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We address a linearized KdV equation on metric star graphs with one incoming finite bond and two outgoing

semi-infinite bonds. Using the theory of potentials, we reduce the problem to systems of linear integral

equations and show that they are uniquely solvable under conditions of the uniqueness theorem.
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Introduction

The Korteweg – de Vries (KdV) equation is of importance for many problems of
physics and related fields. In particular, soliton solutions of KdV equation have found
applications in fluid mechanics [1-11]. A pioneering study of KdV equation dates back to
Scott Russell, who was able to model the propagation of solitary wave on the water surface
in 1834. The linearized KdV provides an asymptotic description of linear, weakly dispersive
long waves, such as, e.g., shallow water waves. Earlier, it was proven that via the normal
form transforms the solution of the KdV equation can be reduced to the solution of the
linear KdV equation [12]. Namely, Belashov and Vladimirov [12] numerically investigated
evolution of a single disturbance u(0, x) = u0 exp(−x2/l2) and showed that in the limit
l → 0, u0l

2 = const, the solution of the KdV equation is qualitatively similar to that of the
linearized KdV equation. The boundary value problems for KdV equation on half lines are
considered in [2,5,7].

In this paper, we address the linearized KdV equation on a star graph Γ with one
bounded bond and two semi-infinite bonds connected at one point, called the vertex. The
bonds are denoted by Bj, j = 1, 2, 3, the coordinate x1 on B1 is defined from −1 to 0, and
coordinates x2 and x3 on the bonds B2 and B3 are defined from 0 to such that on each bond
the vertex corresponds to 0. On each bond we consider the linear equation:(

∂

∂t
− ∂3

∂x3
j

)
uj(xj, t) = fj(x, t), t > 0, xj ∈ Bj, j = 1, 2, 3. (1)

Below, we will also use the notation x instead of xj (j = 1, 2, 3). We treat a boundary
value problem and using the method of potentials, reduce it to a system of integral equations.
The solvability of the obtained system of integral equations is proven.
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1. Formulation of the problems

To solve the linear KdV equation on an interval, one needs to impose three boundary
conditions (BC): two on the left end of thex-interval and one on the right end, (see, e.g.,
[5-6] and references therein). For the above star graph, we need to impose 5 BCs at the
vertex point, which should provide also connection between the bonds and 2 BCs at the left
side of B1. In detail, we require:

u1(−1; t) = φ0(t), u1x(−1; t) = φ1(t), (2)

u1(0, t) = a2u2(0, t) = a3u3(0, t), (3)

u1x(0; t) = b2u2x(0; t) = b3u3x(0; t), (4)

u1xx(0; t) = a−1
2 u2xx(0; t) + a−1

3 u3xx(0; t), (5)

for 0 < t < T, T = const.
Furthermore, we assume that the functions fj(x, t), j = 1, 2, 3, are smooth enough

and bounded. The initial conditions are given by:

uj(x, 0) = 0, x ∈ Bj, (j = 1, 2, 3). (6)

It should be noted that the above vertex conditions are not the only possible ones.
The main motivation for our choice is caused by the fact that they guarantee uniqueness of
the solution and, if the solutions decay (to zero) at infinity, the norm (energy) conservation.

2. Existence and uniqueness of solutions

Lemma 1. Let 1
b22

+ 1
b23

6 1. Then the problem (1)-(6) has at most one solution.

Proof of Lemma 1. Using the equation (1) one can easily get:

d

d t

b∫
a

u2
j(x, t)dx =

(
2ujujxx − u2

jx

)∣∣x=b

x=a
+ 2

b∫
a

fj(x, t)uj(x, t)dx,

for appropriate values of constants a and bon each bond. We put φ0(t) ≡ 0. Then, the above
equalities and vertex conditions (2)-(5) yield:

d

dt

(
e−εt ‖u‖2) 6 e−εt

(
1

ε2
‖f‖2 + φ2

1(t)

)
,

‖u‖2 6

t∫
0

e−ε(t−τ)

(
1

ε2
‖f(·, τ)‖2 + φ2

1(τ)

)
dτ , (7)

where (u, v) =
0∫
−1

u1v1dx1 +
+∞∫
0

u2v2dx2 +
+∞∫
0

u3v3dx3, ||u|| =
√

(u, u) are L2 scalar product

and norm defined on graph, ε is an arbitrary positive number.
Uniqueness of the solution follows from (7).
Theorem 1. Let a2

2 + a2
3 + a2

2a
2
3 + a2

b3
+ a3

b2
6= 0, 1

b22
+ 1

b23
6 1, φ0(t) ∈ C2[0, T ], φ1(t) ∈

C1[0, T ]. Then the problem (1) – (6) has a unique solution in C1([0, T ], C3(Γ)).
Proof of Theorem 1.
To prove the theorem, we use the following functions are called fundamental solutions

of the equation ut − uxxx = 0 (see [1, 3, 5, 12, 16]):

U(x, t; ξ, η) =

{
1

(t−η)1/3
f
(

x−ξ
(t−η)1/3

)
, t > η,

0 t 6 η,
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V (x, t; ξ, η) =

{
1

(t−η)1/3
ϕ
(

x−ξ
(t−η)1/3

)
, t > η,

0 t 6 η,

where f(x) = π
31/3

Ai
(
− x

31/3

)
, ϕ(x) = π

31/3
Bi
(
− x

31/3

)
for x > 0, ϕ(x) = 0 for x < 0 and

Ai(x) and Bi(x) are the Airy functions. The functions f(x) and ϕ(x) are integrable and
0∫
−∞

f(x)dx = π
3
,

+∞∫
0

f(x)dx = 2π
3
,

+∞∫
0

ϕ(x)dx = 0.

Below, we also use fractional integrals [9]:

Jα(0,t)f(t) :=
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ, 0 < α < 1,

and the inverse of this operator, i.e. the Riemann-Liouville fractional derivatives [8, 9]
defined by:

Dα
(0,t)f(t) :=

1

Γ(1− α)

d

dt

∫ t

0

(t− τ)−αf(τ)dτ, 0 < α < 1.

We look for solution in the form:

u1(x, t) =

t∫
0

U(x, t; 0, η)ϕ1(η)dη+

t∫
0

U(x, t;−1, η)α(η)dη+

t∫
0

V (x, t;−1, η)β(η)dη+F1(x, t),

u2(x, t) =

t∫
0

U(x, t; 0, η)ϕ2(η)dη +

t∫
0

V (x, t; 0, η)ψ2(η)dη + F2(x, t), (8)

u3(x, t) =

t∫
0

U(x, t; 0, η)ϕ3(η)dη +

t∫
0

V (x, t; 0, η)ψ3(η)dη + F3(x, t), (9)

where Fk(x, t) = 1
π

t∫
0

∫
Bk

U(x, t; ξ, η)fk(ξ, η)dξdη, k = 1, 2, 3.

Satisfying the conditions (2) - (4), we have:

f(0)α(t) + ϕ(0)β(t) +D
2/3
(0,t)

t∫
0

ϕ1(η)f(− 1

(t− η)
1/3

)dt =
1

Γ(1
3
)
D

2/3
(0,t)[φ0(t)− F1(0, t)], (10)

f ′(0)α(t) +ϕ′(0)β(t) +D
1/3
(0,t)

t∫
0

ϕ1(η)f ′(− 1

(t− η)
1/3

)dt =
1

Γ(2
3
)
D

1/3
(0,t)[φ1(t)−F1x(0, t)], (11)

f(0)ϕ1(t)− a2f(0)ϕ2(t)− a2ϕ(0)ψ2(t) +
t∫

0

K1α(η)dη +
t∫

0

K2β(η)dη =

= 1
Γ( 1

3
)
D

2/3
(0,t)[F2(0, t)− F1(0, t)],

(12)

f(0)ϕ1(t)− a3f(0)ϕ3(t)− a3ϕ(0)ψ3(t) +
t∫

0

K1α(η)dη +
t∫

0

K2β(η)dη =

= 1
Γ( 1

3
)
D

2/3
(0,t)[F3(0, t)− F1(0, t)].

(13)
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We take derivatives from (10) – (11) to obtain:

f(0)α′(t) + ϕ(0)β′(t) +
1

Γ(1
3
)

t∫
0

K3ϕ1(η)dη =
1

Γ(1
3
)
D

2/3
(0,t)

d

dt
[φ0(t)− F1(0, t)], (14)

f ′(0)α′(t) + ϕ′(0)β′(t) +
1

Γ(2
3
)

t∫
0

K4ϕ1(η)dη =
1

Γ(2
3
)
D

1/3
(0,t)

d

dt
[φ1(t)− F1x(0, t)]. (15)

From conditions (4) and (5), it follows:

f ′(0)ϕ1(t) + b2f
′(0)ϕ2(t)− b2ϕ

′(0)ψ2(t) + 1
Γ( 2

3
)

t∫
0

K5α(η)dη + 1
Γ( 2

3
)

t∫
0

K6β(η)dη =

= 1
Γ( 2

3
)
D

1/3
(0,t)[b2F2x(0, t)− F1x(0, t)],

(16)

f ′(0)ϕ1(t) + b3f
′(0)ϕ3(t)− b3ϕ

′(0)ψ3(t) + 1
Γ( 2

3
)

t∫
0

K5α(η)dη + 1
Γ( 2

3
)

t∫
0

K6β(η)dη =

= 1
Γ( 2

3
)
D

1/3
(0,t)[b3F3x(0, t)− F1x(0, t)],

(17)

−π
3
ϕ1(t)− 1

a2
2π
3
ϕ2(t)− 1

a3
2π
3
ϕ3(t) +

t∫
0

K7α
′(η)dη +

t∫
0

K8β
′(η)dη =

= 1
a2
F2xx(0, t) + 1

a3
F3xx(0, t)− F1xx(0, t),

(18)

where the kernels of integral operators defined as:

K1 =

t∫
η

1

(t− τ)
2/3(τ − η)

1/3
f ′

− 1

(τ − η)
1/3

 dτ,

K2 =

t∫
η

1

(t− τ)
2/3(τ − η)

1/3
ϕ′

− 1

(τ − η)
1/3

 dτ,

K3 =

t∫
η

1

(t− τ)
2/3(τ − η)

2/3
f ′′

− 1

(τ − η)
1/3

 dτ,

K4 =

t∫
η

1

(t− τ)
1/3(τ − η)

2/3
f ′′′

− 1

(τ − η)
1/3

 dτ,

K5 =

t∫
η

1

(t− τ)
1/3(τ − η)

1/3
f ′′

− 1

(τ − η)
1/3

 dτ,

K6 =

t∫
η

1

(t− τ)
1/3(τ − η)

1/3
ϕ′′

− 1

(τ − η)
1/3

 dτ,

K7 =

x∫
0

U(y + 1; t− η)dy , K8 =

x∫
0

V (y + 1; t− η)dy.
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We obtained the system of integral equations (12) – (18) with respect to unknowns
(α′(t), β′(t), ϕ1(t), ϕ2(t), ϕ3(t), ψ2(t), ψ3(t)). The matrix of the coefficients M of these
unknowns on the off integral part of the system has a determinant:

detM =
π4b2b3

81a2a3

(
a2

2 + a2
3 + a2

2a
2
3 +

a2

b3

+
a3

b2

)
.

Under conditions of the theorem this determinant is not singular.
According to the asymptotes of Airy functions the kernels of the integral operators

are integrable (see [14, 15]). Hence, it follows from the uniqueness theorem and Fredholm
alternatives that the system of equations has a unique solution. Thus the solvability of the
problem is proved.

Acknowledgments

This work is partly supported by a grant of the Volkswagen Foundation.

References

[1] S. Abdinazarov. The general boundary value problem for the third order equation with multiple char-
acteristics (in Russian). Differential Equations, 1881, 3(1), P. 3–12.

[2] J.L. Bona and A.S. Fokas. Initial-boundary-value problems for linear and integrable nonlinear dispersive
partial differential equations. Nonlinearity, 2008, 21, P. 195–203.

[3] L. Cattabriga. Unproblema al contorno per unaequazioneparabolica di ordinedispari. Annalidella Scuola
Normale Superiore di Pisa a mat., Serie III, 13(2), 1959.

[4] J. E. Colliander, C. E. Kenig. The generalized Korteweg-de Vries equation on the half line. Commun.
Partial Differ. Equations, 2002, 27(11-12), P. 2187–2266.

[5] T. D. Djuraev. Boundary value problems for mixed and mixid-composite type equations, (in Russian).
Fan, Tashkent, 1979.

[6] A. V. Faminskii, N. A. Larkin. Initial-boundary value problems for quasilinear dispersive equations
posed on a bounded interval. Electron. J. Differ. Equ., 2010, 2010(20).

[7] A.S. Fokas and L.Y. Sung. Initial boundary value problems for linear dispersive evolution equations on
the half line. Technical report of Industrial Mathematics Institute at the University of South Carolina,
1999.

[8] M. Rahimy. Applications of fractional differential equations. Applied Mathematical Sciences, 2010, 4(50),
P. 2453–2461.

[9] R.Gorenflo, F. Mainard. Fractional calculus: Integral and differential equations of fractional order.
arXiv:0805.3823v1, 2008.

[10] E. Taflin. Analytic linearization of the Korteweg-De Vries equation. Pacific Journal of Mathematics,
1983, 108(1).

[11] V. Belashov, S. Vladimirov. Solitary waves in dispersive complex media: theory, simulation, application.
Springer, 2005.

[12] G.B. Whitham. Linear and nonlinear waves. Pure and Applied Mathematics, Wiley-Interscience., 1974.
[13] Z.A. Sobirov, H. Uecker, M. Akhmedov. Exact solutions of the Cauchy problem for the linearized KdV

equation on metric star graphs. Uz. Math. J., 2015, 3.
[14] A. R. Khashimov. Some properties of the fundamental solutions of non-stationary third order composite

type equation in multidimensional domains. Journal of Nonlinear Evolution Equations and Applications,
January 2013, 2013(1), P. 1–9.

[15] A.R. Khashimov, S. Yakubov. On some properties of cauchy problem for non-stationary third order
composite type equation. Ufa Mathematical Journal, 2014, 6(4), P. 135–144.

[16] Z. A. Sobirov, M. I. Akhmedov, H. Uecker. Cauchy problem for the linearized KdV equation on general
metric star graphs. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6(1), P. 198–204.


