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From “fat” graphs to metric graphs: the problem
of boundary conditions

G. F. Dell’Antonio1, A. Michelangeli2

1Sapienza, Rome, Italy and
SISSA, Via Bonomea 265, 34136, Trieste, Italy

2SISSA, Via Bonomea 265, 34136, Trieste, Italy and
Center for Advanced Studies, Ludwig-Maximilians-Universität München,

Geschwister-Scholl-Platz, 1, 80539, Munich, Germany

gianfa@sissa.it

PACS 03.65.Ge, 02.30.Jr DOI 10.17586/2220-8054-2015-6-6-751-756

We discuss how the vertex boundary conditions for the dynamics of a quantum particle on a metric graph

emerge when the dynamics is regarded as a limit of the dynamics in a tubular region around the graph.

We give evidence for the fact that the boundary conditions are determined by the possible presence of a

zero-energy resonance. Therefore, the boundary conditions depend on the shape of the fat graph near the

vertex. We also give evidence, by studying the case of the half-line, for the fact that on the contrary, in

general, adding on a graph a shrinking support potentials at the vertex either does not alter the boundary

condition or does not produce a self-adjoint dynamics. Convergence, throughout, is meant in the sense of

strongly resolvent convergence.
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1. Introduction

We consider in R3 a star graph Γ with vertex at the origin and N “rays” (half-lines)
K(n), n = 1 . . . N . We consider also a suitable vicinity of Γ (“fat graph ”), denoted by Γε,
whose “width” is proportional to ε > 0. More concretely, we consider Γε as consisting of a
junction region contained in a ball Bε of radius C · ε (C > 1), attached to which there are N

tubes” K
(n)
ε , n = 1, . . . , N , namely N non-intersecting infinite half-cylinders with transversal

radius ε, whose axes are the rays K(n).
The limit ε→ 0 that we have in mind is a homotetic shrinking of Γε to its skeleton Γ.
The internal region may be arbitrary and need not be connected; it may also be

fragmented. In the case of graphene, the image in an electronic microscope shows that
the density of conducting electrons is essentially localized in a spherical corona of width
approximately equal to the diameter of the cylinders.

This may be considered as a result of the combined action of the attraction to the
nucleus and of the presence near the nucleus of the valence electrons.

Let ∆Γε be the Laplacian on Γε with Dirichlet boundary conditions at ∂Γε.

We denote by λε > 0 and ξ
(1)
ε , respectively, the lowest eigenvalue and the corre-

sponding normalized eigenfunction of the two-dimensional negative Laplacian on a disk with
Dirichlet boundary conditions. By scaling λε ∼ ε−2λ.

We define the following:
Hε := −∆Γε − λε1.
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We have thus obtained a self-adjoint operator on the fat graph Γε. Dependng on the shape of
Ωε for all values of ε > 0, Hε may possibly have a negative point spectrum and an absolutely
continuous spectrum coinciding with R+.

It turns out that a deep understanding of the structure of the limit ε→ 0 is achieved
by means of the notion of zero energy resonance. For the present purposes, we define a
zero energy resonance of Hε as a singularity of the spectral measure of Hε at the bottom
of the continuous spectrum, equivalently, as a singularity in k2 at k = 0 of the resolvent
(Hε − k2)−1.

If the boundary ∂Γε is smooth, the singularity at the bottom of the continuous
spectrum is of the type 1

|k| . This corresponds, in our case, due to the special form of the

domain Γε, to a generalized (i.e., distributional) solution Φε to HεΦε = 0 which is only
square-integrable locally.

There is in fact a one-to-one correspondence between the possible singularities
at zero of the resolvent of Hε, due to resonances, and the singularities at zero of the
resolvents of each self-adjoint Laplacian on the star graph. The former are non square-
integrable functions that on each cylinder behave, axially, as a constant plus linear function
an + bnzn (zn is the axial coordinate on the n-th cylinder); the latter have the very same
behavior on the corresponding rays of the star graph.

2. Setting the problem up

We want to study the effect of Ωε on the limit ε → 0 by means of the associated
problem – we shall call it “the internal region problem” – consisting of the negative Laplacian
in the internal region Ωε with boundary conditions that are of some assigned type, denoted
by α, on the bases of the cylinders, and are of the Dirichlet type on the rest of ∂Ωε.

With this choice, we denote by µ+(Ωε) and µ−(Ωε), respectively, the lowest eigenvalue
of the internal region problem when α = Dirichlet or α = Neumann, and by µα(Ωε) the lowest
eigenvalue with generic boundary condition α (recall that on the rest of ∂Ωε we always take
Dirichlet boundary conditions). Clearly:

µ−(Ωε) 6 µα(Ωε) 6 µ+(Ωε),

and each µα(Ωε) scales as ε−2. We also note that by min-max, when one increases Ωε, both
µ−(Ωε) and µ+(Ωε) decrease.

Suppose that the internal region problem with a given boundary condition ααα has a
lowest-energy solution given by the eigenfunction φε(x) and the eigenvalue µα(Ωε), where x
is the three-dimensional coordinate in Ωε.

Correspondingly, prolonging φε by continuity of the function and its derivatives, to
a function Φε, also defined also on the external cylinders in such a way that, if (xn, yn) are

the transversal coordinates and zn is the axial coordinate in K
(n)
ε , then:

Φε(x1, y1, z1, . . . , xN , yN , zN) =
N∏
n=1

ξ(1)
ε (xn, yn)(an + bnzn) , zn > 0 ,

Fundamental observation: a zero energy resonance for Hε on Γε can occur only if
for the associated internal region problem there exists a boundary condition α at the bases
of the cylinders such that the first eigenvalue µα(Ωε) of the internal region problem (namely
the negative Laplacian inside Ωε with boundary condition α at the bases of the cylinders
and Dirichlet boundary conditions on the remaining part of ∂Ωε) coincides with the lowest
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eigenvalue λε of the negative Laplacian on the cylinders transversal section, namely if

µ−(Ωε) 6 λε 6 µ+(Ωε) .

Decomposition:

L2(Γε) ∼= L2(Ωε) ⊕
(
⊕Nn=1 L

2(K(n)
ε )
)

(Ωε = the central region, K
(n)
ε = the cylinders). In turn,

L2(K(n)
ε ) ∼= L2(K(n))⊗ L2(Dε)

∼=
(
L2(R+)⊗ Span{ξ(1)

ε }
)
⊕
(
L2(R+)⊗

(
⊕∞k=2 Span{ξ(k)

ε }
))

;

(K(n) = corresponding ray of the star graph Γ) (hence L2(K(n)) ∼= L2(R+)), Dε is the disk

in R2 centered at the origin and with radius ε, and {ξ(k)
ε | k ∈ N} is the o.n.b. of L2(Dε)

consisting of all Dirichlet Laplacian eigenfunctions.
We note that this decomposition is not left invariant by the flow of Hε.
Consider the natural map:

Πε : L2(Γε)→ L2(Γ)

which “crushes” the square integrable functions on the fat graph to square integrable func-
tions on the star graph by first taking only the part of the function existing on the cylinders

K
(n)
ε ’s and neglecting the part supported on the vertex region Ωε, and then on each cylinder

projecting the transversal part of the wave-function onto ξ
(1)
ε .

We want to investigate the limit of the “squeezed resolvent”:

Πε(Hε − k2)−1Π∗ε
ε→0−−−−→?

2.1. Resonant case

Resonant case: ∃ a zero energy resonance Φε for Hε:

Φε ∈ L2
loc(Γε)\L2(Γε)

HεΦε = 0 distributionally .

on the n-th cylinder, K
(n)
ε it has the form(
Φε

∣∣∣
K

(n)
ε

)
(xn, yn, zn) = ξ(1)

ε (xn, yn)(an + bnzn) .

Each self-adjoint Laplacian ∆A,B on the star graph Γ is identified by a vertex boundary
condition on each f ≡ (f (1), . . . , f (N))

A

 f (1)(0)
...

f (N)(0)

+B

 f (1)′(0)
...

f (N)′(0)

 = 0

for suitable N×N matrices A and B [Kostrykin-Schrader]. Each ∆A.B admits a zero-energy
resonance in L2

loc(Γ)\L2(Γ), that on each ray K(n), n = 1, . . . , N , behaves as αn + βnzn for
certain coefficient pairs (αn, βn) determined by A and B.

There is an evident one-to-one correspondence between the set of parameters
qualifying a resonance on the fat graph and the set of parameters qualifying a resonance
on a star graph, an observation that we now intend to develop further.

Let −∆A,B be that Laplacian whose resonance’s behavior is given by αn = an,βn = bn.
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It can be argued that if ΠεHεΠε− (−∆A,B) has no further resonance, and if the resol-
vent convergence has suitable distributional properties then the limit exists and corresponds

to a Laplacian −∆A,B i.e. ΠεHε − k2)Π∗ε
ε→0−−−−→ (−∆A,B − k2)−1

“the limit is selected by the resonance of Hε”.
Note that this claim is well-posed, for the resonance function of Hε is scale invariant.

The claim is proved by the following argument. Let H0 ≡ ΠεHεΠε and let VεW
∗
ε =

H0 + ∆A,B. One has:

1

H0 + VεW ∗
ε − z

− 1

H0 + z
=

1

H0 − z
VεCεW

∗
ε

1

H0 − z

Cε ≡
1

1−W ∗
ε

1
H0−zVε

If Vε and Wε are H0-compact and converge weakly to zero when ε→ 0 and if H0 and ∆A,B

have the same zero-energy resonances, then Cε vanishes in the limit ε→ 0.

2.2. Non-resonant case

Non-resonant case: no zero-resonance for Hε.
Two subcases:

First case: λε < µ−(Ωε) .

In this case, the energy threshold for the internal region is high (compared to λε), which
means that the domain Ωε has to be “very small” (in order for the spectrum of the internal
region problem to have such a high bottom). Functions that belong to the continuous
spectrum of Hε have a component in Ωε vanishing in the sup-norm as ε → 0, in order for
their H2-norm to stay finite. Therefore, the functions in the domain of any limit operator
on the graph must be zero at the vertex.
⇒ The limit is the Dirichlet Laplacian.

Second case: λε > µ+(Ωε) .

Now the energy threshold for the internal region is low (compared to λε) and the argument
above does not apply. We expect that the projection Πε “kills” in the limit the wave function
(the fast transversal oscillations average to zero).

Therefore, in this case too, we expect that if the limit dynamics on the star graph
exists they are Dirichlet-based.

But consider that strong convergence of the resolvents as bounded operators in the
Hilbert space does not imply that the limit be the resolvent of a self-adjoint operator even
if the convergence is strong and the resolvent identities are satisfied. The limit must be
analytic away from the real axis and strong convergence need not preserve analyticity. We
shall later give a simple example.

We expect that in the limit Πε(Hε − k2)−1Π∗ε becomes analytic for Imk2 > 0 and
regular at k2 → 0 as ε → 0, because on the star graph, the Dirichlet Laplacian is the only
self-adjoint Laplacian whose spectral measure is regular at zero [Kostrykin-Schrader].

A removal of singularity of the resolvent must therefore take place in the limit ε→ 0.
This is typical of this second sub-case: in the first sub-case λε < µ−(Ωε), instead, the
resolvent of Hε is regular at k2 = 0 uniformly in ε > 0 and hence also in the limit.
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A way to monitor this removal of singularity for the limiting resolvent is to compare
(the resolvent of) Hε with the second operator:

Hε + Vε Vε := Cε−21Ωε

We choose C > 0, which is always possible, so that the “modified internal region problem”
−∆ + Vε on Ωε, with a given boundary condition α at the bases of the cylinders and, as
usual, Dirichlet boundary conditions on the remaining part of ∂Ωε, has the lowest eigenvalue
that precisely coincides with λε (the role of Vε is therefore merely to lift the bottom of the
spectrum of the internal region problem up to the desired level λε). For convenience, we
denote by ϕε the corresponding lowest energy eigenfunction, that is, (−∆ + Vε)ϕε = λεϕε in
Ωε with Dirichlet boundary conditions on the whole ∂Ωε.

The internal region problem, consisting now of the negative Laplacian plus the po-
tential Vε with a given boundary condition α, has the lowest eigenvalue that can be lifted up
by means of a suitable choice of the constant C so as to precisely match the value λε. This
does not alter, but for an overall phase factor, the solutions to the internal region problem
and hence the matching conditions at the bases of the cylinders.

Notice:
σ(Hε + Vε) = [0,+∞)
Hε + Vε admits a zero energy resonance.

We thus have two operators on L2(Γε), namely Hε and Hε + Vε, where the latter is
a perturbation of the former and it is zero-resonant.

This is the input for a well-established scheme developed by Kato, Konno, and Kuroda
that allows one to re-write:

(Hε + Vε − λ)−1 − (Hε − λ)−1,

in a way that is well suited for taking the limit ε → 0 and for taking advantage of the
existence of a zero-energy resonance.
For instance:

Πε

(
(HN

ε + Vε − λ)−1 − (HN
ε − λ)−1

)
Π∗ε

ε→0−−→
ε→0−−→ (−∆N − λ)−1 + C(k)PN,k

where PN,k is the projection onto the vector |GN
k (., 0) >.

Using the explicit form of the resolvents on a graph given e.g. in [1], one verifies that
the last term is: (

(−∆D − λ)−1 − (−∆N − λ)−1
)

and therefore ⇒ The limit is the resolvent of the Dirichlet Laplacian.
Notice: Vε is added in the internal region Ωε and this can be done only in the case

of a fat graph Γε. This procedure has no counterpart on the graph Γ (because there is no
internal region).

One may hope to obtain similar results by adding directly in the graph a potential
Vε supported around the vertex of the graph and taking the limit when the support shrinks
to the vertex.

Prototype: a “star graph” with one edge only. The corresponding fat graph has the
shape of a safety match.
By choosing suitably the shape of the head of the safety match, one can produce in the limit
any boundary condition at the vertex.
We can now try to change boundary conditions at the vertex of the graph by adding a
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potential shrinking around the origin
We introduce the Hamiltonian on L2(R+):

H(ν)
ε = −∆ν + Vε , D(H(ν)

ε ) = D(−∆ν) ,

Vε(x) :=
1

ε1+γ
V
(x
ε

)
,

where
→ V is real-valued, V ∈ L1(R+) ∩ L∞(R+)
→ self-adjoint boundary condition at the origin

f(0) sin ν = f ′(0) cos ν ν ∈
(
− π

2
,
π

2

]
→ γ < 0 weak scaling, γ = 0 canonical, γ > 0 strong

The problem is simple enough to allow an explicit solution.
For k2 ∈ C with im k¿0, we find that

(−∆ν + Vε − k2)−1 ε→0−−−−→ (−∆ν − k2)−1 + Θν,V,k(γ) | ην,k 〉〈 ην,k |
in the norm operator sense, where

ην,k(x) := (tan ν − k)−1 eikx , x ∈ [0,+∞) ,

Θν,V,k(γ) =


0 if γ < 0 (weak scaling)

−
(
∫
R+V )

1 + (tan ν − ik)−1(
∫
R+V )

if γ = 0 (canonical scaling)

−(tan ν − ik) if 0 < γ < 1 (strong scaling).

The convergence being in operator norm, the limit operator Rk satisfies the resolvent
identity.

In the weak scaling regime the boundary conditions are not changed.
In the canonical or strong scaling, in general Rk is not the resolvent of a self-adjoint

operator (in particular the limit does not produce new boundary conditions at x = 0),
because Rk is not holomorphic in k2:

in fact Rk = (−∆D − k2)−1 for all k2 ∈ (−∞, 0),
but Rk 6= (−∆D − k2)−1 for some values k2 ∈ C \ (−∞, 0)

Exceptions:
→
∫
R+V = 0 in the canonical scaling (γ = 0)

→ Dirichlet boundary conditions are preserved in any scaling
This phenomenon can be proved for a general metric graph as well.
Remarkably, the only exception is a “fake” star graph consisting of the real line R

regarded as the union of the two rays R+ and R−.
In this case one can add to the self-adjoint Laplacian on R a potential ε−11{|x|6ε} at

the “vertex” of the graph so to obtain in the limit ε → 0 a so-called “point interaction” at
the origin, namely a self-adjoint operator with certain boundary conditions at the origin [2].
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