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An adiabatic change of parameters along a closed path may interchange the (quasi-)eigenenergies and

eigenspaces of a closed quantum system. Such discrepancies, induced by adiabatic cycles are referred to

as the exotic quantum holonomy, which is an extension of the geometric phase. “Small” adiabatic cycles

induce no change on eigenspaces, whereas some “large” adiabatic cycles interchange eigenspaces. We ex-

plain the topological formulation for the eigenspace anholonomy, where the homotopy equivalence precisely

distinguishes the larger cycles from smaller ones. An application to two level systems is explained. We also

examine the cycles that involve the adiabatic evolution across an exact crossing, and the diabatic evolution

across an avoided crossing. The latter is a nonadiabatic example of the exotic quantum holonomy.
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1. Introduction

An adiabatic quasi-static cycle may induce a nontrivial change on a closed quantum
system. A well-known example is the geometric phase factor [1, 2], which is also called as
the quantum holonomy because of its geometrical interpretation [3, 4].

Recently, it has been recognized that the geometric phase has exotic relatives, where
(quasi-)eigenenergies and eigenspaces of stationary states exhibit nontrivial change as a
result of an adiabatic cycle. Namely, eigenenergies and eigenspaces may be interchanged by
adiabatic cycles.

The exotic quantum holonomy has been found in various physical systems: a particle
confined in a one-dimensional box with a generalized pointlike potential [5], a quantum map
under a rank-1 perturbation [6], the Lieb-Liniger model [7], and a quantum graph [8]. Other
examples are reported in the references cited in Ref. [9].

In the following, we will briefly explain the topological formulation for the exotic
quantum holonomy [9], which may be considered as a counterpart to the geometrical formu-
lation for the geometric phase factor [3, 10]. Using the homotopic classification, we discuss
“large” cycles that exhibit exotic quantum holonomy in Hamiltonian systems that involve
the exact level crossing and avoided crossing.
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2. Topological formulation

The quantum holonomies including both the geometric phase and the eigenspace an-
holonomy, are discrepancies induced by an adiabatic cycle, i.e., a closed path in an adiabatic
parameter space M. A lifting of the adiabatic cycle is helpful to characterize the quantum
holonomies.

As for the geometric phase, we define a lift of the adiabatic path as the trajectory of
the state vector, which satisfies the adiabatic time-dependent Schrödinger equation with an
adiabatic initial state. We assume that the dynamical phase is excluded from the lift.

The lift of an adiabatic cycle C induces a mapping, which is denoted by ϕC , from
the initial adiabatic state to the final adiabatic state. ϕC puts a geometric phase factor to
the initial state vector. In terms of differential geometry, ϕC is an element of the holonomy
group. This fact allows us to thoroughly investigate the geometric phase with the help of
differential geometry [3].
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Fig. 1. Lifting structure behind quantum holonomies. (a) Lift C̃ (dashed
line) of a path C (bold line) in the adiabatic parameter space M. A lift is
the trajectory of an eigenobject under the adiabatic time evolution with an
adiabatic initial condition. The dotted lines represent the projection π from
the lifted space to M. As for the case of the geometric phase, the lift is the
trajectory of the state vector excluding the dynamical phase. On the other
hand, the lift for the exotic quantum holonomy is the trajectory of p (Eq. (1)).
(b) Lift of the closed path (i.e., adiabatic cycle) for a given initial eigenobject f .
We denote the final point of the lift by ϕC(f). The mapping ϕC describes the
discrepancy of the eigenobject induced by the cycle C

We carry over the concept of lifting to the exotic quantum holonomy. Instead of the
adiabatic state vector for the geometric phase, we employ an ordered set of eigenprojectors

p ≡ (P̂1, P̂2, . . .) (1)

where P̂j is j-th eigenprojector under a given value of the adiabatic parameter. We denote
p-space by P.

We explain two kinds of adiabatic parameter spaceM, which is located at the bottom
of the lifting structure. One is a c-number parameter space. Alternatively, it is useful to
introduce a canonical “adiabatic parameter space”, whose point is a set of projectors:

b ≡ {P̂1, P̂2, . . .}, (2)

where the order of the projectors are disregarded. b-space is a counterpart of the projective
Hilbert space in the Aharonov-Anandan theory of the geometric phase [10].

We explain the lifting of an adiabatic cycle C in M to P , and the corresponding
ϕC . For a given adiabatic path, the adiabatic Schrödinger equation induces the adiabatic
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time evolution of p. The lifted path is the trajectory of p, and naturally induces ϕC . The
mapping of ϕC between the initial and final p is essentially a permutation of P̂j’s. For
example, if C does not induces the exotic quantum holonomy, ϕC is equivalent with the
identical permutation. On the other hand, ϕC may be a non-identical permutation, which
describes the interchange of the eigenspaces, induced by C.

Here, our task is to characterize ϕC completely. We utilize the fact that there is a
covering map π : P → M, where π is the projection that satisfies the axiom of the covering
projection (not shown here). We remark that the covering space is a fiber bundle with
a discrete structure group due to the discreteness of p for a given value of the adiabatic
parameter.

The covering map structure allows us to investigate the exotic quantum holonomy
with the help of topology. First, ϕC and ϕC′ are the same if C and C ′ are homotopic, where
we say that a cycle C is homotopic to another cycle C ′ if C can be smoothly deformed to C ′

with the initial and final points remaining unchanged. Hence, we may denote the mapping
ϕC as ϕ[C], where [C] is the class of paths that are homotopic to C.

Next, we need to enumerate all possible [C]’s in the adiabatic parameter space M.
This is equivalent to finding π1(M) = {[C]| C is a closed path in M}, which is called the
first fundamental group of M.

Hence, it suffices to enumerate ϕ[C] for all [C] ∈ π1(M). When P is contractable to
a point (i.e., there is no “hole”), there is a one-to-one correspondence between π1(M) and
ϕ[C], i.e.:

{ϕ[C]}[C]∈π1(M) ≃ π1(M). (3)

In other words, if C is not homotopic to C ′, two permutations ϕ[C] and ϕ[C′] are different.
The extension of Eq. (3) to an arbitrary P is shown in Ref. [9].

3. Analysis of two level systems

We examine the exotic quantum holonomy in two level systems. For a while, we
suppose the system has no spectral degeneracy. Hence, the Hamiltonian Ĥ has the following
spectral decomposition:

Ĥ = E1P̂1 + E2P̂2. (4)

where E1 and E2 are eigenvalues of H. In two level systems, the eigenprojections P̂1 and P̂2

may be specified by a normalized 3-vector a, which is called as the Bloch vector, as

P̂1 =
1

2
(1 + a · σ̂), P̂2 =

1

2
(1− a · σ̂). (5)

Non-degenerate periodically driven systems can be examined in the same manner once we
replace Ĥ with a Floquet operator.

We explain that p and b have a simple geometrical interpretation in two level systems
(see, Fig. 2 (a)). First, p is equivalent to a, a point in a sphere S2, as is seen from Eq. (5).
Second, b is equivalent to the director (headless vector) n [11], which correspond to a point
in the real projective plane RP 2. This is because both a and −a correspond to the same
value of b, and the identification of antipodal point on the sphere leads to RP 2.

Once we employ n as the adiabatic parameter space, the topological formulation
provides an intuitive interpretation of the exotic quantum holonomy. The lifts of a “small”
cycle in n-space are closed in a-space, i.e., the sphere (Fig. 2 (b)). Conversely, the lifts of
a “large” cycle in n-space can be open in a-space. The exotic quantum holonomy reflects
such a discrepancy between the trajectories of n and a.
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A complete way to distinguish the smaller and larger cycles is provided by the
homotopy equivalence. In n-space, i.e., RP 2, there are only two classes of cycles, i.e.,
π1(RP 2) = {[e], [γ]}, where e is a “small” cycle that is homotopic to a point (i.e., the
zero-length closed path), and a “large” cycle γ is not homotopic to e (Fig. 2 (b)).

Now Eq. (3) is applicable to classify ϕ[C] completely, since a-space, i.e. S2, has no
hole. Namely, ϕ[e] and ϕ[γ] correspond to different permutations, the identical and the cyclic
permutations of two items, respectively (see, Fig. 2 (b)).

a
n

(a)

Fig. 2. (a) Bloch vector a and director n (schematic). (b) Two homotopically
inequivalent cycles e and γ in RP 2 (bottom), and their lifts to S2 (upper). The
initial point of the cycles is denoted as n0. The lifts of the cycles with initial
point ±a0 are ẽ± and γ̃±. Since the former are closed in S2, ϕ[e] correspond
to the identical permutation of eigenspaces. On the other hand, the latter are
open so that ϕ[γ] corresponds to the cyclic permutation of the two eigenspaces,
i.e., γ induces the exotic quantum holonomy

4. Examples of nontrivial cycle γ

We explain how we realize the adiabatic cycles γ, which induces the cyclic permuta-
tion of eigenspaces as well as (quasi-)eigenenergies in non-degenerate two level systems.

The first example is a family of a quantum map under a rank-1 perturbation, which
is described by a periodically-kicked Hamiltonian Ĥ(λ, t) = Ĥ0 + λ|v⟩⟨v|

∑∞
n=−∞ δ(t − n),

where |v⟩ is a normalized vector. We introduce a Floquet operator, which describes the time
evolution during a unit time interval,

Û(λ) = e−iĤ0e−iλ|v⟩⟨v|. (6)

The stationary state of this system for a given value of λ is described by an eigenvector of
Û(λ), and the time evolution induced by an adiabatic variation of λ is essentially governed

by the parametric evolution of eigenvectors of Û(λ) [12]. Since Û(λ) has a period 2π as a

function of λ, the trajectory of n induced by Û(λ) for 0 6 λ 6 2π makes a closed path in
RP 2. Nevertheless, the lift of the closed path to S2 is generically open to exhibit the non-
identical permutation of eigenprojectors, as these closed paths are homotopic to γ (Fig. 3).
See, Refs. [6, 9] for details.
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Fig. 3. Trajectories of the director n. We depict the trajectories in nx-ny

plane. The first example is the quantum map (6) with Ĥ0 =
π
2
σ̂y and |v⟩⟨v| =

(1+ σ̂x)/2, which implies a = ey cos(λ/2)− ez sin(λ/2), whose director moves
along ny-axis. Note that the initial and end points n± are same in RP 2. Hence
the trajectory is closed, and homotopic to γ. The Bloch vector of the second
example (7) is shown in Eq. (8). The trajectory of the director coincides with
the one of the first example, and agrees with the one for the third nonadiabatic
example

Second, we examine the adiabatic cycles that involve a level crossing [13] using the
following Hamiltonian

Ĥ(λ) ≡ 1

4
[(1 + cosλ)σ̂y + (sinλ)σ̂z] . (7)

which is periodic in λ with a period 2π, and degenerates at λ = π. We introduce a Bloch
vector

a ≡ cos(λ/2)ey + sin(λ/2)ez, (8)

for Eq. (7), which leads to the spectrum decomposition (4) with the eigenprojectors (5), E1 =
1
2
cos(λ/2) and E2 = −1

2
cos(λ/2) (Fig. 4). We note that the Bloch vector a smoothly depends

on λ even in the vicinity of the crossing point λ = π. Hence, the adiabatic time evolution
follows the corresponding parametric evolution of eigenprojectors (5) [14]. Although Ĥ(λ)
is periodic in λ with the period 2π, the eigenenergies, as well as the eigenprojectors, are not,
which implies the presence of the exotic quantum holonomy. Hence, the trajectory of the
director for 0 6 λ 6 2π is closed, and is homotopic to γ (see, Fig. 3).

Third, we examine the second case under a generic small perturbation, which gener-
ically breaks the spectral degeneracy. For example, we consider:

Ĥϵ(λ) ≡ Ĥ(λ) +
1

2
ϵσx. (9)

The level crossing point becomes an avoided crossing point due to the perturbation (Fig. 4).
Hence, the exotic quantum holonomy do not occur in the adiabatic limit. However, the use of
the diabatic process across the avoided crossing recovers the exotic quantum holonomy [13].
Along the closed path 0 6 λ 6 2π involving the diabatic process, the trajectory induced by
the time evolution of the state projector, which is initially an eigenprojector of Ĥ(0), mimics
the parametric evolution of the corresponding eigenprojector of the unperturbed system
Ĥ(λ). In this sense, the diabatic cycle plays the role of nontrivial cycle γ. We remark that
this is a nonadiabatic example of the exotic quantum holonomy.
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Fig. 4. Eigenenergies of the level crossing Hamiltonian Ĥ(λ) (Eq. (7)) (thick

lines) and the perturbed Hamiltonian Ĥϵ(λ) (Eq. (9)) (dashed lines). Since

the eigenenergies of Ĥ(λ) crosses at λ = π, the adiabatic cycle 0 6 λ 6 2π

interchanges the eigenspaces at λ = 0. The adiabatic cycle for Ĥϵ(λ) do
not induce the exotic quantum holonomy, due to the presence of the avoided
crossing around λ = π. However, if λ is moved quickly around λ = π, the
system follows the diabatic evolution. Such a diabatic cycle induces the exotic
quantum holonomy along the nonadiabatic time evolution [13]

5. Summary

We briefly explained the topological formulation of the exotic quantum holonomy with
an emphasis to its geometrical character in two level systems. An application to Hamiltonian
systems with an exact or avoided crossing is explained.
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