the H2O – ice crystallization in
C60(C6H12NaN4O2)8H8 – water solutions. Cryometry of water solutions of water
soluble fullerene derivatives. Main thermodynamic equations

Let us introduce designation:

∆F = F S − FL, ∆T = T f
0 − T, (1)

where T f
0 – melting point of pure solvent, for water T f

0 = 273.15 K, T – current temperature (K),
∆F – molar change of thermodynamic function F , F S – molar function F for the solid phase,
FL – molar function F for the liquid phase.

The conditions for chemical phase equilibrium liquid (L) – solid (S) for the pure sol-
vent – water (W ) were as follows:

µwS
0 = µwL

0 +RT ln aW (2)

where: µwS
0 , µwL

0 – standard chemical potential of the solvent – water, in the solid and liquid
phases, correspondingly, aW – water activity in the scale of molar fractions in symmetrical
normalization scale. Thus:
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−∆Hf
W + ∆CP

(
T − T f

0

)
+ T

[
∆Sf

W − ∆CP ln
(
T/T f

0

)]
= RT ln aW , (3)

ln
(
T/T f

0

)
= ln

(
T f
0 − ∆T/T f

0

)
= ln

(
1 − ∆T/T f

0

)
≈ −∆T/T f

0 , (4)

where: ∆Hf
W , ∆Sf

W , ∆CP – molar enthalpy, entropy and change of isobaric heat capacity of
water at the temperature T f

0 . So:

−∆Hf
W

[
1 − T/T f

0

]
+ ∆CP

[
T − T f

0 − T ln
(
T/T f

0

)]
= RT ln aW , (5.1)

−∆Hf
W∆T/T f

0 + ∆CP∆T
(
−1 + T/T f

0

)
= RT ln aW , (5.2)

−∆Hf
W∆T − ∆CP∆T 2

R
(
T f
0 − ∆T

)
T f
0

= ln aW . (5.3)

Later, we shall use formula (5.3) as the basis for calculating the excess solution func-
tions. In all calculations, we will use symmetrical normalization of the excess functions, as
if nanoclusters are very weak electrolytes – practically non-electrolytic (see nanocluster-water
systems close to our system, for example [4, 6, 12]). Accordingly, we assume that:

aH2O(xH2O = 1) = γH2O(xH2O = 1) = 1, (6.1)
ananocluster(xnanocluster = 1) = γnanocluster(xnanocluster = 1) = 1, (6.2)

where: ai, γi – activity and activity coefficients of i-th solution component.
Experimental data were obtained with the help of metastatic Beckman thermometer. Data

are represented in the Fig. 2 and Table 1. Arrow in the Fig. 2 shows the temperature decrease in
the case of an ideal non-electrolyte solution. Thus, one can see the huge temperature decrease
we observed for our water soluble nanoclusters solutions.

FIG. 2. The decrease of the temperatures of the beginning of the H2O – ice
crystallization in C60(C6H12NaN4O2)8H8 – water solutions (∆T = 273.15 − T )



Cryometry and excess functions of the adduct of light fullerene C60 and . . . 719

TABLE 1. Cryometry data and excess function in the binary
C60(C6H12NaN4O2)8H8 – H2O solutions at 273.15 K

Number

Molar
fraction of

C60(C6H13N4O2)8H8

in solution
xC60(C6H13N4O2)8H8

(rel.un.)

Temperature
of water

crystallization
decrease

∆T
(K)

ln aH2O

(water activity)
(rel.un.)

aH2O

(water activity)
(rel.un.)

1 0.000 0.000 0.000 1.00000

2 7.868 · 10−8 0.099 −9.561 · 10−4 0.99904
3 7.868 · 10−7 0.151 −0.00146 0.99854

4 3.923 · 10−6 0.179 −0.00172 0.99827

5 7.828 · 10−6 0.210 −0.00202 0.99797

6 1.949 · 10−5 0.254 −0.00245 0.99755

7 3.887 · 10−5 0.308 −0.00297 0.99703

8 5.821 · 10−5 0.354 −0.00341 0.99658

9 7.758 · 10−5 0.401 −0.00387 0.99613

Number

ln γH2O

(water activity
coefficient)

(rel.un.)

derivative
d ln γH2O

dxC60(C6H13N4O2)8H8

(rel.un.)

derivative
d ln γC60(C6H13N4O2)8H8

dxC60(C6H13N4O2)8H8

(rel.un.)

ln γC60(C6H13N4O2)8H8

(rel.un.)

1 0.000 −12000 4.2 · 1010

2 −9.561 · 10−4 −6300 1.3 · 1010 9.2 · 106

3 −0.00146 −410 5.2 · 108 3750

4 −0.00172 −81 2.1 · 107 4100

5 −0.00202 −55 7.0 · 106 4130

6 −0.00243 −31 1.6 · 106 4150

7 −0.00293 −24 6.2 · 105 4170

8 −0.00336 −22 3.8 · 105 4180

9 −0.00379 −22 2.8 · 105 4200

Number
ln aC60(C6H13N4O2)8H8

(rel.un.)
Gex/RT
(rel.un.)

Gmix/RT
(rel.un.)

1 0.00000 0.00000 0.00000

2 9.2 · 106 −8.83 −8.83

3 3740 0.00149 0.00148

4 4090 0.0143 0.0143

5 4120 0.0303 0.0302

6 4140 0.0784 0.0782

7 4160 0.159 0.158

8 4170 0.239 0.239

9 4190 0.322 0.321
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6. Excess partial functions of water C60(C6H12NaN4O2)8H8 components in the binary
system: C60(C6H12NaN4O2)8H8 – H2O

The graph of the dependence ln of water activity (ln aH2O), ln of water activity co-
efficient (ln γH2O), against the molar fraction of C60(C6H12NaN4O2)8H8 in aqueous solutions
are represented in Figs. 3, 4 and in Table 1. The dependence of the derivative of ln of
water (nanocluster) activity coefficients (d ln γH2O/dxnanocluster) and (d ln γnanocluster/dxnanocluster) in
C60(C6H12NaN4O2)8H8 – water solutions against the molar fraction of C60(C6H12NaN4O2)8H8

in aqueous solutions are also represented in Figs. 5, 6 (curves – approximation, points – experi-
mental data). The approximation is represented in the Figs. 5, 6 also. For calculation, we have
used the Gibbs-Duheim equation:(

∂ ln ananocluster

∂ ln xnanocluster

)
T

= − xH2O

xnanocluster

(
∂ ln aH2O

∂ ln xH2O

)
T

. (7)

FIG. 3. The dependence of ln of water activity (ln aH2O) in
C60(C6H12NaN4O2)8H8 – water solutions against the molar fraction of
C60(C6H12NaN4O2)8H8 in aqueous solutions

The dependence of the ln of C60(C6H12NaN4O2)8H8 activity coefficients (ln γnanocluster)
and ln of C60(C6H12NaN4O2)8H8 activity (ln ananocluster) in C60(C6H12NaN4O2)8H8 – water solu-
tions against the molar fraction of C60(C6H12NaN4O2)8H8 in aqueous solutions are represented
in Figs. 7, 8 and Table 1.

7. Excess and Mixing Gibbs energy in the binary system: C60(C6H12NaN4O2)8H8 –
H2O. Miscibility gap and micro-heterogeneous behavior of the solutions

We have also calculated the dependence of the excess Gibbs energy of the solutions (Gex)
in C60(C6H12NaN4O2)8H8 – water solutions against the logarithm of the C60(C6H12NaN4O2)8H8

molar fraction in aqueous solutions (Fig. 9) and the dependence of the Gibbs energy mixing for
solutions (Gmix) and the miscibility gap in C60(C6H12NaN4O2)8H8 – water solutions against the
logarithm of the C60(C6H12NaN4O2)8H8 molar fraction (Fig. 10) and also Table 1:

Gex = RT [ln γnanocluster + xH2O ln γH2O] , (8)
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FIG. 4. The dependence of ln of water activity coefficients (ln γH2O)
in C60(C6H12NaN4O2)8H8 – water solutions against the molar fraction of
C60(C6H12NaN4O2)8H8) in aqueous solutions

FIG. 5. The dependence of the derivative of ln of water activity coefficients
(d ln γH2O/dxnanocluster) in C60(C6H12NaN4O2)8H8 – water solutions against the
molar fraction of C60(C6H12NaN4O2)8H8 in aqueous solutions (curves – approx-
imation, points – experimental data)
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FIG. 6. The dependence of the derivative of ln of C60(C6H12NaN4O2)8H8 ac-
tivity coefficients (d ln γnanocluster/dxnanocluster) in C60(C6H12NaN4O2)8H8 – water
solutions against the molar fraction of C60(C6H12NaN4O2)8H8 in aqueous solu-
tions

FIG. 7. The dependence of ln of C60(C6H12NaN4O2)8H8 activity coefficients
(ln γnanocluster) in C60(C6H12NaN4O2)8H8 – water solutions against the molar frac-
tion of C60(C6H12NaN4O2)8H8 in aqueous solutions
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FIG. 8. The dependence of ln of C60(C6H12NaN4O2)8H8 activity (lnananoclus-
ter) in C60(C6H12NaN4O2)8H8 – water solutions against the molar fraction of
C60(C6H12NaN4O2)8H8 in aqueous solutions

Gmix = RT [xnanocluster ln ananocluster + xH2O ln aH2O] . (9)

FIG. 9. The dependence of the excess Gibbs energy for solutions (Gex) in
C60(C6H12NaN4O2)8H8 – water solutions against logarithm of molar fraction of
C60(C6H12NaN4O2)8H8 in aqueous solutions

One can see the inflection points in the Figs. 9, 10 where the second derivatives:[
∂2Gmix/∂x2

nanocluster

]
T,P

and [∂2Gex/∂x2
nanocluster]T,P change signs or derivatives
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FIG. 10. The dependence of the Gibbs energy mixing for solutions (Gmix) and
the miscibility gap in C60(C6H12NaN4O2)8H8 – water solutions against logarithm
of molar fraction of C60(C6H12NaN4O2)8H8 in aqueous solutions[

∂2Gmix/∂x2
nanocluster

]
T,P

and [∂2Gex/∂x2
nanocluster]T,P cross through zero. Naturally, this fact takes

place together with the crossing through zero of such functions:
[
∂2Gmix/∂ ln(xnanocluster)

2
]
T,P

and [∂2Gex/∂ ln(xnanocluster)
2]T,P . Geometrically, this means that the convexity in the graph

Gex(xnanocluster) and Gmix(xnanocluster) is replaced by concavity. And, if the behavior of the first
function – Gex is arbitrarily, the sign of the derivation,

[
∂2Gmix/∂x2

nanocluster

]
T,P

, over the concen-
tration range of diffusion stability, should be positive. Thus, we can consider that in the region
xnanocluster > 4 · 10−7 rel.un. homogeneous solutions exfoliate and becomes micro-heterogeneous.
Light scattering experiments show us that this occurs at the concentration region of the transition
from the first type aggregates (the first order clusters of percolation) with the linear dimensions
d1 ≈ 20 – 80 nm to that of the second type aggregates (the second order clusters of percolation)
with the linear dimensions d2 ≈ 100 – 400 nm. In other words, there are the concentrations
where the system transitions from a nano-heterogeneous one to that of a micro-heterogeneous
type.
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The properties of emulsions stabilized by complexes of silica particles with hexylamine are analyzed. It is shown

that water-in-oil emulsions were obtained only if the hexylamine volume fraction was greater than that of the

silica (Aerosil) volume fraction in the aqueous phase. So, in the case of water-in-oil emulsions, hexylamine is a

completely equivalent co-stabilizer together with silica, rather than just a solid surface modifier. It is assumed that

at high concentrations this short-chain surfactant, together with silica, forms hybrid organic-inorganic particles that

are attached at the oil/water interface and promotes the formation of oil droplets in the water.

Keywords: solid particles, solid-stabilized emulsions, oil-in-water emulsions, hybrid particle.

Received: 23 January 2015

1. Introduction

Solid particles have been recently widely applied alone or together with surfactants for
the stabilization of emulsions [1–8] and foams [9–13]. Solid-stabilized emulsions and foams
differ from classical surfactant-stabilized systems in that they have some specific properties:
(1) extremely high stability; (2) specific rheological properties connected with the structure
formation at the interface and in the liquid continuous phase. Micrometer-sized hollow clusters
(colloidosomes) are obtained from the solid-stabilized drops [14, 15]. Such emulsions are used
as a template for creating nano-microporous materials [16, 17].

Solid particles are considered to be the main stabilizers in an surfactant-solids emulsi-
fying complex, while the surfactant is considered to be a co-stabilizer or modifier. It is usually
assumed that the role of surfactant is to reduce the hydrophobicity the particle’s surface. For
example, cationic surfactants are easily adsorbed at the surface of silica, which is negatively
charged in the presence of water. As a result, the silica particle’s surface is modified by organic
molecules orienting with their hydrophobic hydrocarbon radicals out toward the water. As a re-
sult, the surface charge decreases and the contact angle θ increases. The modified solid particles
are attached more strongly at the interface, forming a compact protective interlayer.

A short-chain surfactant hexylamine was used together with silica to stabilize emulsions
and foams [8, 10–13, 18–21]. Hexylamine adsorption at the silica particle’s surface leads to an
increase in the contact angle of wetting by water [12, 13] and the angle of selective wetting
at the oil/water interface [20, 21] and hence, to an increase in the stability of emulsions and
foams. In the case of emulsions, the growing concentration of hexylamine even leads to a phase
inversion which correlates with the contact angle inversion [20, 21].

Using hexylamine-silica complex, we obtained extremely stable emulsions of both types:
direct (oil-in-water, O/W) and reverse (water-in-oil, W/O) [18, 19]. At higher silica concentra-
tions, the emulsions did not separate, even when sitting for several months [8].
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The aim of this study was to compare the results of applying short-chain (hexylamine)
and long-chain surfactants (cetyltrimethylammonium bromide) as co-stabilizers with solid parti-
cles and to clarify the role of hexylamine in stabilizing the complex.

2. Materials and methods

2.1. Materials

Different types of silica were used as solid stabilizer: 1) fumed silica powder – Aerosil
A-200 and A-380 with specific surface area of 200 and 380 m2/g respectively; 2) Ludox HS-
40 – 40 % suspension in water with surface area of 220 m2/g; 3) hydrolytic silica S-3 with the
particle radius 230 nm obtained via the hydrolysis of silicon esters in an alcoholic medium by
the Stober method [22].

The surfactants used as a co-stabilizer were hexylamine and cetyltrimethylammonium
bromide (CTAB).

Distilled water was used as the aqueous phase for the preparation of suspension of silica
and emulsions.

Saturated hydrocarbons (heptane and decane) or diesel fuel were used as the organic
phase for emulsion.

2.2. Preparation and characterization of emulsions

The emulsions were obtained by shaking the organic and aqueous phases containing
silica and surfactant in a test tube. An emulsion was considered to be stable if it did not
separate into distinct phases over the course of a day or more.

2.3. Determination of silica aggregate size

The silica aggregate size was determined by turbidimetric analysis of a 0.1 % aqueous
suspension of silica.

In the case of the turbidimetric method, the optical density D was measured using
a photometer at the analytical wavelength λ = 590 nm and a cuvette length L = 3.011 cm
immediately after shaking. The turbidity τ and characteristic turbidity [τ ] were calculated as
follows:

τ =
2.303D

L
, [τ ] =

τ

υHex
. (1)

A characteristic ϕ (z) [23] was calculated from value [τ ]:

ϕ (z) =
[τ ]λ

α2
, (2)

where α =
3

4π

∣∣∣∣m2 − 1

m2 + 2

∣∣∣∣ is a parameter containing ratio m = nd/nH2O of refractive index of

dispersed phase nd = 1.45 (silica) and medium nH2O = 1.333.
A table in [23] contains pairs of values ϕ (z) and z. We found the theoretical value

ϕ (z)theor nearest to the experimentally obtained value ϕ (z)exp and calculated magnitude z by
formula:

zexp =
ϕ (z)exp · ztheor

ϕ (z)theor

. (3)
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The average radius of the silica aggregate was equal to:

R =
zλ

8π
. (4)

2.4. Determination of hexylamine droplet size

The size of hexylamine droplets dispersed in water was determined via a turbidimetric
method at hexylamine concentrations ranging from 0.003 – 0.151 mol/L.

Optical density D was measured using a photometer at the following values: λ = 340 nm
and L = 3.011 cm immediately after shaking. Characteristic turbidity [τ ], parameters ϕ (z), z
and the average droplet radius of hexylamine were calculated by equations (1) – (4). Refractive
index for hexylamine was accepted nd = 1.375 (as for hexane).

3. Results and discussion

It has been found experimentally that amount of short-chain surfactant like hexylamine
required to form emulsions (in complex with silica) is large enough compared to amount of
long-chain surfactant like CTAB (Table 1). Here, the relative concentration of co-stabilizer ns

(mol/g) was calculated as:

ns =
Cs

CSiO2

,

where Cs is the initial concentration of surfactant, mol/L; CSiO2 is silica concentration, g/L. The
volume fraction of oil during the shaking was equal �oil = 0.5 or �oil = 0.33 for the desired
formation of direct emulsions and �oil = 0.66 for the desired formation of reverse emulsions.

TABLE 1. Comparison of the relative concentrations of hexylamine and CTAB
required to form O/W and W/O emulsions

Type and
concentration of
silica, % (mass)

Type and
volume fraction

of oil

Type and relative concentration
of surfactant ns, mol/g

Lower boundary
of O/W

Lower boundary
of W/O

hexylamine

1% erosil-380 decane, �oil = 0.5 0.002 0.014

2% erosil-380 0.001 0.010

3% erosil-380 3 · 10−4 0.007

CTAB

2% erosil-200
diesel fuel, �oil = 0.33

and �oil = 0.66
5 · 10−7 7 · 10−6

2% Ludox-HS-40 heptane, �oil = 0.5 5 · 10−6 —

3 % S-3
heptane, �oil = 0.33

and �oil = 0.66
1 · 10−6 4.6 · 10−6
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The emulsions O/W and W/O had been achieved at relative concentrations of hexylamine
which were 3 orders of magnitude higher than the relative concentrations of CTAB because the
short-chain hydrophobicizer is required in larger amounts to achieve the definite contact angle
value.

For the silica-CTAB complex, the maximum angle θ was equal to 53 ◦ (the water
receding angle) [7] and the W/O emulsions could be obtained only if the oil volume fraction
was dominant at the CTAB concentration (1 – 5)·10−4 mol/L. At higher concentrations, CTAB
itself stabilizes the O/W emulsion in competition with solids, moreover CTAB forms a second
adsorption layer which is oriented with hydrophilic groups toward the water and the contact
angle again decreases [24]. Therefore, the phase inversion region and even more the W/O
emulsion instability region were not achieved in the case of CTAB.

As for hexylamine, increasing the concentration to ns = 0.004 – 0.014 mol/g (for 1 – 5 %
silica) caused an inversion of the contact angle (from θ < 90 ◦ to θ > 90 ◦) [20] and conversion
from O/W to W/O emulsions. Increasing the hexylamine concentration to ns = 0.01 – 0.02 mol/g
resulted in a contact angle θ value that was approximately 180 ◦ [20] and the W/O emulsions
became instable. Apparently, the second and subsequent adsorption layers of hexylamine on the
silica surface are not oriented. This may explain the increasing contact angle to the point of
practically complete hydrophobicity and loss of emulsion stability.

If CTAB is highly soluble in water, then hexylamine is poorly soluble. In the case of
hexylamine-silica-stabilized emulsions, the aqueous phase is a three-phase system that contains
solid particles of silica and liquid droplets of hexylamine.

When hexylamine and silica concentrations were expressed in terms of volume fractions
in the aqueous phase (taking into account the density of silica 2.2 g/cm3 and of hexylamine
0.766 g/cm3), their magnitudes were comparable (Table 2). Moreover, W/O emulsions were
formed when the volume fraction of hexylamine υHex exceeded the volume fraction of the
solids υSiO2 .

TABLE 2. The boundaries of the emulsion stability region for complex Aerosil-
hexylamine at �oil = 0.5 (decane)

υSiO2, % (vol) υHex, % (vol)

Lower boundary of O/W Phase inversion Upper boundary of W/O

0.5 0.26 1.32− 1.85 2.77

0.9 0.26 1.85− 2.64 4.62

1.4 0.13 1.85− 2.64 5.28

2.3 0.07 1.85− 2.64 6.60

3.3 0.04 2.77− 3.70 6.60

Therefore, in W/O emulsions, hexylamine is a completely equivalent stabilizer together
with silica, rather than simply a solid surface modifier.

Note also that in our experiment, a short-lived W/O emulsion was formed at shaking of
hexylamine-water system with decane. The life-time of such emulsion was only a few seconds,
but it showed a trend: colloidal droplets of hexylamine have the ‘ability’ to stabilize the W/O
emulsion.
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Silica particles with initial sizes of a few nanometers always formed stable aggregates
in powder or in water alone [25]. The average radius of Aerosil A-380 aggregates used in
experiments with hexylamine was 38 ± 5 nm.

As hexylamine is almost insoluble in water, so turbidimetric analysis of the hexylamine-
water binary system was carried out to determine the size of hexylamine droplets dispersed in
water.

There was linear growth of the turbidity of the system from 0.067 to 1.635 cm−1

with increasing concentrations. However, the characteristic turbidity calculation showed that
hexylamine droplet radius remained constant R = 45 ± 8 nm regardless of the concentration
(Fig. 1). The average radius of Aerosil A-380 aggregates, also determined by characteristic
turbidity, was 38±5 nm. Thus, the hexylamine droplet had a similar size to the silica aggregate.

FIG. 1. Radius of hexylamine droplets in hexylamine-water binary system

Thus, the hexylamine-water system is a nanoemulsion. However, this system is not
stable, unlike thermodynamically stable nanoemulsions with very low interfacial tension 10−2 –
10−5 mN/m [26]. Hexylamine constitutes a separate a bulk layer which becomes visible at
a concentration of 0.151 mol/L. Instability of the association arises from the large interfacial
tension between water and hexylamine, approximately 50 mN/m [10].

Accordingly, hexylamine’s role appears to be not only in surface hydrophobization. We
suggest that at high concentrations, this surfactant forms a hybrid organic-inorganic particle
together with silica (Fig. 2) and the attachment of such hybrid particles at the decane/water
interface promotes formation of oil droplets in the aqueous phase.

4. Conclusion

The amount of short-chain hexylamine required to form emulsions together with silica
is large compared to the amount of long-chain surfactant. W/O emulsions were formed when
the volume fraction of hexylamine exceeded that of the solid particles. It is assumed that at
high concentrations, this surfactant and silica form hybrid organic-inorganic ‘particle’ which
promotes the formation of oil droplets in water.
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FIG. 2. Assumed scheme of hybrid particle formed in the ternary system silica-
hexylamine-water at high concentration of hexylamine
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